Android; Apps; Phone; TV; Comparative analyzes; Comparatives studies; Cross-platform; Google plays; Mobile app; Multiple dimensions; Security and privacy; Smart-TV; Software
Abstract :
[en] Smart TVs have surged in popularity, leading developers to create TV versions of mobile apps. Understanding the relationship between TV and mobile apps is key to building consistent, secure, and optimized cross-platform experiences while addressing TV-specific SDK challenges. Despite extensive research on mobile apps, TV apps have been given little attention, leaving the relationship between phone and TV apps unexplored. Our study addresses this gap by compiling an extensive collection of 3445 Android phone/TV app pairs from the Google Play Store, launching the first comparative analysis of its kind. We examined these pairs across multiple dimensions, including non-code elements, code structure, security, and privacy aspects. Our findings reveal that while these app pairs could get identified with the same package names, they deploy different artifacts with varying functionality across platforms. TV apps generally exhibit less complexity in terms of hardware-dependent features and code volume but maintain significant shared resource files and components with their phone versions. Interestingly, some categories of TV apps show similar or even severe security and privacy concerns compared to their mobile counterparts. This research aims to assist developers and researchers in understanding phone-TV app relationships, highlight domain-specific concerns necessitating TV-specific tools, and provide insights for migrating apps from mobile to TV platforms.
Disciplines :
Computer science
Author, co-author :
Liu, Yonghui; Department of Software Systems and Cybersecurity, Monash University, Melbourne, Australia ; Faculty of Data Science, City University of Macau, Macao
Chen, Xiao; School of Information and Physical Sciences, University of Newcastle, Newcastle, Australia
Liu, Yue; Department of Software Systems and Cybersecurity, Monash University, Melbourne, Australia
Kong, Pingfan; SnT, University of Luxembourg, Esch-sur-Alzette, Luxembourg
BISSYANDE, Tegawendé ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > TruX
KLEIN, Jacques ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > TruX
Sun, Xiaoyu; The School of Computing, Australian National University, Canberra, Australia
Li, Li; School of Software, Beihang University, Beijing, China
Chen, Chunyang; Department of Computer Science, Technical University of Munich, Munich, Germany
Grundy, John; Department of Software Systems and Cybersecurity, Monash University, Melbourne, Australia
External co-authors :
yes
Language :
English
Title :
A comparative study between android phone and TV apps
Azim, T., Neamtiu, I.: Targeted and depth-first exploration for systematic testing of android apps. In:, pp. Proceedings of the 2013 ACM SIGPLAN International Conference on Object Oriented Programming Systems Languages & Applications641–660 (2013)
APKMirror (2021). https://www.apkmirror.com/
S. Arzt S. Rasthofer C. Fritz E. Bodden A. Bartel J. Klein Y. Le Traon D. Octeau P. McDaniel Flowdroid: Precise context, flow, field, object-sensitive and lifecycle-aware taint analysis for android apps Acm Sigplan Notices 49 6 259 269 10.1145/2666356.2594299
Arp, D., Spreitzenbarth, M., Hubner, M., Gascon, H., Rieck, K., Siemens, C.: Drebin: Effective and explainable detection of android malware in your pocket. In: Ndss, vol. 14, pp. 23–26 (2014)
Aafer, Y., You, W., Sun, Y., Shi, Y., Zhang, X., Yin, H.: Android {SmartTVs} vulnerability discovery via {Log-Guided} fuzzing. In: 30th USENIX Security Symposium (USENIX Security 21), pp. 2759–2776 (2021)
Barros, P, Just, R, Millstein, S, Vines, P, Dietl, W, d’Amorim, M, Ernst, M.D.: Static analysis of implicit control flow: Resolving java reflection and android intents (t). In: 2015 30th IEEE/ACM International Conference on Automated Software Engineering (ASE), pp. 669–679 (2015). IEEE
Chen, X., Chen, W., Liu, K., Chen, C., Li, L.: A comparative study of smartphone and smartwatch apps. In: Proceedings of the 36th Annual ACM Symposium on Applied Computing, pp. 1484–1493 (2021)
