Bolza surface; elliptic integrals; Extremal length; Landen transformations; systole; Algebra and Number Theory; Analysis; Geometry and Topology; Statistics and Probability
Abstract :
[en] We prove that the extremal length systole of genus two surfaces attains a strict local maximum at the Bolza surface, where it takes the value√2.
Disciplines :
Mathematics
Author, co-author :
Fortier Bourque, Maxime; Département de mathématiques et de statistique, Université de Montréal, Montréal, Canada
MARTINEZ GRANADO, Didac ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Mathematics (DMATH)
Vargas Pallete, Franco; Institut des Hautes Études Scientifiques, Bures-sur-Yvette, France
External co-authors :
yes
Language :
French
Title :
LA SYSTOL E DE LONGUEUR EXTRÉMALE DE LA SURFACE DE BOLZA
Alternative titles :
[en] The extremal length systole of the Bolza surface
D\u00EDdac Mart\u00EDnez-Granado was supported by the Luxembourg National research Fund AFR/Bilateral-ReSurface 22/17145118. Franco Vargas Pallete\u2019s research was supported by NSF grant DMS-2001997. Part of this material is also based upon work supported by the National Science Foundation under Grant No. DMS-1928930 while Franco Vargas Pallete participated in a program hosted by the Mathematical Sciences Research Institute in Berkeley, California, during the Fall 2020 semester.Keywords: Extremal length, systole, Bolza surface, elliptic integrals, Landen transformations. 2020 Mathematics Subject Classification: 31A15, 30F60, 57K20. DOI: https://doi.org/10.5802/ahl.223 (*) D\u00EDdac Mart\u00EDnez-Granado was supported by the Luxembourg National research Fund AFR/Bilateral-ReSurface 22/17145118. Franco Vargas Pallete\u2019s research was supported by NSF grant DMS-2001997. Part of this material is also based upon work supported by the National Science Foundation under Grant No. DMS-1928930 while Franco Vargas Pallete participated in a program hosted by the Mathematical Sciences Research Institute in Berkeley, California, during the Fall 2020 semester.
[AB50] Lars V. Ahlfors and Arne Beurling, Conformal invariants and function-theoretic nullsets, Acta Math. 83 (1950), 101–129. ↑1412
[Ada98] Colin Adams, Maximal cusps, collars, and systoles in hyperbolic surfaces, Indiana Univ. Math. J. 47 (1998), no. 2, 419–437. ↑1439
[Ahl61] Lars V. Ahlfors, Some remarks on Teichmüller’s space of Riemann surfaces, Ann. Math. 74 (1961), 171–191. ↑1442
[Ahl78] Lars V. Ahlfors Complex analysis. An introduction to the theory of analytic functions of one complex variable, third ed., International Series in Pure and Applied Mathematics, McGraw-Hill, 1978. ↑1428
[Ahl06] Lars V. Ahlfors Lectures on quasiconformal mappings, second ed., University Lecture Series, vol. 38, American Mathematical Society, 2006, with supplemental chapters by C. J. Earle, I. Kra, M. Shishikura and J. H. Hubbard. ↑1410
[Ahl10] Lars V. Ahlfors Conformal invariants. Topics in geometric function theory, AMS Chelsea Publishing, 2010, reprint of the 1973 original, with a foreword by Peter Duren, F. W. Gehring and Brad Osgood. ↑1410, 1412, 1413, 1415
[Akr03] H. Akrout, Singularités topologiques des systoles généralisées, Topology 42 (2003), no. 2, 291–308. ↑1441
[Bav86] Christophe Bavard, Inégalité isosystolique pour la bouteille de Klein, Math. Ann. 274 (1986), no. 3, 439–441. ↑1417
[Bav88] Christophe Bavard Inégalités isosystoliques conformes pour la bouteille de Klein, Geom. Dedicata 27 (1988), no. 3, 349–355. ↑1417
[Bav92b] Christophe Bavard La systole des surfaces hyperelliptiques, Prepubl. Ec. Norm. Sup. Lyon 71 (1992), 1–6. ↑1411
[Bav97] Christophe Bavard Systole et invariant d’Hermite, J. Reine Angew. Math. 482 (1997), 93–120. ↑1410, 1441, 1444
[Bav05] Christophe Bavard Théorie de Voronoĭ géométrique. Propriétés de finitude pour les familles de réseaux et analogues, Bull. Soc. Math. Fr. 133 (2005), no. 2, 205–257. ↑1410, 1440, 1441
[BB87] Jonathan M. Borwein and Peter B. Borwein, Pi and the AGM. A study in analytic number theory and computational complexity, Canadian Mathematical Society Series of Monographs and Advanced Texts – A Wiley-Interscience Publication, John Wiley & Sons, 1987. ↑1429, 1431, 1433
