artificial intelligence; machine learning; orthopaedics; research methods; sports medicine; Orthopedics and Sports Medicine
Abstract :
[en] [en] UNLABELLED: Recent advances in artificial intelligence (AI) present a broad range of possibilities in medical research. However, orthopaedic researchers aiming to participate in research projects implementing AI-based techniques require a sound understanding of the technical fundamentals of this rapidly developing field. Initial sections of this technical primer provide an overview of the general and the more detailed taxonomy of AI methods. Researchers are presented with the technical basics of the most frequently performed machine learning (ML) tasks, such as classification, regression, clustering and dimensionality reduction. Additionally, the spectrum of supervision in ML including the domains of supervised, unsupervised, semisupervised and self-supervised learning will be explored. Recent advances in neural networks (NNs) and deep learning (DL) architectures have rendered them essential tools for the analysis of complex medical data, which warrants a rudimentary technical introduction to orthopaedic researchers. Furthermore, the capability of natural language processing (NLP) to interpret patterns in human language is discussed and may offer several potential applications in medical text classification, patient sentiment analysis and clinical decision support. The technical discussion concludes with the transformative potential of generative AI and large language models (LLMs) on AI research. Consequently, this second article of the series aims to equip orthopaedic researchers with the fundamental technical knowledge required to engage in interdisciplinary collaboration in AI-driven orthopaedic research.
LEVEL OF EVIDENCE: Level IV.
Disciplines :
Physical, chemical, mathematical & earth Sciences: Multidisciplinary, general & others
Author, co-author :
Zsidai, Bálint ; Sahlgrenska Sports Medicine Center Gothenburg Sweden ; Department of Orthopaedics, Institute of Clinical Sciences, Sahlgrenska Academy University of Gothenburg Gothenburg Sweden
Kaarre, Janina ; Sahlgrenska Sports Medicine Center Gothenburg Sweden ; Department of Orthopaedics, Institute of Clinical Sciences, Sahlgrenska Academy University of Gothenburg Gothenburg Sweden ; Department of Orthopaedic Surgery, UPMC Freddie Fu Sports Medicine Center University of Pittsburgh Pittsburgh USA
Narup, Eric; Sahlgrenska Sports Medicine Center Gothenburg Sweden ; Department of Orthopaedics, Institute of Clinical Sciences, Sahlgrenska Academy University of Gothenburg Gothenburg Sweden
Hamrin Senorski, Eric ; Sahlgrenska Sports Medicine Center Gothenburg Sweden ; Department of Health and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy University of Gothenburg Gothenburg Sweden ; Sportrehab Sports Medicine Clinic Gothenburg Sweden
Pareek, Ayoosh ; Sports and Shoulder Service, Hospital for Special Surgery New York New York USA
Grassi, Alberto; Department of Orthopaedics, Institute of Clinical Sciences, Sahlgrenska Academy University of Gothenburg Gothenburg Sweden ; IIa Clinica Ortopedica e Traumatologica, IRCCS Istituto Ortopedico Rizzoli Bologna Italy
LEY, Christophe ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Mathematics (DMATH)
Longo, Umile Giuseppe ; Fondazione Policlinico Universitario Campus Bio-Medico Rome Italy ; Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery Università Campus Bio-Medico di Roma Rome Italy
Herbst, Elmar ; Department of Trauma, Hand and Reconstructive Surgery University Hospital Münster Münster Germany
Hirschmann, Michael T ; Department of Orthopedic Surgery and Traumatology, Head Knee Surgery and DKF Head of Research Kantonsspital Baselland Bruderholz Switzerland
