ESPOSITO, Massimiliano ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Physics and Materials Science (DPHYMS)
FALASCO, Gianmaria ; University of Luxembourg > Faculty of Science, Technology and Medicine > Department of Physics and Materials Science > Team Massimiliano ESPOSITO
External co-authors :
yes
Language :
English
Title :
Bridging Freidlin-Wentzell large deviations theory and stochastic thermodynamics
G. Margazoglou, T. Grafke, A. Laio, and V. Lucarini, Dynamical landscape and multistability of a climate model, Proc. R. Soc. A. 477, 20210019 (2021) 1471-2946 10.1098/rspa.2021.0019.
M. Assaf, E. Roberts, Z. Luthey-Schulten, and N. Goldenfeld, Extrinsic noise driven phenotype switching in a self-regulating gene, Phys. Rev. Lett. 111, 058102 (2013) 0031-9007 10.1103/PhysRevLett.111.058102.
N. Freitas, K. Proesmans, and M. Esposito, Reliability and entropy production in nonequilibrium electronic memories, Phys. Rev. E 105, 034107 (2022) 2470-0045 10.1103/PhysRevE.105.034107.
H. Eyring, The activated complex in chemical reactions, J. Chem. Phys. 3, 107 (1935) 0021-9606 10.1063/1.1749604.
H. A. Kramers, Brownian motion in a field of force and the diffusion model of chemical reactions, Physica 7, 284 (1940) 0031-8914 10.1016/S0031-8914(40)90098-2.
S. Arrhenius, Über die reaktionsgeschwindigkeit bei der inversion von rohrzucker durch säuren, Z. Phys. Chem. 4U, 226 (1889) 2196-7156 10.1515/zpch-1889-0416.
P. Hänggi, P. Talkner, and M. Borkovec, Reaction-rate theory: Fifty years after Kramers, Rev. Mod. Phys. 62, 251 (1990) 0034-6861 10.1103/RevModPhys.62.251.
M. I. Freidlin and A. D. Wentzell, Random Perturbations of Dynamical Systems (Springer, Berlin, Germany, 1998).
F. Bouchet, J. Laurie, and O. Zaboronski, Langevin dynamics, large deviations and instantons for the quasi-geostrophic model and two-dimensional Euler equations, J. Stat. Phys. 156, 1066 (2014) 0022-4715 10.1007/s10955-014-1052-5.
F. Bouchet and J. Reygner, Generalisation of the eyring-kramers transition rate formula to irreversible diffusion processes, Ann. Henri Poincaré 17, 3499 (2016) 10.1007/s00023-016-0507-4.
H. Touchette, The large deviation approach to statistical mechanics, Phys. Rep. 478, 1 (2009) 0370-1573 10.1016/j.physrep.2009.05.002.
R. Graham and T. Tél, Nonequilibrium potential for coexisting attractors, Phys. Rev. A 33, 1322 (1986) 0556-2791 10.1103/PhysRevA.33.1322.
R. Graham, Macroscopic potentials, bifurcations and noise in dissipative systems, in Fluctuations and Stochastic Phenomena in Condensed Matter, edited by L. Garrido, Lecture Notes in Physics, Vol. 268 (Springer, Berlin, Heidelberg, 1987), pp. 1-34.
E. Weinan and E. Vanden-Eijnden, Minimum action method for the study of rare events, Commun. Pure Appl. Math. 57, 637 (2004) 0010-3640 10.1002/cpa.20005.
T. Grafke, T. Schäfer, and E. Vanden-Eijnden, Long term effects of small random perturbations on dynamical systems: Theoretical and computational tools, in Recent Progress and Modern Challenges in Applied Mathematics, Modeling and Computational Science, edited by R. Melnik, R. Makarov, and J. Belair, Fields Institute Communications, Vol. 79 (Springer, New York, NY, 2017), pp. 17-55.
F. Avanzini, M. Bilancioni, V. Cavina, S. Dal Cengio, M. Esposito, G. Falasco, D. Forastiere, J. N. Freitas, A. Garilli, P. E. Harunari et al., Methods and conversations in (post) modern thermodynamics, SciPost Physics Lecture Notes 080, (2024) 10.21468/SciPostPhysLectNotes.80.
J. N. Freitas and M. Esposito, Emergent second law for non-equilibrium steady states, Nat. Commun. 13, 5084 (2022) 2041-1723 10.1038/s41467-022-32700-7.
G. Falasco and M. Esposito, Macroscopic stochastic thermodynamics, Rev. Mod. Phys. 97, 015002 (2025) 10.1103/RevModPhys.97.015002.
