[en] CORTO stands for Celestial Object Rendering TOol and is an open-source Python repository designed to address the limited availability of high-quality image-label pairs for space exploration. Leveraging Blender’s capabilities, CORTO enables the synthetic generation of large, annotated datasets to support computer vision tasks, providing a flexible and modular solution that simplifies the creation of training data for data-driven algorithms and testing of traditional image processing methods. The tool is especially relevant for optical navigation tasks that require complex interdisciplinary pipelines. The paper highlights the tool’s architecture and demonstrates its application in various scenarios, including missions to small bodies, the Moon, other planetary bodies, and around uncooperative man-made objects. With its modularity, CORTO supports external contributions and future enhancements to expand its coverage to additional scenarios.
Disciplines :
Aerospace & aeronautics engineering
Author, co-author :
Pugliatti, Mattia; University of Colorado, Boulder, United States
PISANTI, Dario ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > Space Robotics ; Scuola Superiore Meridionale, Naples, Italy
Faraco, Niccolò; Politecnico di Milano, Milan, Italy
Pizzetti, Andrea; Politecnico di Milano, Milan, Italy
Maestrini, Michele; Politecnico di Milano, Milan, Italy
Topputo, Francesco; Politecnico di Milano, Milan, Italy
External co-authors :
yes
Language :
English
Title :
Design and cases studies of CORTO, an open access rendering tool for celestial and artificial bodies
Publication date :
2024
Event name :
IAF Space Exploration Symposium
Event place :
Milan, Ita
Event date :
14-10-2024, 18-10-2024
By request :
Yes
Main work title :
IAF Human Spaceflight Symposium - Held at the 75th International Astronautical Congress, IAC 2024
Martin I, Dunstan M, Gestido MS. Planetary surface image generation for testing future space missions with pangu. In 2nd RPI Space Imaging Workshop, 2019, 1–13.
Martin I, Dunstan M. PANGU v6: Planet and Asteroid Natural Scene Generation Utility, 2021.
Parkes S, Martin I, Dunstan M, Matthews D. Planet surface simulation with pangu. In Space ops 2004 conference, 2004, 389.
Lebreton J, Brochard R, Baudry M, Jonniaux G, Salah AH, Kanani K, Goff ML, Masson A, Ollagnier N, Panicucci P, Proag A, Robin C. Image simulation for space applications with the SurRender software. In 11th International ESA Conference on Guidance, Navigation & Control Systems, 22 - 25 June, 2021, 1–16.
Brochard R, Lebreton J, Robin C, Kanani K, Jonniaux G, Masson A, Despré N, Berjaoui A. Scientific image rendering for space scenes with the SurRender software, 2018.
Pajusalu M, Iakubivskyi I, Schwarzkopf GJ, Knuuttila O, Väisänen T, Bührer M, Palos MF, Teras H, Le Bonhomme G, Praks J, et al.. SISPO: Space Imaging Simulator for Proximity Operations. PloS one, 2022, 17(3): e0263882.
Iakubivskyi I, Mačiulis L, Janhunen P, Dalbins J, Noorma M, Slavinskis A. Aspects of nanospacecraft design for main-belt sailing voyage. Advances in Space Research, 2021, 67(9): 2957–2980, doi:https: //doi.org/10.1016/j.asr.2020.07.023, solar Sailing: Concepts, Technology, and Missions II.
Snodgrass C, Jones GH. The European Space Agency’s Comet Interceptor lies in wait. Nature Communications, 2019, 10(1), doi:10.1038/ s41467-019-13470-1.
Kenneally PW, Piggott S, Schaub H. Basilisk: A Flexible, Scalable and Modular Astrodynamics Simulation Framework. Journal of Aerospace Information Systems, 2020, 17(9): 496–507, doi:10.2514/1. i010762.
Teil TF. Optical Navigation using Near Celestial Bodies for Spacecraft Autonomy. Ph.D. thesis, University of Colorado at Boulder, 2020.
Teil T, Schaub H, Kubitschek D. Centroid and Apparent Diameter Optical Navigation on Mars Orbit. Journal of Spacecraft and Rockets, 2021, 58(4): 1107–1119, doi:10.2514/1.a34815.
Teil T, Bateman S, Schaub H. Autonomous On-orbit Optical Navigation Techniques For Robust Pose-Estimation. Advances in the Astronautical Sciences AAS Guidance, Navigation, and Control, 2020, 172.
Teil T, Bateman S, Schaub H. Closed-Loop Software Architecture for Spacecraft Optical Navigation and Control Development. The Journal of the Astronautical Sciences, 2020, 67: 1575–1599.
