[en] The gut microbiome comprises trillions of microorganisms and profoundly influences human health by modulating metabolism, immune responses and neuronal functions. Disruption in gut microbiome composition is implicated in various inflammatory conditions, metabolic disorders and neurodegenerative diseases. However, determining the underlying mechanisms and establishing cause and effect is extremely difficult. Preclinical models offer crucial insights into the role of the gut microbiome in diseases and help identify potential therapeutic interventions. The Human Microbiome Action Consortium initiated a Delphi survey to assess the utility of preclinical models, including animal and cell-based models, in elucidating the causal role of the gut microbiome in these diseases. The Delphi survey aimed to address the complexity of selecting appropriate preclinical models to investigate disease causality and to study host-microbiome interactions effectively. We adopted a structured approach encompassing a literature review, expert workshops and the Delphi questionnaire to gather insights from a diverse range of stakeholders. Experts were requested to evaluate the strengths, limitations, and suitability of these models in addressing the causal relationship between the gut microbiome and disease pathogenesis. The resulting consensus statements and recommendations provide valuable insights for selecting preclinical models in future studies of gut microbiome-related diseases.
Disciplines :
Microbiology
Author, co-author :
Metwaly, Amira ; Chair of Nutrition and Immunology, TUM School of Life Sciences, Technical University Munich, Freising, Germany ; ZIEL Institute for Food & Health, Technical University Munich, Freising, Germany
Kriaa, Aicha; Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
Hassani, Zahra; KPL-Paris, Paris, France
Carraturo, Federica; European Biomedical Research Institute of Salerno (EBRIS), Salerno, Italy
Druart, Celine ; Pharmabiotic Research Institute, Narbonne, France
IHMCSA Consortium
Arnauts, Kaline; Department of Gastroenterology and Hepatology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
WILMES, Paul ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Systems Ecology
Walter, Jens ; APC Microbiome Ireland, School of Microbiology, and Department of Medicine, University College Cork, Cork, Ireland
Rosshart, Stephan ; Department of Microbiome Research, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany ; Department of Medicine II, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany
DESAI, Mahesh ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine > Research LCSB ; Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
Dore, Joel ; Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France ; Université Paris-Saclay, INRAE, MetaGenoPolis, Jouy-en-Josas, France
Fasano, Alessio; European Biomedical Research Institute of Salerno (EBRIS), Salerno, Italy ; Department of Paediatric Gastroenterology and Nutrition, Mucosal Immunology and Biology Research Center,Massachusetts General Hospital Brigham, Harvard Medical School, Boston, MA, USA
Blottiere, Hervé M ; Université Paris-Saclay, INRAE, MetaGenoPolis, Jouy-en-Josas, France ; Nantes Université, INRAE, UMR1280, PhAN, Nantes, France
Maguin, Emmanuelle ; Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France. emmanuelle.maguin@inrae.fr
Haller, Dirk ; Chair of Nutrition and Immunology, TUM School of Life Sciences, Technical University Munich, Freising, Germany. dirk.haller@tum.de ; ZIEL Institute for Food & Health, Technical University Munich, Freising, Germany. dirk.haller@tum.de
This Delphi survey was conducted within the framework of the International Human Microbiome Coordination and Support Action (IHMCSA) project supported by funding from the European Union\u2019s Horizon 2020 research and innovation program under grant agreement number 964590. The authors received funding from Deutsche Forschungsgemeinschaft (DFG, German Research Foundation), project number 395357507 (SFB 1371, Microbiome Signatures).