Kopf, Sebastian ; Center of Orthopaedics and Traumatology University Hospital Brandenburg a.d.H., Brandenburg Medical School Theodor Fontane Brandenburg a.d.H. Germany ; Faculty of Health Sciences Brandenburg Brandenburg Medical School Theodor Fontane Brandenburg a.d.H. Germany
Seil, Romain ; Department of Orthopaedic Surgery Luxembourg Centre Hospitalier de Luxembourg-Clinique d'Eich Luxembourg Luxembourg ; Luxembourg Institute of Research in Orthopaedics Sports Medicine and Science (LIROMS) Luxembourg Luxembourg ; Luxembourg Institute of Health, Human Motion, Orthopaedics Sports Medicine and Digital Methods (HOSD) Luxembourg Luxembourg
Tischer, Thomas ; Clinic for Orthopaedics and Trauma Surgery Erlangen Germany
Samuelsson, Kristian ; Sahlgrenska Sports Medicine Center Gothenburg Sweden ; Department of Orthopaedics, Institute of Clinical Sciences, Sahlgrenska Academy University of Gothenburg Gothenburg Sweden ; Department of Orthopaedics Sahlgrenska University Hospital Mölndal Sweden
Feldt, Robert ; Department of Computer Science and Engineering Chalmers University of Technology Gothenburg Sweden
Amatriain, X. (2023) Transformer models: an introduction and catalog. To be published in arXiv. [Preprint] Available from: https://doi.org/10.48550/arXiv.2302.07730
An, G., Akiba, M., Omodaka, K., Nakazawa, T. & Yokota, H. (2021) Hierarchical deep learning models using transfer learning for disease detection and classification based on small number of medical images. Scientific Reports, 11, 4250. Available from: https://doi.org/10.1038/s41598-021-83503-7
Anandika, A., Mishra, S.P. & Das, M. (2021) Review on usage of hidden markov model in natural language processing. In: Intelligent and Cloud Computing: Proceedings of ICICC 2019, vol. 1, Singapore: Springer, pp. 415–423. Available from: https://doi.org/10.1007/978-981-15-5971-6_45
Angelini, F., Widera, P., Mobasheri, A., Blair, J., Struglics, A., Uebelhoer, M. et al. (2022) Osteoarthritis endotype discovery via clustering of biochemical marker data. Annals of the Rheumatic Diseases, 81, 666–675. Available from: https://doi.org/10.1136/annrheumdis-2021-221763
Awad, M. & Khanna, R. (2015) Support vector machines for classification. In: Awad, M. & Khanna, R. (Eds.) Efficient learning machines: theories, concepts, and applications for engineers and system designers. Berkeley, CA: Apress, pp. 39–66. Available from: https://doi.org/10.1007/978-1-4302-5990-9_3
Benjamens, S., Dhunnoo, P. & Mesko, B. (2020) The state of artificial intelligence-based FDA-approved medical devices and algorithms: an online database, NPJ Digit Med, 3, 118.
Bentéjac, C., Csörgő, A. & Martínez-Muñoz, G. (2021) A comparative analysis of gradient boosting algorithms. Artificial Intelligence Review, 54, 1937–1967. Available from: https://doi.org/10.1007/s10462-020-09896-5
Bien, N., Rajpurkar, P., Ball, R.L., Irvin, J., Park, A., Jones, E. et al. (2018) Deep-learning-assisted diagnosis for knee magnetic resonance imaging: development and retrospective validation of MRNet. PLoS Medicine, 15, e1002699. Available from: https://doi.org/10.1371/journal.pmed.1002699
Bilal, M., Tsang, Y.W., Ali, M., Graham, S., Hero, E., Wahab, N. et al. (2023) Development and validation of artificial intelligence-based prescreening of large-bowel biopsies taken in the UK and Portugal: a retrospective cohort study. The Lancet Digital Health, 5, e786–e797. Available from: https://doi.org/10.1016/S2589-7500(23)00148-6
Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P. et al. (2020) Language models are few-shot learners. Advances in Neural Information Processing Systems, 33, 1877–1901.
