Classification; Detection; GNSS; Location; RFI; Classification system; Defence applications; Detection location; Detection system; Global Navigation Satellite Systems; Interference detection; Interference Location System; Positioning navigation and timings; Radio frequency interference; Computers in Earth Sciences; Atmospheric Science
Abstract :
[en] Global Navigation Satellite Systems (GNSS) are critical infrastructure components in modern Positioning, Navigation, and Timing (PNT) services, playing a vital role in both civilian and defense applications. These systems operate in specific frequency bands that are also utilized by other Earth Observation technologies, such as GNSS-Radio Occultations and GNSS-Reflectometry. Other passive microwave remote sensing techniques such as microwave radiometers, work with very faint signals in nearby frequency bands within the L-Band. However, the increasing prevalence of Radio-Frequency Interferences (RFI) poses a significant threat, potentially compromising the integrity and reliability of PNT services, and corrupting geophysical observations. Effective RFI mitigation relies on accurate detection and classification of interference sources, a task that becomes increasingly challenging due to the complexity and diversity of RFI signals. This work presents an automated classification system for RFI detection and characterization in GNSS bands. The methodology employs advanced digital signal processing techniques and statistical algorithms to improve RFI detection and classification. RFI events are then stored in a long-term database to provide insights into the local spectrum, and to aid in mitigation and law enforcement efforts. This study provides a description of the classification system, including its architecture, implementation, and performance analysis. The results highlight the potential of this system to enhance the resilience of GNSS PNT services against RFI.
Disciplines :
Electrical & electronics engineering
Author, co-author :
Perez-Portero, Adrian; Universitat Politècnica de Catalunya– BarcelonaTech, CommSensLab– UPC, Spain ; Institute of Space Studies of Catalonia (IEEC), CTE-UPC, Spain
QUEROL, Jorge ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom ; Universitat Politècnica de Catalunya– BarcelonaTech, CommSensLab– UPC, Spain
Camps, Adriano; Universitat Politècnica de Catalunya– BarcelonaTech, CommSensLab– UPC, Spain ; Institute of Space Studies of Catalonia (IEEC), CTE-UPC, Spain ; UAE University, CoE, Al-Ain, United Arab Emirates
External co-authors :
yes
Language :
English
Title :
AUTOMATIC RFI DETECTION, LOCATION, AND CLASSIFICATION SYSTEM IN GNSS BANDS
Publication date :
2025
Journal title :
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
ISSN :
1939-1404
eISSN :
2151-1535
Publisher :
Institute of Electrical and Electronics Engineers Inc.
Y. H. Kerr, P. Waldteufel, J.-P. Wigneron, S. Delwart, F. Cabot, J. Boutin, M.-J. Escorihuela, J. Font, N. Reul, C. Gruhier, S. E. Juglea, M. R. Drinkwater, A. Hahne, M. Martín-Neira, and S. Mecklenburg, “The SMOS Mission: New Tool for Monitoring Key Elements ofthe Global Water Cycle,” Proceedings of the IEEE, vol. 98, pp. 666–687, May 2010.
E. Cardellach, S. Tomas, S. Oliveras, R. Padulles, A. Rius, M. de la Torre-Juarez, F. J. Turk, C. O. Ao, E. R. Kursinski, B. Schreiner, D. Ector, and L. Cucurull, “Sensitivity of paz leo polarimetric gnss radio-occultation experiment to precipitation events,” IEEE Transactions on Geoscience and Remote Sensing, vol. 53, pp. 190–206, Jan. 2015.
J. Wickert, E. Cardellach, M. Martin-Neira, J. Bandeiras, L. Bertino, O. B. Andersen, A. Camps, N. Catarino, B. Chapron, F. Fabra, N. Floury, G. Foti, C. Gommenginger, J. Hatton, P. Hoeg, A. Jaggi, M. Kern, T. Lee, Z. Li, H. Park, N. Pierdicca, G. Ressler, A. Rius, J. Rosello, J. Saynisch, F. Soulat, C. K. Shum, M. Semmling, A. Sousa, J. Xie, and C. Zuffada, “Geros-iss: Gnss reflectometry, radio occultation, and scatterometry onboard the international space station,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 9, pp. 4552–4581, Oct. 2016.
N. Rodriguez-Alvarez, X. Bosch-Lluis, A. Camps, M. Vall-llossera, E. Valencia, J. F. Marchan-Hernandez, and I. Ramos-Perez, “Soil Moisture Retrieval Using GNSS-R Techniques: Experimental Results Over a Bare Soil Field,” IEEE Transactions on Geoscience and Remote Sensing, vol. 47, pp. 3616–3624, Nov. 2009.
M. P. Clarizia and C. S. Ruf, “Bayesian Wind Speed Estimation Conditioned on Significant Wave Height for GNSS-R Ocean Observations,” Journal of Atmospheric and Oceanic Technology, vol. 34, no. 6, pp. 1193 – 1202, 2017.
J. F. Munoz-Martin, A. Perez-Portero, A. Camps, S. Ribó, E. Cardellach, J. Stroeve, V. Nandan, P. Itkin, R. Tonboe, S. Hendricks, M. Huntemann, G. Spreen, and M. Pastena, “Snow and ice thickness retrievals using gnss-r: Preliminary results of the mosaic experiment,” Remote Sensing, vol. 12, no. 24, 2020.