F. Bäckhed et al. Defining a healthy human gut microbiome: current concepts, future directions, and clinical applications Cell Host Microbe 12 611 622 23159051 10.1016/j.chom.2012.10.012
C.A. Lozupone J.I. Stombaugh J.I. Gordon J.K. Jansson R. Knight Diversity, stability and resilience of the human gut microbiota Nature 489 220 230 1:CAS:528:DC%2BC38Xhtleru7jO 22972295 3577372 10.1038/nature11550
G. Berg et al. Microbiome definition re-visited: old concepts and new challenges Microbiome 8 32605663 7329523 10.1186/s40168-020-00875-0 103
J.L. Round S.K. Mazmanian The gut microbiome shapes intestinal immune responses during health and disease Nat. Rev. Immunol. 9 313 323 1:CAS:528:DC%2BD1MXjvF2gtbk%3D 19343057 4095778 10.1038/nri2515
N. Waldschmitt A. Metwaly S. Fischer D. Haller Microbial signatures as a predictive tool in IBD – pearls and pitfalls Inflamm. Bowel Dis. 24 1123 1132 29788358 10.1093/ibd/izy059
M. Dave P.D. Higgins S. Middha K.P. Rioux The human gut microbiome: current knowledge, challenges, and future directions Transl. Res. 160 246 257 1:CAS:528:DC%2BC38XhtlOju77P 22683238 10.1016/j.trsl.2012.05.003
C.R. Wensel J.L. Pluznick S.L. Salzberg C.L. Sears Next-generation sequencing: insights to advance clinical investigations of the microbiome J. Clin. Invest. 132 1:CAS:528:DC%2BB38Xht1OksbbM 35362479 8970668 10.1172/JCI154944 e154944
C. Petersen J.L. Round Defining dysbiosis and its influence on host immunity and disease Cell Microbiol. 16 1024 1033 1:CAS:528:DC%2BC2cXhtVShsLnP 24798552 4143175 10.1111/cmi.12308
H.M. Staudacher K. Whelan Altered gastrointestinal microbiota in irritable bowel syndrome and its modification by diet: probiotics, prebiotics and the low FODMAP diet Proc. Nutr. Soc. 75 306 318 1:CAS:528:DC%2BC28Xht1GmtL7N 26908093 10.1017/S0029665116000021
A. Vich Vila et al. Gut microbiota composition and functional changes in inflammatory bowel disease and irritable bowel syndrome Sci. Transl. Med. 10 eaap8914 30567928 10.1126/scitranslmed.aap8914
A. Metwaly S. Reitmeier D. Haller Microbiome risk profiles as biomarkers for inflammatory and metabolic disorders Nat. Rev. Gastroenterol. Hepatol. 19 383 397 35190727 10.1038/s41575-022-00581-2
J.A. Gilbert et al. Current understanding of the human microbiome Nat. Med. 24 392 400 1:CAS:528:DC%2BC1cXnt1Kit7s%3D 29634682 7043356 10.1038/nm.4517
A. Ahmad et al. Analysis of gut microbiota of obese individuals with type 2 diabetes and healthy individuals PLoS ONE 14 10.1371/journal.pone.0226372 e0226372
P.J. Turnbaugh J.I. Gordon The core gut microbiome, energy balance and obesity J. Physiol. 587 4153 4158 1:CAS:528:DC%2BD1MXhtFKksLbF 19491241 2754355 10.1113/jphysiol.2009.174136
V.K. Ridaura et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice Science 341 1241214 24009397 10.1126/science.1241214
J. Lloyd-Price et al. Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases Nature 569 655 662 1:CAS:528:DC%2BC1MXhtVOgtL3O 31142855 6650278 10.1038/s41586-019-1237-9
W. Zhou et al. Longitudinal multi-omics of host–microbe dynamics in prediabetes Nature 569 663 671 1:CAS:528:DC%2BC1MXhtVOgtL3L 31142858 6666404 10.1038/s41586-019-1236-x
T.L.A. Nguyen S. Vieira-Silva A. Liston J. Raes How informative is the mouse for human gut microbiota research? Dis. Model. Mech. 8 1 16 1:CAS:528:DC%2BC2MXosFSiu7k%3D 25561744 4283646 10.1242/dmm.017400
M. Chamtouri et al. Age and severity-dependent gut microbiota alterations in Tunisian children with autism spectrum disorder Sci. Rep. 13 1:CAS:528:DC%2BB3sXit1GitrvM 37880312 10600251 10.1038/s41598-023-45534-0 18218
D. Aguanno A. Metwaly O.I. Coleman D. Haller Modeling microbiota-associated human diseases: from minimal models to complex systems Microbiome Res. Rep. 1 17 1:CAS:528:DC%2BB3sXhslKlt7zM 38046357 10688821 10.20517/mrr.2022.01
A.N. Payne A. Zihler C. Chassard C. Lacroix Advances and perspectives in in vitro human gut fermentation modeling Trends Biotechnol. 30 17 25 1:CAS:528:DC%2BC3MXhs1Ols7jK 21764163 10.1016/j.tibtech.2011.06.011
D. Häcker et al. Exclusive enteral nutrition initiates individual protective microbiome changes to induce remission in pediatric Crohn’s disease Cell Host Microbe 32 2019 2034.e8 39461337 10.1016/j.chom.2024.10.001
