active matter; flocking; fluctuating hydrodynamics; lattice gases; stochastic thermodynamics; Active matter; Continuous transitions; Equilibrium limits; Flocking; Fluctuating hydrodynamics; Institute of Physics; Lattice gas; Lattice gas model; Self-propulsion; Stochastic thermodynamics; Physics and Astronomy (all); Physics - Statistical Mechanics
Abstract :
[en] We introduce a family of lattice-gas models of flocking, whose thermodynamically consistent dynamics admits a proper equilibrium limit at vanishing self-propulsion. These models are amenable to an exact coarse-graining which allows us to study their hydrodynamic behavior analytically. We show that the equilibrium limit here belongs to the universality class of Model C, and that it generically exhibits tricritical behavior. Self-propulsion has a non-perturbative effect on the phase diagram, yielding novel phase behaviors depending on the type of aligning interactions. For aligning interaction that increase monotonically with the density, the tricritical point diverges to infinite density reproducing the standard scenario of a discontinuous flocking transition accompanied by traveling bands. In contrast, for models where the aligning interaction is non-monotonic in density, the system can exhibit either (the nonequilibrium counterpart of) an azeotropic point, associated with a continuous flocking transition, or a state with counterpropagating bands.
Disciplines :
Physics
Author, co-author :
Agranov, Tal; DAMTP, Centre for Mathematical Sciences, University of Cambridge, Cambridge, United Kingdom
Jack, Robert L ; DAMTP, Centre for Mathematical Sciences, University of Cambridge, Cambridge, United Kingdom ; Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
Cates, Michael E; DAMTP, Centre for Mathematical Sciences, University of Cambridge, Cambridge, United Kingdom
FODOR, Etienne ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Physics and Materials Science (DPHYMS)
External co-authors :
yes
Language :
English
Title :
Thermodynamically consistent flocking: from discontinuous to continuous transitions
The authors acknowledge useful discussions with M Esposito, G Falasco, K Proesmans, and A Tanaji Mohite. This research was funded in part by the Luxembourg National Research Fund (FNR), Grant Reference 14389168. T A was funded by the Blavatnik Postdoctoral Fellowship Programme. For the purpose of open access, \u00C9F has applied a Creative Commons Attribution 4.0 International (CC BY 4.0) license to any Author Accepted Manuscript version arising from this submission.
Cavagna A Giardina I 2014 Annu. Rev. Condens. Matter Phys. 5 183 207 183-207 10.1146/annurev-conmatphys-031113-133834
Bain N Bartolo D 2019 Science 363 46 49 46-49 10.1126/science.aat9891
Bricard A Caussin J B Desreumaux N Dauchot O Bartolo D 2013 Nature 503 95 98 95-98 10.1038/nature12673
Vicsek T Czirók A Ben-Jacob E Cohen I Shochet O 1995 Phys. Rev. Lett. 75 1226 9 1226-9 10.1103/PhysRevLett.75.1226
Toner J Tu Y 1995 Phys. Rev. Lett. 75 4326 9 4326-9 10.1103/PhysRevLett.75.4326
Marchetti M C Joanny J F Ramaswamy S Liverpool T B Prost J Rao M Simha R A 2013 Rev. Mod. Phys. 85 1143 89 1143-89 10.1103/RevModPhys.85.1143
Mermin N D Wagner H 1966 Phys. Rev. Lett. 17 1133 10.1103/PhysRevLett.17.1133
Halperin B 2018 J. Stat. Phys. 175 521 9 521-9 10.1007/s10955-018-2202-y
Grégoire G Chaté H 2004 Phys. Rev. Lett. 92 025702 10.1103/PhysRevLett.92.025702
Solon A P Tailleur J 2015 Phys. Rev. E 92 042119 10.1103/PhysRevE.92.042119
Solon A P Tailleur J 2013 Phys. Rev. Lett. 111 078101 10.1103/PhysRevLett.111.078101
Solon A P Caussin J B Bartolo D Chaté H Tailleur J 2015 Phys. Rev. E 92 062111 10.1103/PhysRevE.92.062111
Kourbane-Houssene M Erignoux C Bodineau T Tailleur J 2018 Phys. Rev. Lett. 120 268003 10.1103/PhysRevLett.120.268003
Scandolo M Pausch J Cates M E 2023 Eur. Phys. J. E 46 103 10.1140/epje/s10189-023-00364-w
Fodor E Nardini C Cates M E Tailleur J Visco P van Wijland F 2016 Phys. Rev. Lett. 117 038103 10.1103/PhysRevLett.117.038103
Fodor E Jack R L Cates M E 2022 Annu. Rev. Condens. Matter Phys. 13 215 38 215-38 10.1146/annurev-conmatphys-031720-032419
Seifert U 2012 Rep. Prog. Phys. 75 126001 10.1088/0034-4885/75/12/126001
Ballerini M et al 2008 Proc. Natl Acad. Sci. USA 105 1232 7 1232-7 10.1073/pnas.0711437105
Ginelli F Chaté H 2010 Phys. Rev. Lett. 105 168103 10.1103/PhysRevLett.105.168103
te Vrugt M Holl M P Koch A Wittkowski R Thiele U 2022 Modelling Simul. Mater. Sci. Eng. 30 084001 10.1088/1361-651X/ac856a
Fischer A Chatterjee A Speck T 2019 J. Chem. Phys. 150 064910 10.1063/1.5081115
Bebon R Robinson J F Speck T 2024 arXiv: 2401.02252
Aslyamov T Avanzini F Fodor E Esposito M 2023 Phys. Rev. Lett. 131 138301 10.1103/PhysRevLett.131.138301
Martin D Chaté H Nardini C Solon A Tailleur J Van Wijland F 2021 Phys. Rev. Lett. 126 148001 10.1103/PhysRevLett.126.148001
Lebowitz J L Spohn H 1999 J. Stat. Phys. 95 333 65 333-65 10.1023/A:1004589714161
Bodineau T Lagouge M 2010 J. Stat. Phys. 139 201 18 201-18 10.1007/s10955-010-9934-7
Landau L D Lifšic E M 1980 The impossibility of the existence of phases in one-dimensional systems Statistical Physics vol 5 3rd edn Butterworth-Heinemann p 537
Benvegnen B Chaté H Krapivsky P L Tailleur J Solon A 2022 Phys. Rev. E 106 054608 10.1103/PhysRevE.106.054608
Gorbonos D Puckett J G Van Der Vaart K Sinhuber M Ouellette N T Gov N S 2020 J. R. Soc. Interface 17 20200367 10.1098/rsif.2020.0367
Bastien R Romanczuk P 2020 Sci. Adv. 6 eaay0792 10.1126/sciadv.aay0792
King A E B T Turner M S 2021 R. Soc. Open Sci. 8 201536 10.1098/rsos.201536
Wirth T D Dachner G C Rio K W Warren W H 2023 PNAS Nexus 2 gad118 10.1093/pnasnexus/pgad118
Jona-Lasinio G Landim C Vares M E 1993 Prob. Theory Relat. Fields 97 339 61 339-61 10.1007/BF01195070
Agranov T Ro S Kafri Y Lecomte V 2021 J. Stat. Mech. 083208 10.1088/1742-5468/ac1406
Agranov T Ro S Kafri Y Lecomte V 2023 SciPost Phys. 14 045 10.21468/SciPostPhys.14.3.045
Agranov T Cates M E Jack R L 2022 J. Stat. Mech. 123201 10.1088/1742-5468/aca0eb