R. Oliva and E. Daganzo, “SMOS Radio Frequency Interference Scenario: Status and Actions Taken to Improve the RFI Environment in the 1400–1427-MHz Passive Band,” IEEE Transactions on Geoscience and Remote Sensing, vol. 50, pp. 1427–1439, May 2012.
F. Dovis, GNSS Interference Threats and Countermeasures. Artech House, 2015.
A. C. O’Connor, M. P. Gallaher, K. Clark-Sutton, D. Lapidus, Z. T. Oliver, T. J. Scott, D. W. Wood, M. A. Gonzalez, E. G. Brown, and J. Fletcher, “Economic Benefits of the Global Positioning System (GPS),” tech. rep., RTI International, June 2019.
J. Querol, R. Onrubia, D. Pascual, H. Park, and A. Camps, “A Radio-Frequency Interference detector for GNSS navigation and GNSS-reflectometry applications,” in International Geoscience and Remote Sensing Symposium (IGARSS), vol. 2017-July, IEEE, July 2017.
A. Perez-Portero, J. Querol, and A. Camps, “Real-time direction of arrival estimation and characterization of rfi signals in gnss bands,” in IEEE International Geoscience and Remote Sensing Symposium, 2023.
G. Mitra, B. Johnston, A. P. Rendell, E. McCreath, and J. Zhou, “Use of simd vector operations to accelerate application code performance on low-powered arm and intel platforms,” in 2013 IEEE International Symposium on Parallel and Distributed Processing, Workshops and Phd Forum, pp. 1107–1116, IEEE, May 2013.
T. Lorenser, “The DSP capabilities of ARM® Cortex-M4 and Cortex-M7 Processors,” tech. rep., ARM, Nov. 2016.
R. Jain and I. Chlamtac, “The p 2 algorithm for dynamic calculation of quantiles and histograms without storing observations,” Communications of the ACM, vol. 28, pp. 1076–1085, Oct. 1985.
A. Perez-Portero, J. Querol, A. Camps, M. Martin-Neira, M. Suess, J. I. Ramirez, A. Zurita, J. Closa, R. Oliva, and R. Onrubia, “RFI detection and mitigation for advanced correlators in interferometric radiometers,” Remote Sensing, vol. 14, p. 4672, Sept. 2022.
R. D. De Roo, S. Misra, and C. S. Ruf, “Sensitivity of the Kurtosis Statistic as a Detector of Pulsed Sinusoidal RFI,” IEEE Transactions on Geoscience and Remote Sensing, vol. 45, pp. 1938–1946, July 2007.
J. Querol Borràs, Radio frequency interference detection and mitigation techniques for navigation and Earth observation. PhD thesis, UPC, Departament de Teoria del Senyal i Comunicacions, Nov. 2018. Available at: https://www.tdx.cat/handle/10803/663905.
S. Misra, P. N. Mohammed, B. Guner, C. S. Ruf, J. R. Piepmeier, and J. T. Johnson, “Microwave Radiometer Radio-Frequency Interference Detection Algorithms: A Comparative Study,” IEEE Transactions on Geoscience and Remote Sensing, vol. 47, no. 11, pp. 3742–3754, 2009.
J. M. Tarongi and A. Camps, “Normality Analysis for RFI Detection in Microwave Radiometry,” Remote Sensing, vol. 2, pp. 191–210, Dec. 2009.
D. N. Joanes and C. A. Gill, “Comparing measures of sample skewness and kurtosis,” Journal of the Royal Statistical Society: Series D (The Statistician), vol. 47, pp. 183–189, Mar. 1998.
N. Patwari, A. Hero, M. Perkins, N. Correal, and R. O’Dea, “Relative location estimation in wireless sensor networks,” IEEE Transactions on Signal Processing, vol. 51, pp. 2137–2148, Aug. 2003.
A. Roxin, J. Gaber, M. Wack, and A. Nait-Sidi-Moh, “Survey of wireless geolocation techniques,” in 2007 IEEE Globecom Workshops, pp. 1–9, IEEE, Nov. 2007.
B. G. Quinn and J. M. Fernandes, “A fast efficient technique for the estimation of frequency,” Biometrika, vol. 78, no. 3, pp. 489–497, 1991.
S. Furuhashi, “MessagePack,” Oct. 2024.
P. Hintjens, ZeroMQ. Sebastopol, Calif.: O’Reilly, 1. ed. ed., 2013. Includes index.
P. N. Mohammed and J. R. Piepmeier, “Microwave radiometer rfi detection using deep learning,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 14, pp. 6398–6405, 2021.
T. J. O’Shea, J. Corgan, and T. C. Clancy, “Convolutional radio modulation recognition networks,” 2016.
Y. Shi, K. Davaslioglu, Y. E. Sagduyu, W. C. Headley, M. Fowler, and G. Green, “Deep learning for rf signal classification in unknown and dynamic spectrum environments,” 2019.
S. Scholl, “RF Signal Classification with Synthetic Training Data and its Real-World Performance,” 2022.