Bubeck, S., Chandrasekaran, V., Eldan, R., Gehrke, J., Horvitz, E., Kamar, E. et al. (2023) Sparks of artificial general intelligence: early experiments with gpt-4. To be published in arXiv. [Preprint] Available from: https://doi.org/10.48550/arXiv.2303.12712
Creswell, A., White, T., Dumoulin, V., Arulkumaran, K., Sengupta, B. & Bharath, A.A. (2018) Generative adversarial networks: an overview. IEEE Signal Processing Magazine, 35, 53–65. Available from: https://doi.org/10.1109/MSP.2017.2765202
Daniel, C., van Hoof, H., Peters, J. & Neumann, G. (2016) Probabilistic inference for determining options in reinforcement learning. Machine Learning, 104, 337–357. Available from: https://doi.org/10.1007/s10994-016-5580-x
Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. (2018) Bert: pre-training of deep bidirectional transformers for language understanding. To be published in arXiv. [Preprint] Available from: https://doi.org/10.48550/arXiv.1810.04805
Dhillon, A. & Verma, G.K. (2020) Convolutional neural network: a review of models, methodologies and applications to object detection. Progress in Artificial Intelligence, 9, 85–112. Available from: https://doi.org/10.1007/s13748-019-00203-0
Eckhardt, C.M., Madjarova, S.J., Williams, R.J., Ollivier, M., Karlsson, J., Pareek, A. et al. (2023) Unsupervised machine learning methods and emerging applications in healthcare. Knee Surgery, Sports Traumatology, Arthroscopy, 31, 376–381. Available from: https://doi.org/10.1007/s00167-022-07233-7
Evgeniou, T. & Pontil, M. (2001) Support vector machines: theory and applications. In: Paliouras, G., Karkaletsis, V. & Spyropoulos, C.D. (Eds.) Machine learning and its applications: advanced lectures. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 249–257. https://doi.org/10.1007/3-540-44673-7_12
Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S. et al. (2014) Generative adversarial nets. Advances in Neural Information Processing Systems, 27. https://proceedings.neurips.cc/paper_files/paper/2014/hash/5ca3e9b122f61f8f06494c97b1afccf3-Abstract.html
Gozalo-Brizuela, R. & Garrido-Merchán, E.C. (2023) A survey of generative AI applications. To be published in arXiv [Preprint]. Available from: https://doi.org/10.48550/arXiv.2306.02781
Hazan, E. & Koren, T. (2011) Optimal algorithms for ridge and lasso regression with partially observed attributes. To be published in arXiv. [Preprint] Available from: https://doi.org/10.48550/arXiv.1108.4559
Hochreiter, S. & Schmidhuber, J. (1997) Long short-term memory. Neural Computation, 9, 1735–1780. Available from: https://doi.org/10.1162/neco.1997.9.8.1735
Hosna, A., Merry, E., Gyalmo, J., Alom, Z., Aung, Z. & Azim, M.A. (2022) Transfer learning: a friendly introduction. Journal of Big Data, 9, 102. Available from: https://doi.org/10.1186/s40537-022-00652-w
Jadon, A. & Kumar, S. (2023) Leveraging generative ai models for synthetic data generation in healthcare: balancing research and privacy. In: 2023 International Conference on Smart Applications, Communications and Networking (SmartNets). IEEE, pp. 1–4. Available from: https://doi.org/10.1109/SmartNets58706.2023.10215825
Jang, B., Kim, M., Harerimana, G. & Kim, J.W. (2019) Q-learning algorithms: a comprehensive classification and applications. IEEE Access, 7, 133653–133667. Available from: https://doi.org/10.1109/ACCESS.2019.2941229
Jin, X. & Han, J. (2010) K-means clustering. In: Sammut, C. & Webb, G.I. (Eds.) Encyclopedia of machine learning. Boston, MA: Springer US, pp. 563–564. Available from: https://doi.org/10.1007/978-0-387-30164-8_425
Kaarre, J., Feldt, R., Keeling, L.E., Dadoo, S., Zsidai, B., Hughes, J.D. et al. (2023) Exploring the potential of ChatGPT as a supplementary tool for providing orthopaedic information. Knee Surgery, Sports Traumatology, Arthroscopy, 31, 5190–5198. Available from: https://doi.org/10.1007/s00167-023-07529-2