[BH99] Martin R. Bridson and André Haefliger, Metric spaces of non-positive curvature, Grundlehren der Mathematischen Wissenschaften, vol. 319, Springer, 1999. ↑1417
[Cal96] Eugenio Calabi, Extremal isosystolic metrics for compact surfaces, Actes de la Table Ronde de Géométrie Différentielle (Luminy, 1992), Séminaires et Congrès, vol. 1, Société Mathématique de France, 1996, pp. 167–204. ↑1414, 1418
[DLR10] Moon Duchin, Christopher J. Leininger, and Kasra Rafi, Length spectra and degeneration of flat metrics, Invent. Math. 182 (2010), no. 2, 231–277. ↑1416
[Dri] Toby Dricoll, The Schwarz–Christoffel Toolbox for MATLAB, (version 3.1.2), https://tobydriscoll.net/project/sc-toolbox/. ↑1450
[FB18] Maxime Fortier Bourque, The holomorphic couch theorem, Invent. Math. 212 (2018), no. 2, 319–406. ↑1443
[FB23] Maxime Fortier Bourque A divergent horocycle in the horofunction compactification of the Teichmüller metric, Ann. Inst. Fourier 73 (2023), no. 5, 1885–1902. ↑1441
[FBR18] Maxime Fortier Bourque and Kasra Rafi, Non-convex balls in the Teichmüller metric, J. Differ. Geom. 110 (2018), no. 3, 379–412. ↑1441, 1451
[FP15] Federica Fanoni and Hugo Parlier, Systoles and kissing numbers of finite area hyperbolic surfaces, Algebr. Geom. Topol. 15 (2015), no. 6, 3409–3433. ↑1438
[Fuc16] Dmitry Fuchs, Geodesics on regular polyhedra with endpoints at the vertices, Arnold Math. J. 2 (2016), no. 2, 201–211. ↑1437
[Gar84] Frederick P. Gardiner, Measured foliations and the minimal norm property for quadratic differentials, Acta Math. 152 (1984), no. 1-2, 57–76. ↑1411, 1442
[GM91] Frederick P. Gardiner and Howard Masur, Extremal length geometry of Teichmüller space, Complex Variables, Theory Appl. 16 (1991), no. 2-3, 209–237. ↑1440
[HM79] John Hubbard and Howard Masur, Quadratic differentials and foliations, Acta Math. 142 (1979), 221–274. ↑1414
[HS85] Joel Hass and Peter Scott, Intersections of curves on surfaces, Isr. J. Math. 51 (1985), no. 1-2, 90–120. ↑1416
[HS89] Andrew Haas and Perry Susskind, The geometry of the hyperelliptic involution in genus two, Proc. Am. Math. Soc. 105 (1989), no. 1, 159–165. ↑1425
[HZ20] Matthew Headrick and Barton Zwiebach, Minimal-area metrics on the Swiss cross and punctured torus, Commun. Math. Phys. 377 (2020), no. 3, 2287–2343. ↑1414
[Jen57] James A. Jenkins, On the existence of certain general extremal metrics, Ann. Math. 66 (1957), 440–453. ↑1414, 1423
[Jen58] James A. Jenkins Univalent functions and conformal mapping, Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 18, Springer-Verlag, 1958. ↑1410, 1413
[Jen84] Felix Jenni, Über den ersten Eigenwert des Laplace-Operators auf ausgewählten Beispielen kompakter Riemannscher Flächen, Comment. Math. Helv. 59 (1984), no. 2, 193–203. ↑1410, 1411
[JLN+05] Dmitry Jakobson, Michael Levitin, Nikolai Nadirashvili, Nilima Nigam, and Iosif Polterovich, How large can the first eigenvalue be on a surface of genus two?, Int. Math. Res. Not. (2005), no. 63, 3967–3985. ↑1410
[Ker80] Steven P. Kerckhoff, The asymptotic geometry of Teichmüller space, Topology 19 (1980), 23–41. ↑1410, 1440
[KL09] Jeremy Kahn and Mikahil Lyubich, The quasi-additivity law in conformal geometry, Ann. Math. 169 (2009), no. 2, 561–593. ↑1410
[KPT22] Jeremy Kahn, Kevin M. Pilgrim, and Dylan P. Thurston, Conformal surface embeddings and extremal length, Groups Geom. Dyn. 16 (2022), no. 2, 403–435. ↑1410
[KS06] Mikhail G. Katz and Stéphane Sabourau, An optimal systolic inequality for CAT(0) metrics in genus two, Pac. J. Math. 227 (2006), no. 1, 95–107. ↑1410, 1411, 1419
[KW99] Hermann Karcher and Matthias Weber, The geometry of Klein’s Riemann surface, The eightfold way. The beauty of Klein’s quartic curve, Mathematical Sciences Research Institute Publications, vol. 35, Cambridge University Press, 1999, pp. 9–49. ↑1410
[LS17] Lixin Liu and Weixu Su, Variation of extremal length functions on Teichmüller space, Int. Math. Res. Not. (2017), no. 21, 6411–6443. ↑1444
[Map] a division of Waterloo Maple Inc. Maplesoft. ↑1443
