[en] Random graph models have been instrumental in characterizing complex networks, but chemical reaction networks (CRNs) are better represented as hypergraphs. Traditional models of random CRNs often reduce CRNs to bipartite graphs, representing species and reactions as distinct nodes, or simpler derived graphs, which can obscure the relationship between the statistical properties of these representations and the physical characteristics of the CRN. We introduce a straightforward model for generating random CRNs that preserve their hypergraph structure and atomic composition, enabling the direct study of chemically relevant features. Notably, our approach distinguishes two notions of connectivity that are equivalent in graphs but differ fundamentally in hypergraphs. These notions exhibit percolation-like phase transitions, which we analyze in detail. The first type of connectivity has relevance to steady-state synthesis and transduction, determining the effective reactions an open CRN can perform at steady state. The second type is suitable to identify which species can be produced from a given initial set of species in a closed CRN. Our findings highlight the importance of hypergraph-based modeling for uncovering the complex behaviors of CRNs.
Disciplines :
Chemistry
Author, co-author :
Marehalli Srinivas, Shesha Gopal
ESPOSITO, Massimiliano ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Physics and Materials Science (DPHYMS)
Freitas, Nahuel
External co-authors :
yes
Language :
English
Title :
Hypergraph-based models of random chemical reaction networks: Conservation laws, connectivity, and percolation
S. Stocker, G. Csányi, K. Reuter, and J. T. Margraf, Nat. Commun. 11, 5505 (2020). 10.1038/s41467-020-19267-x
P. M. Murray, S. N. G. Tyler, and J. D. Moseley, Org. Process Res. Dev. 17, 40 (2013). 10.1021/op300275p
B. A. Grzybowski, K. J. M. Bishop, B. Kowalczyk, and C. E. Wilmer, Nat. Chem. 1, 31 (2009). 10.1038/nchem.136
R. Albert and A.-L. Barabási, Rev. Mod. Phys. 74, 47 (2002). 10.1103/RevModPhys.74.47
M. E. J. Newman, SIAM Rev. 45, 167 (2003). 10.1137/s003614450342480
M. Newman, Networks, 2nd ed.(Oxford University Press, Oxford, New York, 2018).
T. Guhr, A. MüllerGroeling–, and H. A. Weidenmüller, Phys. Rep. 299, 189 (1998). 10.1016/S0370-1573(97)00088-4
H. Jeong, B. Tombor, R. Albert, Z. N. Oltvai, and A.-L. Barabási, Nature 407, 651 (2000). 10.1038/35036627
R. Tanaka, Phys. Rev. Lett. 94, 168101 (2005). 10.1103/physrevlett.94.168101
B. Ø. Palsson, Systems Biology: Properties of Reconstructed Networks, reprinted ed. (Cambridge University Press, Cambridge, 2008).
H. B. Smith, H. Kim, and S. I. Walker, Sci. Rep. 11, 6542 (2021). 10.1038/s41598-021-85903-1
S. Klamt, U.-U. Haus, and F. Theis, PLoS Comput. Biol. 5, e1000385 (2009). 10.1371/journal.pcbi.1000385
P. Holme, J. R. Soc. Interface 6, 1027 (2009). 10.1098/rsif.2008.0489
C. I. Sandefur, M. Mincheva, and S. Schnell, Mol. BioSyst. 9, 2189 (2013). 10.1039/C3MB70052F
R. Montañez, M. A. Medina, R. V. Solé, and C. Rodríguez-Caso, BioEssays 32, 246 (2010). 10.1002/bies.200900145
R. Fagerberg, C. Flamm, D. Merkle, P. Peters, and P. F. Stadler, Math. Comput. Sci. 7, 275 (2013). 10.1007/s11786-013-0160-y
M. Barthelemy, Phys. Rev. E 106, 064310 (2022). 10.1103/physreve.106.064310
G. Ghoshal, V. Zlatić, G. Caldarelli, and M. E. J. Newman, Phys. Rev. E 79, 066118 (2009). 10.1103/PhysRevE.79.066118
G. Bianconi and S. N. Dorogovtsev, Phys. Rev. E 109, 014306 (2024). 10.1103/physreve.109.014306
S. Müller, C. Flamm, and P. F. Stadler, J. Cheminf. 14, 1 (2022). 10.1186/s13321-021-00580-6
D. F. Anderson and T. D. Nguyen, J. Math. Chem. 59, 2063 (2021). 10.1007/s10910-021-01278-8
D. F. Anderson and T. D. Nguyen, J. Appl. Probab. 59, 384 (2022). 10.1017/jpr.2021.65
E. Bigan, J.-M. Steyaert, and S. Douady, “Properties of random complex chemical reaction networks and their relevance to biological toy models,” arXiv:1303.7439 [q-bio.MN] (2013).