Khosravi, B., Rouzrokh, P., Mickley, J.P., Faghani, S., Larson, A.N., Garner, H.W. et al. (2023) Creating high fidelity synthetic pelvis radiographs using generative adversarial networks: unlocking the potential of deep learning models without patient privacy concerns. The Journal of Arthroplasty, 38, 2037–2043.e1. Available from: https://doi.org/10.1016/j.arth.2022.12.013
Khurana, D., Koli, A., Khatter, K. & Singh, S. (2023) Natural language processing: state of the art, current trends and challenges. Multimedia Tools and Applications, 82, 3713–3744. Available from: https://doi.org/10.1007/s11042-022-13428-4
Kim, H.E., Cosa-Linan, A., Santhanam, N., Jannesari, M., Maros, M.E. & Ganslandt, T. (2022) Transfer learning for medical image classification: a literature review. BMC Medical Imaging, 22, 69. Available from: https://doi.org/10.1186/s12880-022-00793-7
Kotsiantis, S.B. (2013) Decision trees: a recent overview. Artificial Intelligence Review, 39, 261–283. Available from: https://doi.org/10.1007/s10462-011-9272-4
Krenn, M., Pollice, R., Guo, S.Y., Aldeghi, M., Cervera-Lierta, A., Friederich, P. et al. (2022) On scientific understanding with artificial intelligence. Nature Reviews Physics, 4, 761–769. Available from: https://doi.org/10.1038/s42254-022-00518-3
Lee, P., Bubeck, S. & Petro, J. (2023) Benefits, limits, and risks of GPT-4 as an AI chatbot for medicine. New England Journal of Medicine, 388, 1233–1239. Available from: https://doi.org/10.1056/NEJMsr2214184
Ley, C., Martin, R.K., Pareek, A., Groll, A., Seil, R. & Tischer, T. (2022) Machine learning and conventional statistics: making sense of the differences. Knee Surgery, Sports Traumatology, Arthroscopy, 30, 753–757. Available from: https://doi.org/10.1007/s00167-022-06896-6
Li, Y. (2017) Deep reinforcement learning: an overview. To be published in arXiv. [Preprint] Available from: https://doi.org/10.48550/arXiv.1701.07274
Li, Z., Liu, F., Yang, W., Peng, S. & Zhou, J. (2022) A survey of convolutional neural networks: analysis, applications, and prospects. IEEE Transactions on Neural Networks and Learning Systems, 33, 6999–7019. Available from: https://doi.org/10.1109/TNNLS.2021.3084827
Lu, Y., Pareek, A., Wilbur, R.R., Leland, D.P., Krych, A.J. & Camp, C.L. (2021) Understanding anterior shoulder instability through machine learning: new models that predict recurrence, progression to surgery, and development of arthritis. Orthopaedic Journal of Sports Medicine, 9, 232596712110533. Available from: https://doi.org/10.1177/23259671211053326
Lu, Y., Salmons, H.I., Mickley, J.P., Bedard, N.A., Taunton, M.J. & Wyles, C.C. (2023) Defining clinically meaningful subgroups for risk stratification in patients undergoing revision total hip arthroplasty: a combined unsupervised and supervised machine learning approach. The Journal of Arthroplasty, 38, 1990–1997.e1. Available from: https://doi.org/10.1016/j.arth.2023.06.027
Macken, A.A., Macken, L.C., Oosterhoff, J.H.F., Boileau, P., Athwal, G.S., Doornberg, J.N. et al. (2023) Developing a machine learning algorithm to predict the probability of aseptic loosening of the glenoid component after anatomical total shoulder arthroplasty: protocol for a retrospective, multicentre study. BMJ Open, 13, e074700. Available from: https://doi.org/10.1136/bmjopen-2023-074700
Magnéli, M., Ling, P., Gislén, J., Fagrell, J., Demir, Y., Arverud, E.D. et al. (2023) Deep learning classification of shoulder fractures on plain radiographs of the humerus, scapula and clavicle. PLoS One, 18, e0289808. Available from: https://doi.org/10.1371/journal.pone.0289808