L. Bertini, A. De Sole, D. Gabrielli, G. Jona-Lasinio, and C. Landim, Macroscopic fluctuation theory, Rev. Mod. Phys. 87, 593 (2015) 0034-6861 10.1103/RevModPhys.87.593.
P. Zhou and T. Li, Construction of the landscape for multi-stable systems: Potential landscape, quasi-potential, A-type integral and beyond, J. Chem. Phys. 144, 094109 (2016) 0021-9606 10.1063/1.4943096.
L. Peliti and S. Pigolotti, Stochastic Thermodynamics: An Introduction (Princeton University Press, 2021).
U. Seifert, Stochastic thermodynamics, fluctuation theorems, and molecular machines, Rep. Prog. Phys. 75, 126001 (2012) 0034-4885 10.1088/0034-4885/75/12/126001.
C. Van den Broeck and M. Esposito, Ensemble and trajectory thermodynamics: A brief introduction, Physica A 418, 6 (2015) 0378-4371 10.1016/j.physa.2014.04.035.
P. Gaspard, The Statistical Mechanics of Irreversible Phenomena (Cambridge University Press, 2022).
N. Shiraishi, An Introduction to Stochastic Thermodynamics (Springer, 2023).
C. Van den Broeck and M. Esposito, Three faces of the second law. II. Fokker-Planck formulation, Phys. Rev. E 82, 011144 (2010) 1539-3755 10.1103/PhysRevE.82.011144.
B. Gaveau, M. Moreau, and J. Toth, Dissipation of energy and of information in nonequilibrium reaction-diffusion systems, Phys. Rev. E 58, 5351 (1998) 1063-651X 10.1103/PhysRevE.58.5351.
N. Freitas, G. Falasco, and M. Esposito, Linear response in large deviations theory: A method to compute non-equilibrium distributions, New J. Phys. 23, 093003 (2021) 1367-2630 10.1088/1367-2630/ac1bf5.
F. Bouchet, K. Gawredzki, and C. Nardini, Perturbative calculation of quasi-potential in non-equilibrium diffusions: A mean-field example, J. Stat. Phys 163, 1157 (2016) 0022-4715 10.1007/s10955-016-1503-2.
H. Qian, Y.-C. Cheng, and Y.-J. Yang, Kinematic basis of emergent energetics of complex dynamics, Europhys. Lett. 131, 50002 (2020) 1286-4854 10.1209/0295-5075/131/50002.
Y.-J. Yang and Y.-C. Cheng, Potentials of continuous markov processes and random perturbations, J. Phys. A: Math. Theor. 54, 195001 (2021) 1751-8113 10.1088/1751-8121/abef80.
S. Bo, S. H. Lim, and R. Eichhorn, Functionals in stochastic thermodynamics: how to interpret stochastic integrals, J. Stat. Mech. (2019) 084005 1742-5468 10.1088/1742-5468/ab3111.
K. Sekimoto, Stochastic Energetics, Lecture Notes in Physics, Vol. 799 (Springer, 2010).
S. H. Strogatz, Nonlinear Dynamics and Chaos with Student Solutions Manual: With Applications to Physics, Biology, Chemistry, and Engineering (CRC Press, 2018).
G. Falasco and M. Esposito, Local detailed balance across scales: From diffusions to jump processes and beyond, Phys. Rev. E 103, 042114 (2021) 2470-0045 10.1103/PhysRevE.103.042114.
L. F. Cugliandolo and V. Lecomte, Rules of calculus in the path integral representation of white noise Langevin equations: The Onsager-Machlup approach, J. Phys. A: Math. Theor. 50, 345001 (2017) 1751-8113 10.1088/1751-8121/aa7dd6.
M. V. Day, On the exponential exit law in the small parameter exit problem, Stochastics 8, 297 (1983).
T. Hatano and S.-I. Sasa, Steady-state thermodynamics of Langevin systems, Phys. Rev. Lett. 86, 3463 (2001) 0031-9007 10.1103/PhysRevLett.86.3463.
R. Zakine and E. Vanden-Eijnden, Minimum-action method for nonequilibrium phase transitions, Phys. Rev. X 13, 041044 (2023) 2160-3308 10.1103/PhysRevX.13.041044.
D. J. Evans, Probability of second law violations in shearing steady states, Phys. Rev. Lett. 71, 2401 (1993) 0031-9007 10.1103/PhysRevLett.71.2401.
G. Gallavotti and E. G. D. Cohen, Dynamical ensembles in nonequilibrium statistical mechanics, Phys. Rev. Lett. 74, 2694 (1995) 0031-9007 10.1103/PhysRevLett.74.2694.
E. G. D. Cohen and L. Rondoni, Note on phase space contraction and entropy production in thermostatted Hamiltonian systems, Chaos 8, 357 (1998) 1054-1500 10.1063/1.166317.