Z. G. Nicolaou, S. B. Nicholson, A. E. Motter, and J. R. Green, J. Chem. Phys. 158, 225101 (2023). 10.1063/5.0142589
G. Svehla, Pure Appl. Chem. 65, 2291 (1993). 10.1351/pac199365102291
C. D. Meyer, Matrix Analysis and Applied Linear Algebra (Society for Industrial and Applied Mathematics, Philadelphia, 2000).
R. Rao and M. Esposito, Phys. Rev. X 6, 041064 (2016). 10.1103/physrevx.6.041064
F. Avanzini, G. Falasco, and M. Esposito, New J. Phys. 22, 093040 (2020). 10.1088/1367-2630/abafea
R. Rao and M. Esposito, J. Chem. Phys. 149, 245101 (2018). 10.1063/1.5042253
M. Shimada, P. Behrad, and E. De Giuli, Phys. Rev. E 109, 044105 (2024). 10.1103/physreve.109.044105
M. Polettini and M. Esposito, J. Chem. Phys. 141, 024117 (2014). 10.1063/1.4886396
F. Avanzini, N. Freitas, and M. Esposito, Phys. Rev. X 13, 021041 (2023). 10.1103/physrevx.13.021041
S. Dal Cengio, V. Lecomte, and M. Polettini, Phys. Rev. X 13, 021040 (2023). 10.1103/physrevx.13.021040
G. Shinar and M. Feinberg, Math. Biosci. 241, 1 (2013). 10.1016/j.mbs.2012.08.002
G. Craciun and M. Feinberg, SIAM J. Appl. Math. 66, 1321 (2006). 10.1137/050634177
M. Feinberg, Foundations of Chemical Reaction Network Theory (Springer, 2019), pp. 79–80.
H.-M. Kaltenbach, in Electronic Notes in Theoretical Computer Science Proceedings of the SASB 2018, the Ninth International Workshop on Static Analysis and Systems Biology, Freiburg, Germany–August 28th, 2018 (Elseiver, 2020), p. 350.
D. F. Anderson and T. G. Kurtz, Stochastic Analysis of Biochemical Systems (Springer International Publishing, Cham, 2015).
M. Polettini, A. Wachtel, and M. Esposito, J. Chem. Phys. 143, 184103 (2015). 10.1063/1.4935064
S. G. Marehalli Srinivas, M. Polettini, M. Esposito, and F. Avanzini, J. Chem. Phys. 158, 204108 (2023). 10.1063/5.0147283
T. Handorf, O. Ebenhöh, and R. Heinrich, J. Mol. Evol. 61, 498 (2005). 10.1007/s00239-005-0027-1
S. N. Dorogovtsev and J. F. F. Mendes, The Nature of Complex Networks, 1st ed. (Oxford University Press, Oxford, 2022).
W. Tang and F. Tang, Stat. Sci. 38, 108 (2023). 10.1214/22-STS852
D. Stauffer and A. Aharony, Introduction to Percolation Theory: Second Edition, 2nd ed. (Taylor & Francis, London, 2017).
J. Houdayer and A. Hartmann, Phys. Rev. B 70, 014418 (2004). 10.1103/physrevb.70.014418
O. Melchert, “autoScale.py—A program for automatic finite-size scaling analyses: A user’s guide,” arXiv:0910.5403 [physics] (2009).
M. E. J. Newman, S. H. Strogatz, and D. J. Watts, Phys. Rev. E 64, 026118 (2001). 10.1103/physreve.64.026118
S. N. Dorogovtsev, J. F. F. Mendes, and A. N. Samukhin, Phys. Rev. E 64, 025101 (2001). 10.1103/physreve.64.025101
K. Binder, K. Vollmayr, H.-P. Deutsch, J. D. Reger, M. Scheucher, and D. P. Landau, Int. J. Mod. Phys. C 03, 1025 (1992). 10.1142/s0129183192000683
M. V. Smoluchowski, Ann. Phys. 353, 1103 (1916). 10.1002/andp.19163532408
A. Sharko, D. Livitz, S. De Piccoli, K. J. M. Bishop, and T. M. Hermans, Chem. Rev. 122, 11759 (2022). 10.1021/acs.chemrev.1c00958
J. A. D. Wattis, Physica D 222, 1 (2006). 10.1016/j.physd.2006.07.024
W. J. Riehl, P. L. Krapivsky, S. Redner, and D. Segrè, PLoS Comput. Biol. 6, e1000725 (2010). 10.1371/journal.pcbi.1000725
P. Gagrani, V. Blanco, E. Smith, and D. Baum, J. Math. Chem. 62, 1012 (2024). 10.1007/s10910-024-01576-x
S. A. Kauffman, J. Theor. Biol. 119, 1 (1986). 10.1016/s0022-5193(86)80047-9
R. J. Bagley and J. D. Farmer, in Artificial Life II, edited by C. Langton, C. Taylor, J. Farmer, and S. Rasmussen (Addison-Wesley, Reading, Mass., 1994), Chap. 2, pp. 93–141.