Martin, R.K., Ley, C., Pareek, A., Groll, A., Tischer, T. & Seil, R. (2022) Artificial intelligence and machine learning: an introduction for orthopaedic surgeons. Knee Surgery, Sports Traumatology, Arthroscopy, 30, 361–364. Available from: https://doi.org/10.1007/s00167-021-06741-2
Martin, R.K., Wastvedt, S., Pareek, A., Persson, A., Visnes, H., Fenstad, A.M. et al. (2022) Predicting anterior cruciate ligament reconstruction revision: a machine learning analysis utilizing the Norwegian knee ligament register. Journal of Bone and Joint Surgery, 104, 145–153. Available from: https://doi.org/10.2106/JBJS.21.00113
Meskó, B. & Topol, E.J. (2023) The imperative for regulatory oversight of large language models (or generative AI) in healthcare. npj Digital Medicine, 6, 120. Available from: https://doi.org/10.1038/s41746-023-00873-0
Michelucci, U. (2022) An introduction to autoencoders. To be published in arXiv. [Preprint] Available from: https://doi.org/10.48550/arXiv.2201.03898
Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S. & Dean, J. (2013) Distributed representations of words and phrases and their compositionality. Advances in Neural Information Processing Systems, 26. Available from: https://proceedings.neurips.cc/paper/2013/hash/9aa42b31882ec039965f3c4923ce901b-Abstract.html
Moor, M., Banerjee, O., Abad, Z.S.H., Krumholz, H.M., Leskovec, J., Topol, E.J. et al. (2023) Foundation models for generalist medical artificial intelligence. Nature, 616, 259–265. Available from: https://doi.org/10.1038/s41586-023-05881-4
Musahl, V., Griffith, C., Irrgang, J.J., Hoshino, Y., Kuroda, R., Lopomo, N. et al. (2016) Validation of quantitative measures of rotatory knee laxity. The American Journal of Sports Medicine, 44, 2393–2398. Available from: https://doi.org/10.1177/0363546516650667
Naveed, H., Khan, A.U., Qiu, S., Saqib, M., Anwar, S. & Usman, M. et al. (2023) A comprehensive overview of large language models. To be published in arXiv. [Preprint] Available from: https://doi.org/10.48550/arXiv.2307.06435
Nwachukwu, B.U., Beck, E.C., Lee, E.K., Cancienne, J.M., Waterman, B.R., Paul, K. et al. (2020) Application of machine learning for predicting clinically meaningful outcome after arthroscopic femoroacetabular impingement surgery. The American Journal of Sports Medicine, 48, 415–423. Available from: https://doi.org/10.1177/0363546519892905
Oeding, J.F., Williams, 3rd, R.J., Camp, C.L., Sanchez-Sotelo, J., Kelly, B.T., Nawabi, D.H. et al. (2023) A practical guide to the development and deployment of deep learning models for the orthopedic surgeon: part II. Knee Surgery, Sports Traumatology, Arthroscopy, 31, 1635–1643. Available from: https://doi.org/10.1007/s00167-023-07338-7
Oeding, J.F., Williams, R.J., Nwachukwu, B.U., Martin, R.K., Kelly, B.T., Karlsson, J. et al. (2023) A practical guide to the development and deployment of deep learning models for the Orthopedic surgeon: part I. Knee Surgery, Sports Traumatology, Arthroscopy, 31, 382–389. Available from: https://doi.org/10.1007/s00167-022-07239-1
Olczak, J., Emilson, F., Razavian, A., Antonsson, T., Stark, A. & Gordon, M. (2021) Ankle fracture classification using deep learning: automating detailed AO Foundation/Orthopedic Trauma Association (AO/OTA) 2018 malleolar fracture identification reaches a high degree of correct classification. Acta Orthopaedica, 92, 102–108. Available from: https://doi.org/10.1080/17453674.2020.1837420
Patel, S., Sihmar, S. & Jatain, A. (2015) A study of hierarchical clustering algorithms. In 2nd international conference on computing for sustainable global development (INDIACom). IEEE. pp. 537–541. Available from: https://ieeexplore.ieee.org/abstract/document/7100308/authors#authors
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O. et al. (2011) Scikit-learn: machine learning in Python. The Journal of Machine Learning Research, 12, 2825–2830.