C. Cinquin G. Le Blay I. Fliss C. Lacroix Immobilization of infant fecal microbiota and utilization in an in vitro colonic fermentation model Microb. Ecol. 48 128 138 1:STN:280:DC%2BD2cvovVKnsA%3D%3D 15085302 10.1007/s00248-003-2022-7
C. Cinquin G. Le Blay I. Fliss C. Lacroix New three-stage in vitro model for infant colonic fermentation with immobilized fecal microbiota FEMS Microbiol. Ecol. 57 324 336 1:CAS:528:DC%2BD28Xot1Cqtbw%3D 16867149 10.1111/j.1574-6941.2006.00117.x
G.T. Macfarlane S. Macfarlane G.R. Gibson Validation of a three-stage compound continuous culture system for investigating the effect of retention time on the ecology and metabolism of bacteria in the human colon Microb. Ecol. 35 180 187 1:CAS:528:DyaK1cXitFynsbk%3D 9541554 10.1007/s002489900072
P. Van den Abbeele et al. Microbial community development in a dynamic gut model is reproducible, colon region specific, and selective for Bacteroidetes and Clostridium cluster IX Appl. Env. Microbiol. 76 5237 5246 10.1128/AEM.00759-10
Van de Wiele, T. et al. in The Impact of Food Bioactives on Health Verhoeckx, K. et al. 27 (Springer, 2015).
K. Kretzschmar H. Clevers Organoids: modeling development and the stem cell niche in a dish Dev. Cell 38 590 600 1:CAS:528:DC%2BC28XhsFyrurbN 27676432 10.1016/j.devcel.2016.08.014
S. Yang et al. Organoids: the current status and biomedical applications MedComm 4 1:CAS:528:DC%2BB3sXhtVyjtLvJ 37215622 10192887 10.1002/mco2.274 e274
Rath, E. & Zietek, T. in Organoids and Mini-Organs (eds Davies, J. A. & Lawrence, M.) Ch. 10 (Academic, 2018).
P. Shah et al. A microfluidics-based in vitro model of the gastrointestinal human–microbe interface Nat. Commun. 7 1:CAS:528:DC%2BC28XnslegtbY%3D 27168102 4865890 10.1038/ncomms11535 11535
S. Mohammadi et al. Assessing donor-to-donor variability in human intestinal organoid cultures Stem Cell Rep. 16 2364 2378 10.1016/j.stemcr.2021.07.016
K.E. Boonekamp T.L. Dayton H. Clevers Intestinal organoids as tools for enriching and studying specific and rare cell types: advances and future directions J. Mol. Cell Biol. 12 562 568 1:CAS:528:DC%2BB3MXhvVSgt73N 32667995 7683021 10.1093/jmcb/mjaa034
E. d’Aldebert et al. Characterization of human colon organoids from inflammatory bowel disease patients Front. Cell Dev. Biol. 8 363 32582690 7287042 10.3389/fcell.2020.00363
S. May S. Evans L. Parry Organoids, organs-on-chips and other systems, and microbiota Emerg. Top. Life Sci. 1 385 400 1:CAS:528:DC%2BC1MXhvVOnsLbF 33525777 7289039 10.1042/ETLS20170047
J. Walter A.M. Armet B.B. Finlay F. Shanahan Establishing or exaggerating causality for the gut microbiome: lessons from human microbiota-associated rodents Cell 180 221 232 1:CAS:528:DC%2BB3cXnvFelt7g%3D 31978342 10.1016/j.cell.2019.12.025
M. Markaki N. Tavernarakis Caenorhabditis elegans as a model system for human diseases Curr. Opin. Biotechnol. 63 118 125 1:CAS:528:DC%2BB3cXitVWksg%3D%3D 31951916 10.1016/j.copbio.2019.12.011
E.M. Verheyen The power of Drosophila in modeling human disease mechanisms Dis. Models Mech. 15 dmm049549 10.1242/dmm.049549
T.-Y. Choi T.-I. Choi Y.-R. Lee S.-K. Choe C.-H. Kim Zebrafish as an animal model for biomedical research Exp. Mol. Med. 53 310 317 1:CAS:528:DC%2BB3MXlsV2gtLc%3D 33649498 8080808 10.1038/s12276-021-00571-5
T. Winogrodzki et al. TNF ΔARE pigs: a translational Crohn’s disease model J. Crohns Colitis 17 1128 1138 36821422 10320488 10.1093/ecco-jcc/jjad034
D. Beiderbeck N. Frevel H.A. von der Gracht S.L. Schmidt V.M. Schweitzer Preparing, conducting, and analyzing Delphi surveys: cross-disciplinary practices, new directions, and advancements MethodsX 8 101401 34430297 8374446 10.1016/j.mex.2021.101401
M. Niederberger J. Spranger Delphi technique in health sciences: a map Front. Public. Health 8 457 33072683 7536299 10.3389/fpubh.2020.00457
C.-C. Hsu B. Sandford The Delphi technique: making sense of consensus Pract. Assess. Res. Eval. 12 10
Linstone, H. A. & Turoff, M. (eds) The Delphi Method: Techniques and Applications (Addison-Wesley, 1975).
