VADAKKAYIL, Nalina ; University of Luxembourg > Faculty of Science, Technology and Medicine > Department of Physics and Materials Science > Team Massimiliano ESPOSITO
ESPOSITO, Massimiliano ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Physics and Materials Science (DPHYMS)
Meibohm, Jan
External co-authors :
yes
Language :
English
Title :
Critical fluctuations at a finite-time dynamical phase transition
H. Haken, Synergetics: An Introduction: Nonequilibrium Phase Transitions and Self-organization in Physics, Chemistry and Biology (Springer, Berlin, 2004).
M. Henkel and M. Pleimling, Non-Equilibrium Phase Transitions: Volume 2: Ageing and Dynamical Scaling Far from Equilibrium (Springer Science & Business Media, Dordrecht, 2011).
M. C. Cross and P. C. Hohenberg, Pattern formation outside of equilibrium, Rev. Mod. Phys. 65, 851 (1993) 0034-6861 10.1103/RevModPhys.65.851.
L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics Volume 5: Statistical Physics Part 1 (Elsevier, Amsterdam, 2012).
N. Goldenfeld, Lectures on Phase Transitions and the Renormalization Group (CRC Press, Boca Raton, FL, 2018).
U. M. B. Marconi, A. Puglisi, L. Rondoni, and A. Vulpiani, Fluctuation-dissipation: Response theory in statistical physics, Phys. Rep. 461, 111 (2008) 0370-1573 10.1016/j.physrep.2008.02.002.
M. Baiesi and C. Maes, An update on the nonequilibrium linear response, New J. Phys. 15, 013004 (2013) 1367-2630 10.1088/1367-2630/15/1/013004.
A. J. Bray, Theory of phase-ordering kinetics, Adv. Phys. 51, 481 (2002) 0001-8732 10.1080/00018730110117433.
E. B. Mpemba and D. G. Osborne, Cool Phys. Ed. 4, 172 (1969) 0031-9120 10.1088/0031-9120/4/3/312.
Z. Lu and O. Raz, Nonequilibrium thermodynamics of the Markovian Mpemba effect and its inverse, Proc. Natl. Acad. Sci. USA 114, 5083 (2017) 0027-8424 10.1073/pnas.1701264114.
N. Vadakkayil and S. K. Das, Should a hotter paramagnet transform quicker to a ferromagnet Monte Carlo simulation results for Ising model, Phys. Chem. Chem. Phys. 23, 11186 (2021) 1463-9076 10.1039/D1CP00879J.
A. Kovacs, R. A. Stratton, and J. D. Ferry, Dynamic mechanical properties of polyvinyl acetate in shear in the glass transition temperature range, J. Phys. Chem. 67, 152 (1963) 0022-3654 10.1021/j100795a037.
A. J. Kovacs, J. J. Aklonis, J. M. Hutchinson, and A. R. Ramos, Isobaric volume and enthalpy recovery of glasses. II. A transparent multiparameter theory, J. Polym. Sci. Polym. Phys. Ed. 17, 1097 (1979) 0098-1273 10.1002/pol.1979.180170701.
E. Bertin, J. Bouchaud, J. Drouffe, and C. Godreche, The Kovacs effect in model glasses, J. Phys. A 36, 10701 (2003) 0305-4470 10.1088/0305-4470/36/43/003.
A. Lapolla and A. Godec, Faster uphill relaxation in thermodynamically equidistant temperature quenches, Phys. Rev. Lett. 125, 110602 (2020) 0031-9007 10.1103/PhysRevLett.125.110602.
J. Meibohm, D. Forastiere, T. Adeleke-Larodo, and K. Proesmans, Relaxation-speed crossover in anharmonic potentials, Phys. Rev. E 104, L032105 (2021) 2470-0045 10.1103/PhysRevE.104.L032105.
M. Ibánez, C. Dieball, A. Lasanta, A. Godec, and R. A. Rica, Heating and cooling are fundamentally asymmetric and evolve along distinct pathways, Nat. Phys. 20, 135 (2024) 1745-2473 10.1038/s41567-023-02269-z.
R. Holtzman and O. Raz, Landau theory for the Mpemba effect through phase transitions, Commun. Phys. 5, 280 (2022) 2399-3650 10.1038/s42005-022-01063-2.
J. Meibohm and M. Esposito, Finite-time dynamical phase transition in nonequilibrium relaxation, Phys. Rev. Lett. 128, 110603 (2022) 0031-9007 10.1103/PhysRevLett.128.110603.
J. Meibohm and M. Esposito, Landau theory for finite-time dynamical phase transitions, New J. Phys. 25, 023034 (2023) 1367-2630 10.1088/1367-2630/acbc41.
K. Blom and A. Godec, Global speed limit for finite-time dynamical phase transition in nonequilibrium relaxation, arXiv:2209.14287.
A. C. D. van Enter, R. Fernández, F. Den Hollander, and F. Redig, Possible loss and recovery of Gibbsianness during the stochastic evolution of Gibbs measures, Commun. Math. Phys. 226, 101 (2002) 0010-3616 10.1007/s002200200605.
C. Külske and A. Le Ny, Spin-flip dynamics of the Curie-Weiss model: Loss of Gibbsianness with possibly broken symmetry, Commun. Math. Phys. 271, 431 (2007) 0010-3616 10.1007/s00220-007-0201-y.