Cao, Y., Fratantonio, Y., Bianchi, A., Egele, M., Kruegel, C., Vigna, G., Chen, Y.: Edgeminer: Automatically detecting implicit control flow transitions through the android framework. In: NDSS (2015)
Chen, S., Fan, L., Chen, C., Su, T., Li, W., Liu, Y., Xu, L.: Storydroid: Automated generation of storyboard for android apps. In: 2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE), pp. 596–607 (2019). IEEE
S. Chen L. Fan C. Chen Y. Liu Automatically distilling storyboard with rich features for android apps IEEE Trans. Softw. Eng. 49 2 667 683 10.1109/TSE.2022.3159548
Chen, X., Li, C., Wang, D., Wen, S., Zhang, J., Nepal, S., Xiang, Y., Ren, K.: Android hiv: A study of repackaging malware for evading machine-learning detection. TIFS (2019)
Cai, H., Zhang, Z., Li, L., Fu, X.: A large-scale study of application incompatibilities in android. In: Proceedings of the 28th ACM SIGSOFT International Symposium on Software Testing and Analysis, pp. 216–227 (2019)
Desnos, A.: Androguard. [Online]. Available: https://github.com/androguard/androguard Last checked 02 March 2022 (2021)
Dong, S, Li, M, Diao, W, Liu, X, Liu, J, Li, Z, Xu, F, Chen, K, Wang, X, Zhang, K.: Understanding android obfuscation techniques: A large-scale investigation in the wild. In: Security and Privacy in Communication Networks: 14th International Conference, secureComm 2018, Singapore, Singapore, August 8-10, 2018, Proceedings, Part I, pp. 172–192 (2018). Springer
Enumeration, C.W.: Use of implicit intent for sensitive communication (2017)
P. Faruki A. Bharmal V. Laxmi V. Ganmoor M.S. Gaur M. Conti M. Rajarajan Android security: a survey of issues, malware penetration, and defenses IEEE Commun. Surveys Tutorials 17 2 998 1022 10.1109/COMST.2014.2386139
Fan, L., Su, T., Chen, S., Meng, G., Liu, Y., Xu, L., Pu, G., Su, Z.: Large-scale analysis of framework-specific exceptions in android apps. In: 2018 IEEE/ACM 40th International Conference on Software Engineering (ICSE), pp. 408–419 (2018). IEEE
Gao, J., Li, L., Kong, P., Bissyandé, T.F., Klein, J.: Understanding the evolution of android app vulnerabilities. IEEE Transactions on Reliability (2019)
Google: Google Play Python API. (2021). https://github.com/NoMore201/googleplay-api
Google: View and restrict your app’s compatible devices (2021). https://support.google.com/googleplay/android-developer/answer/7353455
Google: Google Play TV apps (2024). https://play.google.com/store/apps?device=tv&hl=en &gl=US
Group, I.: Smart TV Market: Global Industry Trends, Share, Size, Growth, Opportunity and Forecast (2021). https://www.researchandmarkets.com/reports/5311939/smart-tv-market-global-industry-trends-share?w=4
H. Hu R. Dong J. Grundy T.M. Nguyen H. Liu C. Chen Automated mapping of adaptive app guis from phones to tvs ACM Trans. Softw. Eng. Methodol. 33 2 1 31 10.1145/3631968
Hu, Y., Wang, H., He, R., Li, L., Tyson, G., Castro, I., Guo, Y., Wu, L., Xu, G.: Mobile app squatting. In: Proceedings of The Web Conference 2020, pp. 1727–1738 (2020)
Johnson, J.: Designing with the Mind in Mind: Simple Guide to Understanding User Interface Design Guidelines. Morgan Kaufmann, ??? (2020)
Laricchia, F.: Android TV Continues Its Growth W/ 7,000 Apps. (2022). https://9to5google.com/2020/08/10/android-tv-growth-apps-users-operators/
Laricchia, F.: Number of Smart TV Users in the United States from 2016 to 2022 (in Millions)*. (2022). https://www.statista.com/statistics/718737/number-of-smart-tv-users-in-the-us/
Li, L., Bartel, A., Bissyandé, T.F., Klein, J., Le Traon, Y., Arzt, S., Rasthofer, S., Bodden, E., Octeau, D., McDaniel, P.: Iccta: Detecting inter-component privacy leaks in android apps. In: 2015 IEEE/ACM 37th IEEE International Conference on Software Engineering, vol. 1, pp. 280–291 (2015). IEEE
Li, L., Bartel, A., Bissyandé, T.F., Klein, J., Le Traon, Y., Arzt, S., Rasthofer, S., Bodden, E., Octeau, D., McDaniel, P.: Iccta: Detecting inter-component privacy leaks in android apps. In: 2015 IEEE/ACM 37th IEEE International Conference on Software Engineering, vol. 1, pp. 280–291 (2015). https://doi.org/10.1109/ICSE.2015.48
Li, L., Bissyandé, T.F., Klein, J.: Simidroid: Identifying and explaining similarities in android apps. In: The 16th IEEE International Conference On Trust, Security And Privacy In Computing And Communications (TrustCom2017) (2017)