[Mas85] Bernard Maskit, Comparison of hyperbolic and extremal lengths, Ann. Acad. Sci. Fenn., Math. 10 (1985), 381–386. ↑1440
[McM95] Curtis T. McMullen, Complex dynamics and renormalization, Annals of Mathematics Studies, vol. 135, Princeton University Press, 1995. ↑1410
[MGP19] Dídac Martínez-Granado and Franco Vargas Pallete, Comparing hyperbolic and extremal lengths for shortest curves, preprint, 2019, https://arxiv.org/abs/1911.09078. ↑1410
[MGT21] Dídac Martínez-Granado and Dylan P. Thurston, From curves to currents, Forum Math. Sigma 9 (2021), article no. e77. ↑1421, 1439
[Mil06] John Milnor, Dynamics in one complex variable, third ed., Annals of Mathematics Studies, vol. 160, Princeton University Press, 2006. ↑1410
[Min92] Yair N. Minsky, Harmonic maps, length, and energy in Teichmüller space, J. Differ. Geom. 35 (1992), no. 1, 151–217. ↑1416
[Min93] Yair N. Minsky Teichmüller geodesics and ends of hyperbolic 3-manifolds, Topology 32 (1993), no. 3, 625–647. ↑1436
[Min96] Yair N. Minsky Extremal length estimates and product regions in Teichmüller space, Duke Math. J. 83 (1996), no. 2, 249–286. ↑1410
[MM08] Dante V. Manna and Victor H. Moll, Landen survey, Probability, geometry and integrable systems, Mathematical Sciences Research Institute Publications, vol. 55, Cambridge University Press, 2008, pp. 287–319. ↑1445
[MS84] Albert Marden and Kurt Strebel, The Heights theorem for quadratic differentials on Riemann surfaces, Acta Math. 153 (1984), 153–211. ↑1414
[NC01] Max Neumann-Coto, A characterization of shortest geodesics on surfaces, Algebr. Geom. Topol. 1 (2001), no. 1, 349–368. ↑1421
[NS19] Shin Nayatani and Toshihiro Shoda, Metrics on a closed surface of genus two which maximize the first eigenvalue of the Laplacian, C. R. Math. Acad. Sci. Paris 357 (2019), no. 1, 84–98. ↑1410
[NZ22] Usman Naseer and Barton Zwiebach, Extremal isosystolic metrics with multiple bands of crossing geodesics, Adv. Theor. Math. Phys. 26 (2022), no. 5, 1273–1346. ↑1414
[Pu52] Pao M. Pu, Some inequalities in certain nonorientable Riemannian manifolds, Pac. J. Math. 2 (1952), 55–71. ↑1410, 1417, 1418
[Ren76] Heinrich Renelt, Konstruktion gewisser quadratischer Differentiale mit Hilfe von Dirichletintegralen, Math. Nachr. 73 (1976), 125–142. ↑1414, 1423
[Rod74] Burton Rodin, The method of extremal length, Bull. Am. Math. Soc. 80 (1974), 587–606. ↑1413
[Sch93] Paul Schmutz, Riemann surfaces with shortest geodesic of maximal length, Geom. Funct. Anal. 3 (1993), no. 6, 564–631. ↑1411, 1441
[Sch94a] Paul Schmutz Congruence subgroups and maximal Riemann surfaces, J. Geom. Anal. 4 (1994), no. 2, 207–218. ↑1439
[Sch94b] Paul Schmutz Systoles on Riemann surfaces, Manuscr. Math. 85 (1994), no. 3-4, 429–447. ↑1410
[SgMat20] The Sage Developers, SageMath, the Sage Mathematics Software System, 2020, (Version 9.0), https://www.sagemath.org. ↑1433
[Str84] Kurt Strebel, Quadratic differentials, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, vol. 5, Springer, 1984. ↑1414, 1416
[The18] The Mathworks, Inc., Matlab, 2018, version 9.4.0.813654 (R2018a). ↑1450
[Thu20] Dylan P. Thurston, A positive characterization of rational maps, Ann. Math. 192 (2020), no. 1, 1–46. ↑1410
[Vor08] Georges Voronoi, Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Premier mémoire. Sur quelques propriétés des formes quadratiques positives parfaites, J. Reine Angew. Math. 133 (1908), 97–178. ↑1441
[Wol06] Jürgen Wolfart, ABC for polynomials, dessins d’enfants and uniformization – A survey, Elementare und analytische Zahlentheorie, Schr. Wiss. Ges. Johann Wolfgang Goethe Univ. Frankfurt am Main, vol. 20, Franz Steiner Verlag Stuttgart, 2006, pp. 313–345. ↑1441
[WW96] Edmund T. Whittaker and George N. Watson, A course of modern analysis. An introduction to the general theory of infinite processes and of analytic functions with an account of the principal transcendental functions, Cambridge Mathematical Library, Cambridge University Press, 1996, reprint of the fourth (1927) edition. ↑1428
[WZ94] Michael Wolf and Barton Zwiebach, The plumbing of minimal area surfaces, J. Geom. Phys. 15 (1994), no. 1, 23–56. ↑1418