community fragmentation; cross-domain interactions; glacier-fed streams; microbiome; networks; Agricultural and Biological Sciences (miscellaneous); Microbiology; Microbiology (medical)
Abstract :
[en] Cross-domain interactions are an integral part of the success of biofilms in natural environments but remain poorly understood. Here, we describe cross-domain interactions in stream biofilms draining proglacial floodplains in the Swiss Alps. These streams, as a consequence of the retreat of glaciers, are characterised by multiple environmental gradients and perturbations (e.g., changes in channel geomorphology, discharge) that depend on the time since deglaciation. We evaluate co-occurrence of bacteria and eukaryotic communities along streams and show that key community members have disproportionate effects on the stability of community networks. The topology of the networks, here quantified as the arrangement of the constituent nodes formed by specific taxa, was independent of stream type and their apparent environmental stability. However, network stability against fragmentation was higher in the streams draining proglacial terrain that was more recently deglaciated. We find that bacteria, eukaryotic photoautotrophs, and fungi are central to the stability of these networks, which fragment upon the removal of both pro- and eukaryotic taxa. Key taxa are not always abundant, suggesting an underlying functional component to their contributions. Thus, we show that there is a key role played by individual taxa in determining microbial community stability of glacier-fed streams.
Disciplines :
Microbiology
Author, co-author :
Busi, Susheel Bhanu; UK Centre for Ecology & Hydrology (UKCEH), Wallingford, United Kingdom ; Systems Ecology Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
Peter, Hannes; River Ecosystems Laboratory, Alpine and Polar Environmental Research Center, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
Brandani, Jade; River Ecosystems Laboratory, Alpine and Polar Environmental Research Center, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
Kohler, Tyler J.; River Ecosystems Laboratory, Alpine and Polar Environmental Research Center, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland ; Department of Ecology, Faculty of Science, Charles University, Prague, Czech Republic
Fodelianakis, Stilianos; River Ecosystems Laboratory, Alpine and Polar Environmental Research Center, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
Pramateftaki, Paraskevi; River Ecosystems Laboratory, Alpine and Polar Environmental Research Center, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
Bourquin, Massimo; River Ecosystems Laboratory, Alpine and Polar Environmental Research Center, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
Michoud, Grégoire; River Ecosystems Laboratory, Alpine and Polar Environmental Research Center, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
Ezzat, Leïla; River Ecosystems Laboratory, Alpine and Polar Environmental Research Center, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland ; MARBEC, Université de Montpellier, CNRS, Ifremer, IRD, Montpellier, France
Lane, Stuart; Institute of Earth Surface Dynamics (IDYST), University of Lausanne, Lausanne, Switzerland
WILMES, Paul ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Systems Ecology
Battin, Tom J.; River Ecosystems Laboratory, Alpine and Polar Environmental Research Center, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
External co-authors :
yes
Language :
English
Title :
Cross-domain interactions confer stability to benthic biofilms in proglacial streams
The author(s) declare financial support was received for the research, authorship, and/or publication of this article. Funding was provided by the Swiss National Science Foundation grant (CRSII5_180241) to TB, SL and PW. Acknowledgments
Anesio A. M. Lutz S. Chrismas N. A. M. Benning L. G. (2017). The microbiome of glaciers and ice sheets. NPJ Biofilms Microbiomes 3, 10. doi: 10.1038/s41522-017-0019-0
Bahram M. Anslan S. Hildebrand F. Bork P. Tedersoo L. (2019). Newly designed 16S rRNA metabarcoding primers amplify diverse and novel archaeal taxa from the environment. Environ. Microbiol. Rep. 11, 487–494. doi: 10.1111/1758-2229.12684