Li, L., Bissyandé, T.F., Klein, J.: Rebooting research on detecting repackaged android apps: Literature review and benchmark. IEEE Transactions on Software Engineering (TSE) (2019)
Li, L., Bissyandé, T.F., Octeau, D., Klein, J.: Droidra: Taming reflection to support whole-program analysis of android apps. In: Proceedings of the 25th International Symposium on Software Testing and Analysis, pp. 318–329 (2016)
Liu, Y., Chen, X., Liu, P., Grundy, J., Chen, C., Li, L.: Reunify: A step towards whole program analysis for react native android apps. In: 2023 IEEE/ACM International Conference on Automated Software Engineering (2023)
Li, C., Chen, X., Wang, D., Wen, S., Ahmed, M.E., Camtepe, S., Xiang, Y.: Backdoor attack on machine learning based android malware detectors. IEEE Trans. Depend. Secure Comput. (2021)
Lin, Y.-C.: Androbugs framework: An android application security vulnerability scanner. Blackhat Europe 2015 (2015)
Li, L., Li, D., Bissyandé, T.F., Klein, J., Le Traon, Y., Lo, D., Cavallaro, L.: Understanding android app piggybacking: A systematic study of malicious code grafting. TIFS (2017)
Liu, Y., Li, L., Kong, P., Sun, X., Bissyandé, T.F.: A first look at security risks of android tv apps. In: 2021 36th IEEE/ACM International Conference on Automated Software Engineering Workshops (ASEW), pp. 59–64 (2021). IEEE
Lindorfer, M., Neugschwandtner, M., Weichselbaum, L., Fratantonio, Y., Van Der Veen, V., Platzer, C.: Andrubis–1,000,000 apps later: A view on current android malware behaviors. In: 2014 Third International Workshop on Building Analysis Datasets and Gathering Experience Returns for Security (BADGERS), pp. 3–17 (2014). IEEE
Lai, D, Rubin, J.: Goal-driven exploration for android applications. In: 2019 34th IEEE/ACM International Conference on Automated Software Engineering (ASE), pp. 115–127 (2019). IEEE
Lin, J.-W., Salehnamadi, N., Malek, S.: Test automation in open-source android apps: A large-scale empirical study. In: Proceedings of the 35th IEEE/ACM International Conference on Automated Software Engineering, pp. 1078–1089 (2020)
Liu, Y, Tantithamthavorn, C, Li, L, Liu, Y.: Deep learning for android malware defenses: a systematic literature review. arXiv preprint arXiv:2103.05292 (2021)
Linares-Vásquez, M., Bavota, G., Escobar-Velásquez, C.: An empirical study on android-related vulnerabilities. In: 2017 IEEE/ACM 14th International Conference on Mining Software Repositories (MSR), pp. 2–13 (2017). IEEE
Liu, T, Wang, H, Li, L, Bai, G, Guo, Y, Xu, G.: Dapanda: Detecting aggressive push notifications in android apps. In: 2019 34th IEEE/ACM International Conference on Automated Software Engineering (ASE), pp. 66–78 (2019). IEEE
Mao, K., Harman, M., Jia, Y.: Sapienz: Multi-objective automated testing for android applications. In: Proceedings of the 25th International Symposium on Software Testing and Analysis, pp. 94–105 (2016)
Mauthe, N., Kargén, U., Shahmehri, N.: A large-scale empirical study of android app decompilation. In: 2021 IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER), pp. 400–410 (2021). IEEE
McLaughlin, N., Rincon, J., Kang, B., Yerima, S., Miller, P., Sezer, S., Safaei, Y., Trickel, E., Zhao, Z., Doupé, A., et al.: Deep android malware detection. In: Proceedings of the Seventh ACM on Conference on Data and Application Security and Privacy, pp. 301–308 (2017)
Mariconti, E, Onwuzurike, L, Andriotis, P, Cristofaro, E.D, Ross, G.J, Stringhini, G.: Mamadroid: Detecting android malware by building markov chains of behavioral models. In: 24th Annual Network and Distributed System Security Symposium, NDSS 2017, San Diego, California, USA, February 26 - March 1, 2017. The Internet Society, ??? (2017)
Octeau, D., McDaniel, P., Jha, S., Bartel, A., Bodden, E., Klein, J., Le Traon, Y.: Effective {Inter-Component} communication mapping in android: An essential step towards holistic security analysis. In: 22nd USENIX Security Symposium (USENIX Security 13), pp. 543–558 (2013)
Palomba, F., Di Nucci, D., Panichella, A., Zaidman, A., De Lucia, A.: Lightweight detection of android-specific code smells: The adoctor project. In: 2017 IEEE 24th International Conference on Software Analysis, Evolution and Reengineering (SANER), pp. 487–491 (2017). IEEE