Phillips, M., Marsden, H., Jaffe, W., Matin, R.N., Wali, G.N., Greenhalgh, J. et al. (2019) Assessment of accuracy of an artificial intelligence algorithm to detect melanoma in images of skin lesions. JAMA Network Open, 2, e1913436. Available from: https://doi.org/10.1001/jamanetworkopen.2019.13436
Pohl, J. (2015) Artificial superintelligence: extinction or nirvana? In: Proceedings of InterSymp-2015, IIAS, 27th International Conference on Systems Research, Informatics, and Cybernetics. Available from: https://digitalcommons.calpoly.edu/arch_fac/82
Polce, E.M., Kunze, K.N., Fu, M.C., Garrigues, G.E., Forsythe, B., Nicholson, G.P. et al. (2021) Development of supervised machine learning algorithms for prediction of satisfaction at 2 years following total shoulder arthroplasty. Journal of Shoulder and Elbow Surgery, 30, e290–e299. Available from: https://doi.org/10.1016/j.jse.2020.09.007
Swathi, P. & Pothuganti, K. (2020) Overview on principal component analysis algorithm in machine learning. International Research Journal of Modernization in Engineering Technology and Science, 2(10), 241–246. Available from: https://www.irjmets.com/uploadedfiles/paper/volume2/issue_10_october_2020/4315/1628083169.pdf
Pruneski, J.A., Pareek, A., Kunze, K.N., Martin, R.K., Karlsson, J., Oeding, J.F. et al. (2023) Supervised machine learning and associated algorithms: applications in orthopedic surgery. Knee Surgery, Sports Traumatology, Arthroscopy, 31, 1196–1202. Available from: https://doi.org/10.1007/s00167-022-07181-2
Pruneski, J.A., Pareek, A., Nwachukwu, B.U., Martin, R.K., Kelly, B.T., Karlsson, J. et al. (2023) Natural language processing: using artificial intelligence to understand human language in orthopedics. Knee Surgery, Sports Traumatology, Arthroscopy, 31, 1203–1211. Available from: https://doi.org/10.1007/s00167-022-07272-0
Rajpurkar, P., Chen, E., Banerjee, O. & Topol, E.J. (2022) AI in health and medicine. Nature Medicine, 28, 31–38. Available from: https://doi.org/10.1038/s41591-021-01614-0
Ramesh, A., Pavlov, M., Goh, G., Gray, S., Voss, C., Radford, A. et al. (2021) Zero-shot text-to-image generation. In International Conference on Machine Learning. Pmlr, pp. 8821–8831. Available from: https://proceedings.mlr.press/v139/ramesh21a.html?ref=journey-matters
Rani, V., Nabi, S.T., Kumar, M., Mittal, A. & Kumar, K. (2023) Self-supervised learning: a succinct review. Archives of Computational Methods in Engineering, 30, 2761–2775. Available from: https://doi.org/10.1007/s11831-023-09884-2
Richard, S.S. & Andrew, G.B. (Eds.) (1998) Monte carlo methods, Reinforcement learning: an introduction. MIT Press, pp. 111–131. Available from: https://ieeexplore.ieee.org/document/6282966
Rombach, R., Blattmann, A., Lorenz, D., Esser, P. & Ommer, B. (2022) High-resolution image synthesis with latent diffusion models. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 10684–10695. Available from: https://openaccess.thecvf.com/content/CVPR2022/html/Rombach_High-Resolution_Image_Synthesis_With_Latent_Diffusion_Models_CVPR_2022_paper.html
Sarang, P. (2023) Density-based clustering. In: Sarang, P. (Ed.) Thinking data science: a data science practitioner's guide. Cham: Springer International Publishing, pp. 209–228. Available from: https://doi.org/10.1007/978-3-031-02363-7_12