V. Ermolaev and C. Külske, Low-temperature dynamics of the Curie-Weiss model: Periodic orbits, multiple histories, and loss of Gibbsianness, J. Stat. Phys. 141, 727 (2010) 0022-4715 10.1007/s10955-010-0074-x.
F. Redig and F. Wang, Gibbs-non-Gibbs transitions via large deviations: Computable examples, J. Stat. Phys. 147, 1094 (2012) 0022-4715 10.1007/s10955-012-0523-9.
U. C. Täuber, Critical Dynamics: A Field Theory Approach to Equilibrium and Non-equilibrium Scaling Behavior (Cambridge University Press, Cambridge, 2014).
G. Baglietto and E. V. Albano, Finite-size scaling analysis and dynamic study of the critical behavior of a model for the collective displacement of self-driven individuals, Phys. Rev. E 78, 021125 (2008) 1539-3755 10.1103/PhysRevE.78.021125.
K. Wood, C. Van den Broeck, R. Kawai, and K. Lindenberg, Universality of synchrony: Critical behavior in a discrete model of stochastic phase-coupled oscillators, Phys. Rev. Lett. 96, 145701 (2006) 0031-9007 10.1103/PhysRevLett.96.145701.
K. Wood, C. Van den Broeck, R. Kawai, and K. Lindenberg, Critical behavior and synchronization of discrete stochastic phase-coupled oscillators, Phys. Rev. E 74, 031113 (2006) 1539-3755 10.1103/PhysRevE.74.031113.
M. E. Fisher and M. N. Barber, Scaling theory for finite-size effects in the critical region, Phys. Rev. Lett. 28, 1516 (1972) 0031-9007 10.1103/PhysRevLett.28.1516.
M. E. Fisher, The theory of equilibrium critical phenomena, Rep. Prog. Phys. 30, 615 (1967) 0034-4885 10.1088/0034-4885/30/2/306.
R. B. Griffiths, C.-Y. Weng, and J. S. Langer, Relaxation times for metastable states in the mean-field model of a ferromagnet, Phys. Rev. 149, 301 (1966) 0031-899X 10.1103/PhysRev.149.301.
L. Onsager, Crystal statistics. I. A two-dimensional model with an order-disorder transition, Phys. Rev. 65, 117 (1944) 0031-899X 10.1103/PhysRev.65.117.
R. J. Glauber, Time-dependent statistics of the Ising model, J. Math. Phys. 4, 294 (1963) 0022-2488 10.1063/1.1703954.
D. P. Landau and K. Binder, A Guide to Monte Carlo Simulations in Statistical Physics (Cambridge University Press, Cambridge, 2021).
M. E. Newman and G. T. Barkema, Monte Carlo Methods in Statistical Physics (Clarendon Press, Oxford, 1999).
U. Wolff, Collective Monte Carlo updating for spin systems, Phys. Rev. Lett. 62, 361 (1989) 0031-9007 10.1103/PhysRevLett.62.361.
H. E. Stanley, Phase Transitions and Critical Phenomena, Vol. 7 (Clarendon Press, Oxford, 1971).
K. Binder, in Finite Size Scaling and Numerical Simulation of Statistical Systems, edited by V. Privman (World Scientific, Singapore, 1990).
The correlation length (Equation presented) is the characteristic decay length of the two-point correlation function, (Equation presented) [8]. Near the critical point, (Equation presented) decays as (Equation presented).
H. Touchette, The large deviation approach to statistical mechanics, Phys. Rep. 478, 1 (2009) 0370-1573 10.1016/j.physrep.2009.05.002.
K. Binder, Critical properties from Monte Carlo coarse graining and renormalization, Phys. Rev. Lett. 47, 693 (1981) 0031-9007 10.1103/PhysRevLett.47.693.
I. Balog, A. Rançon, and B. Delamotte, Critical probability distributions of the order parameter from the functional renormalization group, Phys. Rev. Lett. 129, 210602 (2022) 0031-9007 10.1103/PhysRevLett.129.210602.
K. Binder, Finite size scaling analysis of Ising model block distribution functions, Z. Phys. B 43, 119 (1981) 0340-224X 10.1007/BF01293604.
M. Henkel and G. Schutz, Finite-lattice extrapolation algorithms, J. Phys. A 21, 2617 (1988) 0305-4470 10.1088/0305-4470/21/11/019.
C. G. West, A. Garcia-Saez, and T.-C. Wei, Efficient evaluation of high-order moments and cumulants in tensor network states, Phys. Rev. B 92, 115103 (2015) 1098-0121 10.1103/PhysRevB.92.115103.
B. Efron, Bootstrap methods: Another look at the jackknife, in Breakthroughs in Statistics: Methodology and Distribution (Springer, New York, 1992), pp. 569-593.
M. E. J. Newman and G. T. Barkema, Monte Carlo study of the random-field Ising model, Phys. Rev. E 53, 393 (1996) 1063-651X 10.1103/PhysRevE.53.393.
P. C. Hohenberg and B. I. Halperin, Theory of dynamic critical phenomena, Rev. Mod. Phys. 49, 435 (1977) 0034-6861 10.1103/RevModPhys.49.435.
S. Varrette, H. Cartiaux, S. Peter, E. Kieffer, T. Valette, and A. Olloh, Management of an Academic HPC & Research Computing Facility: The ULHPC Experience 2.0, in Proceedings of the 6th ACM High Performance Computing and Cluster Technologies Conference (HPCCT 2022) (ACM Press, Fuzhou, China, 2022).