Battin T. J. Besemer K. Bengtsson M. M. Romani A. M. Packmann A. I. (2016). The ecology and biogeochemistry of stream biofilms. Nat. Rev. Microbiol. 14, 251–263. doi: 10.1038/nrmicro.2016.15
Battin T. J. Kaplan L. A. Newbold J. D. Cheng X. Hansen C. (2003). Effects of current velocity on the nascent architecture of stream microbial biofilms. Appl. Environ. Microbiol. 69, 5443–5452. doi: 10.1128/AEM.69.9.5443-5452.2003
Berry D. Widder S. (2014). Deciphering microbial interactions and detecting keystone species with co-occurrence networks. Front. Microbiol. 5, 219. doi: 10.3389/fmicb.2014.00219
Bolger A. M. Lohse M. Usadel B. (2014). Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120. doi: 10.1093/bioinformatics/btu170
Bolyen E. Rideout J. R. Dillon M. R. Bokulich N. A. Abnet C. C. Al-Ghalith G. A. et al. (2019). Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857. doi: 10.1038/s41587-019-0209-9
Braga R. M. Dourado M. N. Araújo W. L. (2016). Microbial interactions: ecology in a molecular perspective. Braz. J. Microbiol. 47 Suppl 1, 86–98. doi: 10.1016/j.bjm.2016.10.005
Brandani P. Busi (2022). Spatial patterns of benthic biofilm diversity among streams draining proglacial floodplains. Front. Microbiol. 13, 948165. doi: 10.3389/fmicb.2022.948165
Brown S. P. Jumpponen A. (2015). Phylogenetic diversity analyses reveal disparity between fungal and bacterial communities during microbial primary succession. Soil Biol. Biochem. 89, 52–60. doi: 10.1016/j.soilbio.2015.06.025
Brown L. E. Milner A. M. Hannah D. M. (2007). Groundwater influence on alpine stream ecosystems. Freshw. Biol. 52, 878–890. doi: 10.1111/j.1365-2427.2007.01739.x
Busi S. B. Bourquin M. Fodelianakis S. Michoud G. Kohler T. J. Peter H. et al. (2022). Genomic and metabolic adaptations of biofilms to ecological windows of opportunity in glacier-fed streams. Nat. Commun. 13, 2168. doi: 10.1038/s41467-022-29914-0
Busi S. B. Pramateftaki P. Brandani J. Fodelianakis S. Peter H. Halder R. et al. (2020). Optimised biomolecular extraction for metagenomic analysis of microbial biofilms from high-mountain streams. PeerJ 8, e9973. doi: 10.7717/peerj.9973
Crump B. C. Peterson B. J. Raymond P. A. Amon R. M. W. Rinehart A. McClelland J. W. et al. (2009). Circumpolar synchrony in big river bacterioplankton. Proc. Natl. Acad. Sci. U. S. A. 106, 21208–21212. doi: 10.1073/pnas.0906149106
Csardi G. Nepusz T. (2006). The igraph software package for complex network research. InterJournal Complex Syst. 1695, 1–9.
de Cena J. A. Zhang J. Deng D. Damé-Teixeira N. Do T. (2021). Low-abundant microorganisms: the human microbiome’s dark matter, a scoping review. Front. Cell. Infect. Microbiol. 11, 689197. doi: 10.3389/fcimb.2021.689197
Faust K. Raes J. (2012). Microbial interactions: from networks to models. Nat. Rev. Microbiol. 10, 538–550. doi: 10.1038/nrmicro2832
Faust K. Sathirapongsasuti J. F. Izard J. Segata N. Gevers D. Raes J. et al. (2012). Microbial co-occurrence relationships in the human microbiome. PloS Comput. Biol. 8, e1002606. doi: 10.1371/journal.pcbi.1002606
Fodelianakis S. Washburne A. D. Bourquin M. Pramateftaki P. Kohler T. J. Styllas M. et al. (2022). Microdiversity characterizes prevalent phylogenetic clades in the glacier-fed stream microbiome. ISME J. 16, 666–675. doi: 10.1038/s41396-021-01106-6
Freimann R. Bürgmann H. Findlay S. E. G. Robinson C. T. (2013). Bacterial structures and ecosystem functions in glaciated floodplains: contemporary states and potential future shifts. ISME J. 7, 2361–2373. doi: 10.1038/ismej.2013.114
Friedman J. Alm E. J. (2012). Inferring correlation networks from genomic survey data. PloS Comput. Biol. 8, e1002687. doi: 10.1371/journal.pcbi.1002687
Ghosh S. Halappanavar M. Tumeo A. Kalyanaraman A. Lu H. Chavarrià-Miranda D. et al. (2018). “Distributed louvain algorithm for graph community detection,” in 2018 IEEE International Parallel and Distributed Processing Symposium (IPDPS). 885–895.
Han G. Luong H. Vaishnava S. (2022). Low abundance members of the gut microbiome exhibit high immunogenicity. Gut Microbes 14, 2104086. doi: 10.1080/19490976.2022.2104086
Hauke J. Kossowski T. (2011) Comparison of values of Pearson’s and Spearman’s correlation coefficients on the same sets of data. Available at: https://sciendo.com/downloadpdf/journals/quageo/30/2/article-p87.pdf?pdfJsInlineViewToken=1302953392&inlineView=true.