Sarker, I.H. (2022) AI-based modeling: techniques, applications and research issues towards automation, intelligent and smart systems. SN Computer Science, 3, 158. Available from: https://doi.org/10.1007/s42979-022-01043-x
Sarker, I.H. (2021) Deep learning: a comprehensive overview on techniques, taxonomy, applications and research directions. SN Computer Science, 2, 420. Available from: https://doi.org/10.1007/s42979-021-00815-1
Sarker, I.H. (2021) Machine learning: algorithms, real-world applications and research directions. SN Computer Science, 2, 160. Available from: https://doi.org/10.1007/s42979-021-00592-x
Schmidt, R.M. (2019) Recurrent neural networks (rnns): a gentle introduction and overview. To be published in arXiv. [Preprint] Available from: https://doi.org/10.48550/arXiv.1912.05911
Schölkopf, B., Locatello, F., Bauer, S., Ke, N.R., Kalchbrenner, N., Goyal, A. et al. (2021) Toward causal representation learning. Proceedings of the IEEE, 109, 612–634.
Sharma, N., Ng, A.Y., James, J.J., Khara, G., Ambrózay, É., Austin, C.C. et al. (2023) Multi-vendor evaluation of artificial intelligence as an independent reader for double reading in breast cancer screening on 275,900 mammograms. BMC Cancer, 23, 460. Available from: https://doi.org/10.1186/s12885-023-10890-7
Shin, H.J., Han, K., Ryu, L. & Kim, E.-K. (2023) The impact of artificial intelligence on the reading times of radiologists for chest radiographs. npj Digital Medicine, 6, 82. Available from: https://doi.org/10.1038/s41746-023-00829-4
Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W. et al. (2023) Large language models encode clinical knowledge. Nature, 620, 172–180. Available from: https://doi.org/10.1038/s41586-023-06291-2
Singhal, K., Tu, T., Gottweis, J., Sayres, R., Wulczyn, E. & Hou, L. et al. (2023) Towards expert-level medical question answering with large language models. To be published in arXiv. [Preprint]. Available from: https://doi.org/10.48550/arXiv.2305.09617
Skandarani, Y., Jodoin, P.M. & Lalande, A. (2023) GANs for medical image synthesis: an empirical study. Journal of Imaging, 9, 69. Available from: https://doi.org/10.3390/jimaging9030069
Steiner, D.F., MacDonald, R., Liu, Y., Truszkowski, P., Hipp, J.D., Gammage, C. et al. (2018) Impact of deep learning assistance on the histopathologic review of lymph nodes for metastatic breast cancer. American Journal of Surgical Pathology, 42, 1636–1646. Available from: https://doi.org/10.1097/PAS.0000000000001151
Taud, H. & Mas, J.F. (2018) Multilayer perceptron (MLP). In: Camacho Olmedo, M.T., Paegelow, M., Mas, J.-F. & Escobar, F. (Eds.) Geomatic approaches for modeling land change scenarios. Cham: Springer International Publishing, pp. 451–455. Available from: https://doi.org/10.1007/978-3-319-60801-3_27
Taunk, K., De, S., Verma, S. & Swetapadma, A. (2019) A brief review of nearest neighbor algorithm for learning and classification. In: 2019 International Conference on Intelligent Computing and Control Systems (ICCS). IEEE, pp. 1255–1260. Available from: https://10.1109/ICCS45141.2019.9065747
Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux, M.-A. & Lacroix, T. et al. (2023) Llama: open and efficient foundation language models. To be published in arXiv. [Preprint] Available from: https://doi.org/10.48550/arXiv.2302.13971