J. Qiu J. Zhang W. Luo L. Pan S. Nepal Y. Xiang A survey of android malware detection with deep neural models ACM Comput. Surveys (CSUR) 53 6 1 36 10.1145/3417978
Samhi, J., Bartel, A., Bissyandé, T.F., Klein, J.: Raicc: Revealing atypical inter-component communication in android apps. In: 2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE), pp. 1398–1409 (2021). IEEE
Samhi, J., Gao, J., Daoudi, N., Graux, P., Hoyez, H., Sun, X., Allix, K., Bissyandé, T.F., Klein, J.: Jucify: a step towards android code unification for enhanced static analysis. In: Proceedings of the 44th International Conference on Software Engineering, pp. 1232–1244 (2022)
Samhi, J., Just, R., Bissyandé, T.F., Ernst, M.D., Klein, J.: Call graph soundness in android static analysis. In: Proceedings of the 33rd ACM SIGSOFT International Symposium on Software Testing and Analysis, pp. 945–957 (2024)
M. Tileria J. Blasco Watch over your tv: a security and privacy analysis of the android tv ecosystem Proc. Privacy Enhanc. Technol. 3 692 710 10.56553/popets-2022-0092
Thomas, D.R., Beresford, A.R., Coudray, T., Sutcliffe, T., Taylor, A.: The lifetime of android api vulnerabilities: case study on the javascript-to-java interface. In: Cambridge International Workshop on Security Protocols, pp. 126–138 (2015). Springer
Tam, K., Fattori, A., Khan, S., Cavallaro, L.: Copperdroid: Automatic reconstruction of android malware behaviors. In: NDSS Symposium 2015, pp. 1–15 (2015)
Wijesekera, P., Baokar, A., Hosseini, A., Egelman, S., Wagner, D., Beznosov, K.: Android permissions remystified: A field study on contextual integrity. In: 24th USENIX Security Symposium (USENIX Security 15), pp. 499–514 (2015)
Wang, H., Liu, Z., Liang, J., Vallina-Rodriguez, N., Guo, Y., Li, L., Tapiador, J., Cao, J., Xu, G.: Beyond google play: A large-scale comparative study of chinese android app markets. In: Proceedings of the Internet Measurement Conference 2018, pp. 293–307 (2018)
Wang, Y., Rountev, A.: Profiling the responsiveness of android applications via automated resource amplification. In: Proceedings of the International Conference on Mobile Software Engineering and Systems, pp. 48–58 (2016)
Y. Wang G. Xu X. Liu W. Mao C. Si W. Pedrycz W. Wang Identifying vulnerabilities of ssl/tls certificate verification in android apps with static and dynamic analysis J. Syst. Softw. 167 10.1016/j.jss.2020.110609 110609
Wu, H., Yang, S., Rountev, A.: Static detection of energy defect patterns in android applications. In: Proceedings of the 25th International Conference on Compiler Construction, pp. 185–195 (2016)
Xu, M.e., othersMa, Y., Liu, X., Lin, F.X., Liu, Y.: Appholmes: Detecting and characterizing app collusion among third-party android markets. In: Proceedings of the 26th International Conference on World Wide Web, pp. 143–152 (2017)
S. Yang H. Wu H. Zhang Y. Wang C. Swaminathan D. Yan A. Rountev Static window transition graphs for android Automated Softw. Eng. 25 833 873 10.1007/s10515-018-0237-6
Zhang, R., Chen, X., Wen, S., Zheng, J.: Who activated my voice assistant? a stealthy attack on android phones without users’ awareness. In: International Conference on Machine Learning for Cyber Security, pp. 378–396 (2019). Springer
Zhan, X., Fan, L., Chen, S., Wu, F., Liu, T., Luo, X., Liu, Y.: Atvhunter: Reliable version detection of third-party libraries for vulnerability identification in android applications. In: 2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE), pp. 1695–1707 (2021). IEEE
Zhang, X., Fan, L., Chen, S., Su, Y., Li, B.: Scene-driven exploration and gui modeling for android apps. In: 2023 38th IEEE/ACM International Conference on Automated Software Engineering (ASE), pp. 1251–1262 (2023). IEEE
Y. Zhao L. Li H. Wang H. Cai T.F. Bissyandé J. Klein J. Grundy On the impact of sample duplication in machine-learning-based android malware detection TOSEM 30 3 1 38
Zhang, Y., Sui, Y., Xue, J.: Launch-mode-aware context-sensitive activity transition analysis. In: Proceedings of the 40th International Conference on Software Engineering, pp. 598–608 (2018)
Zhou, Y., Wang, Z., Zhou, W., Jiang, X.: Hey, you, get off of my market: detecting malicious apps in official and alternative android markets. In: NDSS, vol. 25, pp. 50–52 (2012)