Hessler T. Huddy R. J. Sachdeva R. Lei S. Harrison S. T. L. Diamond S. et al. (2023). Vitamin interdependencies predicted by metagenomics-informed network analyses and validated in microbial community microcosms. Nat. Commun. 14, 4768. doi: 10.1038/s41467-023-40360-4
Kaplan L. A. Bott T. L. (1989). Diel fluctuations in bacterial activity on streambed substrata during vernal algal blooms: Effects of temperature, water chemistry, and habitat. Limnol. Oceanogr. 34, 718–733. doi: 10.4319/lo.1989.34.4.0718
Klawonn I. Van den Wyngaert S. Parada A. E. Arandia-Gorostidi N. Whitehouse M. J. Grossart H.-P. et al. (2021). Characterizing the “fungal shunt”: Parasitic fungi on diatoms affect carbon flow and bacterial communities in aquatic microbial food webs. Proc. Natl. Acad. Sci. 118, e2102225118. doi: 10.1073/pnas.2102225118
Kohler T. J. Fodelianakis S. Michoud G. Ezzat L. Bourquin M. Peter H. et al. (2022). Glacier shrinkage will accelerate downstream decomposition of organic matter and alters microbiome structure and function. Glob. Change Biol. doi: 10.1111/gcb.16169
Kohler T. J. Peter H. Fodelianakis S. Pramateftaki P. Styllas M. Tolosano M. et al. (2020). Patterns and drivers of extracellular enzyme activity in New Zealand glacier-fed streams. Front. Microbiol. 11, 591465. doi: 10.3389/fmicb.2020.591465
Kurtz Z. D. Müller C. L. Miraldi E. R. Littman D. R. Blaser M. J. Bonneau R. A. (2015). Sparse and compositionally robust inference of microbial ecological networks. PloS Comput. Biol. 11, e1004226. doi: 10.1371/journal.pcbi.1004226
Layeghifard M. Hwang D. M. Guttman D. S. (2017). Disentangling interactions in the microbiome: A network perspective. Trends Microbiol. 25, 217–228. doi: 10.1016/j.tim.2016.11.008
Lee J. Zhang L. (2015). The hierarchy quorum sensing network in Pseudomonas aeruginosa. Protein Cell 6, 26–41. doi: 10.1007/s13238-014-0100-x
Leibold M. A. Mikkelson G. M. (2002). Coherence, species turnover, and boundary clumping: elements of meta-community structure. Oikos 97, 237–250. doi: 10.1034/j.1600-0706.2002.970210.x
Linsbauer A. Huss M. Hodel E. Bauder A. Fischer M. Weidmann Y. et al. (2021). The new Swiss Glacier Inventory SGI2016: From a topographical to a glaciological dataset. Front. Earth Sci. 9. doi: 10.3389/feart.2021.704189
Liu Q. Jiang Y. (2020). Application of microbial network analysis to discriminate environmental heterogeneity in Fildes Peninsula, Antarctica. Mar. pollut. Bull. 156, 111244. doi: 10.1016/j.marpolbul.2020.111244
Ma B. Wang Y. Ye S. Liu S. Stirling E. Gilbert J. A. et al. (2020). Earth microbial co-occurrence network reveals interconnection pattern across microbiomes. Microbiome 8, 82. doi: 10.1186/s40168-020-00857-2
McCann K. S. (2000). The diversity–stability debate. Nature 405, 228–233. doi: 10.1038/35012234
Meinshausen N. Bühlmann P. (2006). Variable selection and high-dimensional graphs with the lasso. Ann. Stat. 34, 1436–1462. doi: 10.1214/009053606000000281
Michoud P. Kohler T. J. Peter H. Brandani J. Banu Busi S. Battin T. J. (2023). Unexpected functional diversity of stream biofilms within and across proglacial floodplains despite close spatial proximity. Limnol. Oceanogr. doi: 10.1002/lno.12415
Miller H. R. Lane S. N. (2019). Biogeomorphic feedbacks and the ecosystem engineering of recently deglaciated terrain. Prog. Phys. Geography: Earth Environ. 43, 24–45. doi: 10.1177/03091333188165
Milner A. M. Khamis K. Battin T. J. Brittain J. E. Barrand N. E. Füreder L. et al. (2017). Glacier shrinkage driving global changes in downstream systems. Proc. Natl. Acad. Sci. U. S. A. 114, 9770–9778. doi: 10.1073/pnas.1619807114
Mo Y. Peng F. Gao X. Xiao P. Logares R. Jeppesen E. et al. (2021). Low shifts in salinity determined assembly processes and network stability of microeukaryotic plankton communities in a subtropical urban reservoir. Microbiome 9, 128. doi: 10.1186/s40168-021-01079-w
Perini L. Gostinčar C. Likar M. Frisvad J. C. Kostanjšek R. Nicholes M. et al. (2023). Interactions of fungi and algae from the Greenland ice sheet. Microb. Ecol. 86, 282–296. doi: 10.1007/s00248-022-02033-5
Pocock M. J. O. Evans D. M. Memmott J. (2012). The robustness and restoration of a network of ecological networks. Science 335, 973–977. doi: 10.1126/science.1214915
Quast C. Pruesse E. Yilmaz P. Gerken J. Schweer T. Yarza P. et al. (2013). The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596. doi: 10.1093/nar/gks1219
R Core Team. A language and environment for statistical computing (Vienna, Austria: R Foundation for Statistical Computing). Available at: https://ci.nii.ac.jp/naid/20001692429/.