V. Chaidez R.L. Hansen I. Hertz-Picciotto Gastrointestinal problems in children with autism, developmental delays or typical development J. Autism Dev. Disord. 44 1117 1127 24193577 3981895 10.1007/s10803-013-1973-x
I.S. Kohane et al. The co-morbidity burden of children and young adults with autism spectrum disorders PLoS ONE 7 1:CAS:528:DC%2BC38Xmt1ejt7Y%3D 22511918 3325235 10.1371/journal.pone.0033224 e33224
J.T. Morton et al. Multi-level analysis of the gut–brain axis shows autism spectrum disorder-associated molecular and microbial profiles Nat. Neurosci. 26 1208 1217 1:CAS:528:DC%2BB3sXhtlCgu7zJ 37365313 10322709 10.1038/s41593-023-01361-0
T. Wu et al. Potential of gut microbiome for detection of autism spectrum disorder Microb. Pathog. 149 104568 1:CAS:528:DC%2BB3cXitFyitr%2FP 33096147 10.1016/j.micpath.2020.104568
M. de Angelis R. Francavilla M. Piccolo A. De Giacomo M. Gobbetti Autism spectrum disorders and intestinal microbiota Gut Microbes 6 207 213 25835343 4616908 10.1080/19490976.2015.1035855
E. Kang et al. Atypicality of the N170 event-related potential in autism spectrum disorder: a meta-analysis Biol. Psychatry Cogn. Neurosci. Neuroimaging 3 657 666
H.M.R.T. Parracho M.O. Bingham G.R. Gibson A.L. McCartney Differences between the gut microflora of children with autistic spectrum disorders and that of healthy children J. Med. Microbiol. 54 987 991 16157555 10.1099/jmm.0.46101-0
D. Rothschild et al. An atlas of robust microbiome associations with phenotypic traits based on large-scale cohorts from two continents PLoS. ONE 17 10.1371/journal.pone.0265756 e0265756
S.P. Rosshart et al. Laboratory mice born to wild mice have natural microbiota and model human immune responses Science 365 eaaw4361 1:CAS:528:DC%2BC1MXhsV2jsLvF 31371577 7377314 10.1126/science.aaw4361
S.P. Rosshart et al. Wild mouse gut microbiota promotes host fitness and improves disease resistance Cell 171 1015 1028.e13 1:CAS:528:DC%2BC2sXhs12lsLzJ 29056339 6887100 10.1016/j.cell.2017.09.016
M.O. Larsen B. Rolin Use of the Göttingen minipig as a model of diabetes, with special focus on type 1 diabetes research ILAR J. 45 303 313 1:CAS:528:DC%2BD2cXkvVyjsrg%3D 15229377 10.1093/ilar.45.3.303
B. Askari et al. Oleate and linoleate enhance the growth-promoting effects of insulin-like growth factor-I through a phospholipase D-dependent pathway in arterial smooth muscle cells J. Biol. Chem. 277 36338 36344 1:CAS:528:DC%2BD38XnsVCjt7o%3D 12138107 10.1074/jbc.M205112200
M. Marshall H. Oberhofer J. Staubesand Early micro- and macro-angiopathy in the streptozotocin diabetic minipig Res. Exp. Med. 177 145 158 1:CAS:528:DyaL3cXmtF2jsb4%3D 10.1007/BF01851843
R.G. Gerrity R. Natarajan J.L. Nadler T. Kimsey Diabetes-induced accelerated atherosclerosis in swine Diabetes 50 1654 1665 1:CAS:528:DC%2BD3MXltVWiu7s%3D 11423488 10.2337/diabetes.50.7.1654
C.A. Thomson S.C. Morgan C. Ohland K.D. McCoy From germ-free to wild: modulating microbiome complexity to understand mucosal immunology Mucosal Immunol. 15 1085 1094 1:CAS:528:DC%2BB38XitlWhtLjI 36065057 10.1038/s41385-022-00562-3
M.W. Brand et al. The altered Schaedler flora: continued applications of a defined murine microbial community ILAR J. 56 169 178 1:CAS:528:DC%2BC28Xhs1OrtLzO 10.1093/ilar/ilv012