Villa J, Bandyopadhyay S, Morrell B, Hockman B, Bhaskaran S, Nesnas I, et al.. Optical navigation for autonomous approach of small unknown bodies. In 43rd Annual AAS Guidance, Navigation & Control Conference, volume 30, 2019, 1–3.
Villa J, Mcmahon J, Nesnas I. Image Rendering and Terrain Generation of Planetary Surfaces Using Source-Available Tools. In 46th Annual AAS Guidance, Navigation & Control Conference, 2023, 1–24.
Peñarroya P, Centuori S, Hermosín P. AstroSim: A GNC simulation tool for small body environments. In AIAA SCITECH 2022 Forum, 2022, 2355.
Lopez AE, Ghiglino P, Sanjurjo-rivo M. Churinet - Applying Deep Learning for Minor Bodies Optical Navigation. IEEE Transactions on Aerospace and Electronic Systems, 2022: 1–14, doi:10.1109/TAES. 2022.3227497.
Bhaskara R, Georgakis G, Nash J, Cameron M, Bowkett J, Ansar A, Majji M, Backes P. Icy Moon Surface Simulation and Stereo Depth Estimation for Sampling Autonomy. IEEE Aerospace Conference, 2024.
Hough K, Mohammadi ME, Owens C, Bloom M, Moon L, Lincoln T, Horchler AD. DEMkit & LunaRay: Tools for Mission Data Generation and Validation. In 3rd Space Imaging Workshop, 2022.
Pugliatti M, Buonagura C, Topputo F. CORTO: The Celestial Object Rendering TOol at DART Lab. Sensors, 2023, 23(23): 9595, doi:10.3390/s23239595.
Buonagura C, Pugliatti M, Topputo F. MONET: The Minor Body Generator Tool at DART Lab. Sensors, 2024, 24(11): 3658, doi:10.3390/s24113658.
Pugliatti M, Piccolo F, Rizza A, Franzese V, Topputo F. The vision-based guidance, navigation, and control system of Hera’s Milani Cubesat. Acta Astronautica, 2023, 210: 14–28, doi:10.1016/j.actaastro. 2023.04.047.
Topputo F, Merisio G, Franzese V, Giordano C, Mas-sari M, Pilato G, Labate D, Cervone A, Speretta S, Menicucci A, Turan E, Bertels E, Vennekens J, Walker R, Koschny D. Meteoroids detection with the LUMIO lunar CubeSat. Icarus, 2023, 389: 115213, doi:https://doi.org/10.1016/j.icarus.2022.115213.
Buonagura C, Pugliatti M, Franzese V, Topputo F, Zeqaj A, Zannoni M, Varile M, Bloise I, Fontana F, Rossi F, et al.. Deep Learning for Navigation of Small Satellites About Asteroids: An Introduction to the DeepNav Project. In International Conference on Applied Intelligence and Informatics, Springer, 259–271.
Piccolo F, Balossi C, Panicucci P, Pugliatti M, Topputo F, Capolupo F. Resource-Constrained Vision-Based Relative Navigation About Small Bodies. In 46th AAS Guidance, Navigation and Control Conference, Breckenridge, Colorado, 2024, 1–18.
Balossi C, Piccolo F, Panicucci P, Pugliatti M, Topputo F, Capolupo F. Moon Limb-Based Autonomous Optical Navigation Using Star Trackers. In 46th AAS Guidance, Navigation and Control Conference, Breckenridge, Colorado, 2024, 1–19.
Seeliger H. Zur photometrie des saturnringes. Astronomische Nachrichten, 1884, 109: 305.
Buratti B, Hicks M, Nettles J, Staid M, Pieters C, Sunshine J, Boardman J, Stone T. A wavelength-dependent visible and infrared spectrophotometric function for the Moon based on ROLO data. Journal of Geophysical Research, 2011, 116(E6), doi:10. 1029/2010JE003724.
Akimov LA. Influence of mesorelief on the brightness distribution over a planetary disk. Soviet Astronomy, 1975, 19: 385.
Akimov LA. On the brightness distributions over the lunar and planetary disks. Astronomicheskii Zhurnal, 1979, 56: 412.
Golish D, DellaGiustina D, Li JY, Clark B, Zou XD, Smith P, Rizos J, Hasselmann P, Bennett C, Fornasier S, et al.. Disk-resolved photometric modeling and properties of asteroid (101955) Bennu. Icarus, 2021, 357: 113724, doi:10.1016/j.icarus.2020.113724.
McEwen AS. Photometric functions for photoclinometry and other applications. Icarus, 1991, 92(2): 298–311, doi:10.1016/0019-1035(91)90053-V.
Minnaert M. The reciprocity principle in lunar photometry. Astrophysical Journal, 1941, 93: 403–410, doi:10.1086/144279.