M. Steel, Appl. Math. Lett. 13, 91 (2000). 10.1016/s0893-9659(99)00191-3
A. Filisetti, M. Villani, C. Damiani, A. Graudenzi, A. Roli, W. Hordijk, and R. Serra, “Advances in Artificial Life and Evolutionary Computation,” in Communications in Computer and Information Science, edited by C. Pizzuti and G. Spezzano (Springer International Publishing, Cham, 2014), pp. 113–126.
Y. Himeoka, J. B. Kirkegaard, N. Mitarai, and S. Krishna, Sci. Rep. 14, 22187 (2024). 10.1038/s41598-024-73104-5
A. Garcia-Chung, M. Bermúdez-Montaña, P. F. Stadler, J. Jost, and G. Restrepo, J. Math. Chem. 62, 1357 (2024). 10.1007/s10910-024-01595-8
J. Fischer, A. Kleidon, and P. Dittrich, PLoS One 10, e0117312 (2015). 10.1371/journal.pone.0117312
C. Furusawa and K. Kaneko, Phys. Rev. Lett. 90, 088102 (2003). 10.1103/physrevlett.90.088102
Y. Kondo and K. Kaneko, Phys. Rev. E 84, 011927 (2011). 10.1103/physreve.84.011927
N. Araújo, P. Grassberger, B. Kahng, K. Schrenk, and R. Ziff, Eur. Phys. J. Special Top. 223, 2307 (2014). 10.1140/epjst/e2014-02266-y
W. A. Warr, WIREs Comput. Mol. Sci. 1, 557 (2011). 10.1002/wcms.36
D. S. Wigh, J. M. Goodman, and A. A. Lapkin, WIREs Comput. Mol. Sci. 12, e1603 (2022). 10.1002/wcms.1603
P. Dittrich, J. Ziegler, and W. Banzhaf, Artif. Life 7, 225 (2001). 10.1162/106454601753238636
G. Benkö, C. Flamm, and P. F. Stadler, J. Chem. Inf. Comput. Sci. 43, 1085 (2003). 10.1021/ci0200570
G. Benkö, C. Flamm, and P. F. Stadler, Advances in Artificial Life (Springer, Berlin, Heidelberg, 2003), pp. 10–19.
J. L. Andersen, C. Flamm, D. Merkle, and P. F. Stadler, J. Syst. Chem. 4, 4 (2013). 10.1186/1759-2208-4-4
J. L. Andersen, C. Flamm, D. Merkle, and P. F. Stadler, Graph Transformation, Lecture Notes in Computer Science (Springer International Publishing, 2016), pp. 73–88.
A. Arya, J. Ray, S. Sharma, R. Cruz Simbron, A. Lozano, H. B. Smith, J. L. Andersen, H. Chen, M. Meringer, and H. J. Cleaves, Chem. Sci. 13, 4838 (2022). 10.1039/D2SC00256F
J. Zanghellini, D. E. Ruckerbauer, M. Hanscho, and C. Jungreuthmayer, Biotechnol. J. 8, 1009 (2013). 10.1002/biot.201200269
S. Schuster, C. Hilgetag, J. H. Woods, and D. A. Fell, J. Math. Biol. 45, 153 (2002). 10.1007/s002850200143
R. M. May, Nature 238, 413 (1972). 10.1038/238413a0
W. Cui, R. Marsland, and P. Mehta, Phys. Rev. E 104, 034416 (2021). 10.1103/physreve.104.034416
T. Aslyamov and M. Esposito, Phys. Rev. Lett. 133, 107103 (2024). 10.1103/physrevlett.133.107103
S. Varrette, H. Cartiaux, S. Peter, E. Kieffer, T. Valette, and A. Olloh, in Proceedings of the 6th ACM High Performance Computing and Cluster Technologies Conf. (HPCCT 2022) (Association for Computing Machinery (ACM), Fuzhou, China, 2022).
B. Bollobás, Random Graphs, Cambridge Studies in Advanced Mathematics No. 73, 2nd ed. (Cambridge University Press, Cambridge; New York, 2001).
A. Engel, R. Monasson, and A. K. Hartmann, J. Stat. Phys. 117, 387 (2004). 10.1007/s10955-004-2268-6
K. Christensen, R. Donangelo, B. Koiller, and K. Sneppen, Phys. Rev. Lett. 81, 2380 (1998). 10.1103/physrevlett.81.2380
Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables, Dover Books on Mathematics, edited by M. Abramowitz and I. A. Stegun (Dover Publishers, New York, 2012).
T. A. Davis, “Algorithm 915, SuiteSparseQR: Multifrontal multithreaded rank-revealing sparse QR factorization,” ACM Trans. Math. Software 38(1), 1–22 (2011). 10.1145/2049662.2049670
C. G. West, A. Garcia-Saez, and T.-C. Wei, Phys. Rev. B 92, 115103 (2015). 10.1103/physrevb.92.115103