S. Brugiroux et al. Genome-guided design of a defined mouse microbiota that confers colonization resistance against Salmonella enterica serovar Typhimurium Nat. Microbiol. 2 16215 1:CAS:528:DC%2BC2sXkvFyru74%3D 27869789 10.1038/nmicrobiol.2016.215
T. Tanoue et al. A defined commensal consortium elicits CD8 T cells and anti-cancer immunity Nature 565 600 605 1:CAS:528:DC%2BC1MXmtVyjtLs%3D 30675064 10.1038/s41586-019-0878-z
M. Darnaud et al. A standardized gnotobiotic mouse model harboring a minimal 15-member mouse gut microbiota recapitulates SOPF/SPF phenotypes Nat. Commun. 12 1:CAS:528:DC%2BB3MXisFagtr%2FF 34795236 8602333 10.1038/s41467-021-26963-9 6686
M. Wolter et al. Diet-driven differential response of Akkermansia muciniphila modulates pathogen susceptibility Mol. Syst. Biol. 20 596 625 1:CAS:528:DC%2BB2MXntlajtro%3D 38745106 11148096 10.1038/s44320-024-00036-7
H. Nagao-kitamoto et al. Functional characterization of inflammatory bowel disease-associated gut dysbiosis in gnotobiotic mice Cell Mol. Gastroenterol. Hepatol. 2 468 481 27795980 5042563 10.1016/j.jcmgh.2016.02.003
A. Metwaly et al. Integrated microbiota and metabolite profiles link Crohn’s disease to sulfur metabolism Nat. Commun. 11 32859898 7456324 10.1038/s41467-020-17956-1 4322
J. Torres et al. Infants born to mothers with IBD present with altered gut microbiome that transfers abnormalities of the adaptive immune system to germ-free mice Gut 69 42 51 1:CAS:528:DC%2BB3cXht1eqsrbK 31036757 10.1136/gutjnl-2018-317855
P.J. Turnbaugh et al. An obesity-associated gut microbiome with increased capacity for energy harvest Nature 444 1027 1031 17183312 10.1038/nature05414
M. Arrieta M. Sadarangani E.M. Brown S.L. Russell M. Nimmo A humanized microbiota mouse model of ovalbumin-induced lung inflammation Gut Microbes 7 342 352 1:CAS:528:DC%2BC28XhtFOhurbL 27115049 4988436 10.1080/19490976.2016.1182293
L.V. Blanton et al. Gut bacteria that prevent growth impairments transmitted by microbiota from malnourished children Science 351 aad3311 26912898 10.1126/science.aad3311
S.H. Wong et al. Gavage of fecal samples from patients with colorectal cancer promotes intestinal carcinogenesis in germ-free and conventional mice Gastroenterology 153 1621 1633.e6 28823860 10.1053/j.gastro.2017.08.022
K.D. Parker et al. Dietary rice bran-modified human gut microbial consortia confers protection against colon carcinogenesis following fecal transfaunation Biomedicines 9 144 1:CAS:528:DC%2BB3MXotlSnu70%3D 33546192 7913285 10.3390/biomedicines9020144
N.T. Baxter J.P. Zackular G.Y. Chen P.D. Schloss Structure of the gut microbiome following colonization with human feces determines colonic tumor burden Microbiome 2 24967088 4070349 10.1186/2049-2618-2-20 20
A.G. Cheng et al. Design, construction, and in vivo augmentation of a complex gut microbiome Cell 185 3617 3636.e19 1:CAS:528:DC%2BB38Xitlagtr%2FF 36070752 9691261 10.1016/j.cell.2022.08.003
K. Nagashima et al. Mapping the T cell repertoire to a complex gut bacterial community Nature 621 162 170 1:CAS:528:DC%2BB3sXhslagu7nE 37587342 10948025 10.1038/s41586-023-06431-8
M.C. Arrieta J. Walter B.B. Finlay Human microbiota-associated mice: a model with challenges Cell Host Microbe 19 575 578 1:CAS:528:DC%2BC28XntVOmsb8%3D 27173924 10.1016/j.chom.2016.04.014