Robbins SJ. A new global database of lunar impact craters> 1–2 km: 1. Crater locations and sizes, comparisons with published databases, and global analysis. Journal of Geophysical Research: Planets, 2019, 124(4): 871–892.
Grip HF, Conway D, Lam J, Williams N, Golombek MP, Brockers R, Mischna M, Cacan MR. Flying a Helicopter on Mars: How Ingenuity’s Flights were Planned, Executed, and Analyzed. In 2022 IEEE Aerospace Conference (AERO), 2022, 1–17, doi:10. 1109/AERO53065.2022.9843813.
Bapst J, Parker TJ, Balaram J, Tzanetos T, Matthies LH, Edwards CD, Freeman A, Withrow-Maser S, Johnson W, Amador-French E, Bishop JL, Daubar IJ, Dundas CM, Fraeman AA, Hamilton CW, Hardgrove C, Horgan B, Leung CW, Lin Y, Mittelholz A, Weiss BP. Mars Science Helicopter: Compelling Science Enabled by an Aerial Platform. Bulletin of the AAS, 2021, 53(4), https://baas.aas.org/pub/2021n4i361.
Tzanetos T, Bapst J, Kubiak G, Tosi LP, Sirlin S, Brockers R, Delaune J, Grip HF, Matthies L, Balaram J, Withrow-Maser S, Johnson W, Young L, Pipenberg B. Future of Mars Rotor-craft - Mars Science Helicopter. In 2022 IEEE Aerospace Conference (AERO), 2022, 1–16, doi: 10.1109/AERO53065.2022.9843501.
Brockers R, Proença P, Delaune J, Todd J, Matthies L, Tzanetos T, Balaram JB. On-board Absolute Localization Based on Orbital Imagery for a Future Mars Science Helicopter. In 2022 IEEE Aerospace Conference (AERO), 2022, 1–11, doi:10.1109/ AERO53065.2022.9843673.
Proença PF, Delaune J, Brockers R. Optimizing Terrain Mapping and Landing Site Detection for Autonomous UAVs, 2022.
Maestrini M, De Luca MA, Di Lizia P. Relative Navigation Strategy About Unknown and Uncooperative Targets. Journal of Guidance, Control, and Dynamics, 2023, 46(9): 1708 – 1725, doi: 10.2514/1.G007337.
Maestrini M, Di Lizia P. COMBINA: Relative Navigation for Unknown Uncooperative Resident Space Object. In AIAA Science and Technology Forum and Exposition, AIAA SciTech Forum 2022, 2022, doi: 10.2514/6.2022-2384, Paper No. AIAA 2022-2384.
Kaidanovic D, Piazza M, Maestrini M, Di Lizia P. Deep learning-based relative navigation about uncooperative space objects. In Proceedings of the 73rd International Astronautical Congress, 18-22 September, 2022, Paris, France., volume 2022-September, IAF, Paper No. IAC-22.C1.IPB.38.x70501.
Razgus B, Maestrini M, Di Lizia P. Initial Attitude Acquisition for Uncooperative Resident Space Objects Using Principal Lines. In AIAA SciTech Forum and Exposition, 2024, 2024, doi:10.2514/6. 2024-0201, Paper No. AIAA 2024-0201.
Faraco N, Maestrini M, Di Lizia P. Instance segmentation for feature recognition on noncooperative resident space objects. Journal of Spacecraft and Rockets, 2022, 59(6): 2160–2174, doi: 10.2514/1.A35260.
Pugliatti M, Maestrini M. A multi-scale labeled dataset for boulder segmentation and navigation on small bodies. In Proceedings of the 74th International Astronautical Congress, 02-06 October, 2023, Baku, Azerbaijan., volume 2023-October, IAF, Paper No. IAC-23,A3,4A,8,x78927.
Pugliatti M, Maestrini M. Small-Body Segmentation Based on Morphological Features with a U-Shaped Network Architecture. Journal of Spacecraft and Rockets, 2022, 59(6): 1821 – 1835, doi: 10.2514/1.A35447.
Pizzetti A, Panicucci P, Topputo F. A Radiometric Consistent Render Procedure for Planets and Moons. 4th Space Imaging Workshop, 2024: 1–3.
Oren M, Nayar SK. Generalization of Lambert’s reflectance model. Proceedings of the 21st annual conference on Computer graphics and interactive techniques, 1994, doi:10.1145/192161.192213.
Belgacem I, Jonniaux G, Schmidt F. Image processing for precise geometry determination. Planetary and Space Science, 2020, 193: 105081, doi: https://doi.org/10.1016/j.pss.2020.105081.