Raup B. Racoviteanu A. Khalsa S. J. S. Helm C. Armstrong R. Arnaud Y. (2007). The GLIMS geospatial glacier database: A new tool for studying glacier change. Glob. Planet. Change 56, 101–110. doi: 10.1016/j.gloplacha.2006.07.018
Ren Z. Gao H. (2019). Ecological networks reveal contrasting patterns of bacterial and fungal communities in glacier-fed streams in Central Asia. PeerJ 7, e7715. doi: 10.7717/peerj.7715
Ren Z. Zhang C. Li X. Ma K. Zhang Z. Feng K. et al. (2021). Bacterial communities present distinct co-occurrence networks in sediment and water of the thermokarst lakes in the yellow river source area. Front. Microbiol. 12, 716732. doi: 10.3389/fmicb.2021.716732
Rickenbacher M. (2020). Journeys through time with the Swiss national map series. Proc. 26th Int. Cartographic.
Roncoroni M. Mancini D. Miesen F. Müller T. Gianini M. Ouvry B. et al. (2023). Decrypting the stream periphyton physical habitat of recently deglaciated floodplains. Sci. Total Environ. 867, 161374. doi: 10.1016/j.scitotenv.2022.161374
Rowan-Nash A. D. Korry B. J. Mylonakis E. Belenky P. (2019). Cross-domain and viral interactions in the microbiome. Microbiol. Mol. Biol. Rev. 83. doi: 10.1128/MMBR.00044-18
Spatafora J. W. Chang Y. Benny G. L. Lazarus K. Smith M. E. Berbee M. L. et al. (2016). A phylum-level phylogenetic classification of zygomycete fungi based on genome-scale data. Mycologia 108, 1028–1046. doi: 10.3852/16-042
Stoeck T. Bass D. Nebel M. Christen R. Jones M. D. M. Breiner H.-W. et al. (2010). Multiple marker parallel tag environmental DNA sequencing reveals a highly complex eukaryotic community in marine anoxic water. Mol. Ecol. 19 Suppl 1, 21–31. doi: 10.1111/j.1365-294X.2009.04480.x
Stopnisek N. Zühlke D. Carlier A. Barberán A. Fierer N. Becher D. et al. (2016). Molecular mechanisms underlying the close association between soil Burkholderia and fungi. ISME J. 10, 253–264. doi: 10.1038/ismej.2015.73
Stouffer D. B. Bascompte J. (2011). Compartmentalization increases food-web persistence. Proc. Natl. Acad. Sci. U. S. A. 108, 3648–3652. doi: 10.1073/pnas.1014353108
Sun P. Wang Y. Huang X. Huang B. Wang L. (2022). Water masses and their associated temperature and cross-domain biotic factors co-shape upwelling microbial communities. Water Res. 215, 118274. doi: 10.1016/j.watres.2022.118274
Vetsigian K. Jajoo R. Kishony R. (2011). Structure and evolution of Streptomyces interaction networks in soil and in silico. PloS Biol. 9, e1001184. doi: 10.1371/journal.pbio.1001184
Wagner K. Bengtsson M. M. Findlay R. H. Battin T. J. Ulseth A. J. (2017). High light intensity mediates a shift from allochthonous to autochthonous carbon use in phototrophic stream biofilms. J. Geophysical Research: Biogeosciences 122, 1806–1820. doi: 10.1002/2016JG003727
Wagner K. Besemer K. Burns N. R. Battin T. J. Bengtsson M. M. (2015). Light availability affects stream biofilm bacterial community composition and function, but not diversity. Environ. Microbiol. 17, 5036–5047. doi: 10.1111/1462-2920.12913
Widder S. Besemer K. Singer G. A. Ceola S. Bertuzzo E. Quince C. et al. (2014). Fluvial network organization imprints on microbial co-occurrence networks. Proc. Natl. Acad. Sci. U. S. A. 111, 12799–12804. doi: 10.1073/pnas.1411723111
Wijewardene L. Wu N. Fohrer N. Riis T. (2022). Epiphytic biofilms in freshwater and interactions with macrophytes: Current understanding and future directions. Aquat. Bot. 176, 103467. doi: 10.1016/j.aquabot.2021.103467
Wilhelm L. Besemer K. Fasching C. Urich T. Singer G. A. Quince C. et al. (2014). Rare but active taxa contribute to community dynamics of benthic biofilms in glacier-fed streams. Environ. Microbiol. 16, 2514–2524. doi: 10.1111/1462-2920.12392
Williams R. J. Howe A. Hofmockel K. S. (2014). Demonstrating microbial co-occurrence pattern analyses within and between ecosystems. Front. Microbiol. 5, 358. doi: 10.3389/fmicb.2014.00358