L.F. Zhang et al. Diabetes-induced oxidative stress and low-grade inflammation in porcine coronary arteries Circulation 108 472 478 1:CAS:528:DC%2BD3sXlsFOjt70%3D 12860917 10.1161/01.CIR.0000080378.96063.23
N. Brodala et al. Porphyromonas gingivalis bacteremia induces coronary and aortic atherosclerosis in normocholesterolemic and hypercholesterolemic pigs Arterioscler. Thromb. Vasc. Biol. 25 1446 1451 1:CAS:528:DC%2BD2MXltlSis7Y%3D 15845905 10.1161/01.ATV.0000167525.69400.9c
T.C. Nichols et al. Porcine von Willebrand disease and atherosclerosis influence of polymorphism in apolipoprotein B100 genotype Am. J. Pathol. 140 403 415 1:STN:280:DyaK387lt1ehsg%3D%3D 1739133 1886442
J. Hasler-Rapacz et al. Effects of simvastatin on plasma lipids and apolipoproteins in familial hypercholesterolemic swine Arterioscler. Thromb. Vasc. Biol. 16 137 143 1:CAS:528:DyaK28XhtFKjsLg%3D 8548414 10.1161/01.ATV.16.1.137
A. Touchard R. Schwartz Preclinical restenosis models: challenges and successes Toxicol. Pathol. 34 11 18 16507539 10.1080/01926230500499407
L. Xiao et al. A reference gene catalogue of the pig gut microbiome Nat Microbiol 1 16161 1:CAS:528:DC%2BC2sXkvFyrtr8%3D 27643971 10.1038/nmicrobiol.2016.161
D. Wylensek et al. A collection of bacterial isolates from the pig intestine reveals functional and taxonomic diversity Nat Commun 11 1:CAS:528:DC%2BB3MXjvFyktA%3D%3D 33319778 7738495 10.1038/s41467-020-19929-w 6389
S. Rogalla et al. Biodegradable fluorescent nanoparticles for endoscopic detection of colorectal carcinogenesis Adv Funct Mater 29 1904992 1:CAS:528:DC%2BC1MXhvFCms7vM 33041743 7546531 10.1002/adfm.201904992
T. Sato et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche Nature 459 262 265 1:CAS:528:DC%2BD1MXjslartrg%3D 19329995 10.1038/nature07935
T. Sato et al. Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett’s epithelium Gastroenterology 141 1762 1772 1:CAS:528:DC%2BC3MXhtlOksb3E 21889923 10.1053/j.gastro.2011.07.050
K.J. Howell et al. DNA methylation and transcription patterns in intestinal epithelial cells from pediatric patients with inflammatory bowel diseases differentiate disease subtypes and associate with outcome Gastroenterology 154 585 598 1:CAS:528:DC%2BC1cXis1Slu78%3D 29031501 10.1053/j.gastro.2017.10.007
A. Valiei J. Aminian-Dehkordi M.R.K. Mofrad Gut-on-a-chip models for dissecting the gut microbiology and physiology APL Bioeng. 7 011502 1:CAS:528:DC%2BB3sXksFaitL0%3D 36875738 9977465 10.1063/5.0126541
M. Lucchetti et al. An organ-on-chip platform for simulating drug metabolism along the gut–liver axis Adv. Healthc. Mater. 13 38452399 10.1002/adhm.202303943 e2303943
Y.C. Shin et al. Three-dimensional regeneration of patient-derived intestinal organoid epithelium in a physiodynamic mucosal interface-on-a-chip Micromachines 11 663 32645991 7408321 10.3390/mi11070663
J. Zheng et al. Noninvasive, microbiome-based diagnosis of inflammatory bowel disease Nat. Med. 30 3555 3567 1:CAS:528:DC%2BB2cXitFGmtLbJ 39367251 11645270 10.1038/s41591-024-03280-4
J. Rodriguez et al. State of the art and the future of microbiome-based biomarkers: a multidisciplinary Delphi consensus Lancet Microbe 4 100948