Turner, R.E. (2023) An Introduction to Transformers. To be published in arXiv. [Preprint] Available from: https://doi.org/10.48550/arXiv.2304.10557
van Engelen, J.E. & Hoos, H.H. (2020) A survey on semi-supervised learning. Machine Learning, 109, 373–440. Available from: https://doi.org/10.1007/s10994-019-05855-6
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N. et al. (2017) Attention is all you need. Advances in Neural Information Processing Systems, 30. https://proceedings.neurips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
Wang, H., Fu, T., Du, Y., Gao, W., Huang, K., Liu, Z. et al. (2023) Scientific discovery in the age of artificial intelligence. Nature, 620, 47–60. Available from: https://doi.org/10.1038/s41586-023-06221-2
Wang, R., Zhou, J., Jiang, H., Han, S., Wang, L., Wang, D. et al. (2021) A General transfer learning-based gaussian mixture model for clustering. International Journal of Fuzzy Systems, 23, 776–793. Available from: https://doi.org/10.1007/s40815-020-01016-3
Webb, G.I. (2010) Naïve Bayes. In: Sammut, C. & Webb, G.I. (Eds.) Encyclopedia of machine learning. Boston, MA: Springer US, pp. 713–714. Available from: https://doi.org/10.1007/978-0-387-30164-8_576
Wu, S., Koo, M., Blum, L., Black, A., Kao, L., Scalzo, F. et al. (2023) A comparative study of open-source large language models, gpt-4 and claude 2: multiple-choice test taking in nephrology. To be published in arXiv. [Preprint] Available from: https://doi.org/10.48550/arXiv.2308.04709
Wu, X., Li, R., He, Z., Yu, T. & Cheng, C. (2023) A value-based deep reinforcement learning model with human expertise in optimal treatment of sepsis. npj Digital Medicine, 6, 15. Available from: https://doi.org/10.1038/s41746-023-00755-5
Yue, S., Li, S., Huang, X., Liu, J., Hou, X., Zhao, Y. et al. (2022) Machine learning for the prediction of acute kidney injury in patients with sepsis. Journal of Translational Medicine, 20, 215. Available from: https://doi.org/10.1186/s12967-022-03364-0
Zhao, H., Lai, Z., Leung, H. & Zhang, X. (2020) Linear discriminant analysis. In: Zhao, H., Lai, Z., Leung, H. & Zhang, X. (Eds.) Feature learning and understanding: algorithms and applications. Cham: Springer International Publishing, pp. 71–85. Available from: https://doi.org/10.1007/978-3-030-40794-0_5
Zhou, S.K., Le, H.N., Luu, K., V Nguyen, H. & Ayache, N. (2021) Deep reinforcement learning in medical imaging: a literature review. Medical Image Analysis, 73, 102193. Available from: https://doi.org/10.1016/j.media.2021.102193
Zsidai, B., Kaarre, J., Hilkert, A.-S., Narup, E., Senorski, E.H., Grassi, A. et al. (2023) Accelerated evidence synthesis in orthopaedics—the roles of natural language processing, expert annotation and large language models. Journal of Experimental Orthopaedics, 10, 99. Available from: https://doi.org/10.1186/s40634-023-00662-4
Zsidai, B., Kaarre, J., Hamrin Senorski, E., Feldt, R., Grassi, A., Ayeni, O.R. et al. (2022) Living evidence: a new approach to the appraisal of rapidly evolving musculoskeletal research. British Journal of Sports Medicine, 56, 1261–1262. Available from: https://doi.org/10.1136/bjsports-2022-105570