Abstract :
[en] Efficient comparison of heterogeneous tabular datasets is difficult when sources are unknown or weakly documented. We address this problem by introducing a unified, type-aware framework that builds compact data representations (CDRs)—concise summaries sufficient for downstream analysis—and a corresponding similarity graph (and tree) over a data corpus. Our novelty is threefold: (i) a principled vocabulary and procedure for constructing CDRs per variable type (factor, time, numeric, string), (ii) a weighted, type-specific similarity metric we call Data Information Structural Similarity (DISS) that aggregates distances across heterogeneous summaries, and (iii) an end-to-end, cloud-scalable real-ization that supports large corpora. Methodologically, factor variables are summarized by frequency tables; time variables by fixed-bin histograms; numeric variables by moment vectors (up to the fourth order); and string variables by TF–IDF vectors. Pairwise similarities use Hellinger, Wasserstein (p=1), total variation, and L1/L2 distances, with MAE/MAPE for numeric summaries; the DISS score combines these via learned or user-set weights to form an adjacency graph whose minimum-spanning tree yields a similarity tree. In experiments on multi-source CSVs, the approach enables accurate retrieval of closest datasets and robust corpus-level structuring while reducing storage and I/O. This contributes a repro-ducible pathway from raw tables to a similarity tree, clarifying terminology and providing algorithms that practitioners can deploy at scale.
Scopus citations®
without self-citations
2