NK cells; complement-dependent cytotoxicity; immunotherapy; phagocytosis; xenograft model; Immunology and Allergy; Immunology
Abstract :
[en] [en] PURPOSE: Directing selective complement activation towards tumor cells is an attractive strategy to promote their elimination. We have generated complement-activating multimeric immunotherapeutic complexes (CoMiX), stimulating either the alternative pathway (via Factor H Related protein 4 (FHR4)) or the classical pathway (via triple Fc dimers) on HER2-expressing tumor cells.
METHODS: We used the C-terminal α-chain multimerizing scaffold of the C4 binding protein (C4bp) to generate CoMiX-FHR4 as well as CoMiX-Fc with 2 different anti-HER2 VHH, VHH(T) and VHH(P), recognizing trastuzumab- or pertuzumab-competing epitopes, respectively. The different CoMiX were compared in vitro for C3b and C5b9 depositions, complement-dependent cytotoxicity (CDC), and their ability to activate NK cells and phagocytosis by macrophages. We further explored their therapeutic efficacy on human BT474 tumor xenografts established in nude mice.
RESULTS: CoMiX-FHR4/VHH(T) and -FHR4/VHH(P) lead to the highest C3b and C5b9 depositions and CDC on BT474 tumor cells (p<0.0001), both individually and in combinations with their CoMiX-Fc counterparts, surpassing the low complement activating capacity of trastuzumab and pertuzumab. All CoMiX induced BT474 cell death and phagocytosis of tumor cells by macrophages while CoMiX-Fc also stimulated NK cell activation. In human BT474 xenografts sensitive to trastuzumab, CoMiX induced a massive C3b deposition 6 hours after injection. CoMiX-FHR4 reduced the tumor volume compared to controls (p< 0.05) but to a lesser extent than trastuzumab (p< 0.001) while CoMiX-VHH(P)/Fc led to a tumor volume reduction similar to pertuzumab. Combinations of two CoMiX-FHR4 or two CoMiX-Fc were more potent, similarly to the combination of trastuzumab and pertuzumab, leading to increased NK cell infiltration in xenografts. Importantly, CoMiX-FHR4 was still active against trastuzumab-resistant xenografts, delaying tumor growth and inducing a large NK cell infiltration.
CONCLUSION: We showed here that directed complement activation on tumor cells is an alternative to therapeutic antibodies for future combination therapies upon resistance to standard-of-care treatment.
Disciplines :
Oncology
Author, co-author :
Seguin-Devaux, Carole ; Department of Infection and Immunity, Luxembourg Institute of Health, Esch sur Alzette, Luxembourg
BRANDUS, Bianca ; University of Luxembourg ; Department of Infection and Immunity, Luxembourg Institute of Health, Esch sur Alzette, Luxembourg
PLESSERIA, Jean-Marc ; University of Luxembourg ; Department of Infection and Immunity, Luxembourg Institute of Health, Esch sur Alzette, Luxembourg
Iserentant, Gilles; Department of Infection and Immunity, Luxembourg Institute of Health, Esch sur Alzette, Luxembourg
Servais, Jean-Yves; Department of Infection and Immunity, Luxembourg Institute of Health, Esch sur Alzette, Luxembourg
Pitiot, Aubin; Department of Infection and Immunity, Luxembourg Institute of Health, Esch sur Alzette, Luxembourg
Kanli, Georgia; Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg
BEHRMANN, Iris ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Life Sciences and Medicine (DLSM)
Schober, Rafaëla; Department of Infection and Immunity, Luxembourg Institute of Health, Esch sur Alzette, Luxembourg
ZIMMER, Jacques ; University of Luxembourg ; Department of Infection and Immunity, Luxembourg Institute of Health, Esch sur Alzette, Luxembourg
Cohen, Jacques H M; LRN EA4682, University of Reims Champagne Ardennes, Reims, France
DERVILLEZ, Xavier ; University of Luxembourg > Faculty of Science, Technology and Medicine > Department of Life Sciences and Medicine ; Department of Infection and Immunity, Luxembourg Institute of Health, Esch sur Alzette, Luxembourg
External co-authors :
yes
Language :
English
Title :
Directed-Complement Activation as a Novel Immunotherapeutic Approach for HER2-Breast Cancer.
The study was supported by the \u201CFonds National de la Recherche\u201D (POC17/12252709/COMIX and PRIDE17/11823097/MICROH-DTU for the funding of Bianca Brandus) and the Ministry of Higher Education and Research of Luxembourg(LIH GBB 98000005). We thank the participants who has given their PBMCs for research to the Luxembourg Red Cross and the Luxembourg Red Cross for the collection of the samples. We would like to acknowledge Brigitte Reveil for her technical assistance and Pr B\u00E9atrice Clemenceau, University of Nantes, for providing the NK92humCD16 cell line.
Delgado M, Garcia-Sanz JA. Therapeutic monoclonal antibodies against cancer: present and future. Cells. 2023;12(24):2837. doi:10.3390/cells12242837
Ain D, Shaikh T, Manimala S, Ghebrehiwet B. The role of complement in the tumor microenvironment. Fac Rev. 2021;10:80. doi:10.12703/r/10-80
Golay J, Taylor RP. The role of complement in the mechanism of action of therapeutic anti-cancer mAbs. Antibodies.2020;9(4):58. doi:10.3390/antib9040058
Maadi H, Wang Z. A novel mechanism underlying the inhibitory effects of trastuzumab on the growth of HER2-positive breast cancer cells. Cells. 2022;11(24):4093. doi:10.3390/cells11244093
Tsao LC, Crosby EJ, Trotter TN, et al.Trastuzumab/pertuzumab combination therapy stimulates antitumor responses through complement-dependent cytotoxicity and phagocytosis. JCI Insight. 2022;7(6). doi:10.1172/jci.insight.155636
Jagosky M, Tan AR. Combination of pertuzumab and trastuzumab in the treatment of HER2-positive early breast cancer: a review of the emerging clinical data. Breast Cancer.2021;13:393–407. doi:10.2147/bctt.S176514
Wang ZH, Zheng ZQ, Jia SC, et al.Trastuzumab resistance in HER2-positive breast cancer: mechanisms, emerging biomarkers and targeting agents. Front Oncol. 2022;12:1006429. doi:10.3389/fonc.2022.1006429
Singh R, Chandley P, Rohatgi S. Recent advances in the development of monoclonal antibodies and next-generation antibodies. Immunohorizons. 2023;7(12):886–897. doi:10.4049/immunohorizons.2300102
Hunter FW, Barker HR, Lipert B, et al.Mechanisms of resistance to trastuzumab emtansine (T-DM1) in HER2-positive breast cancer. Br J Cancer. 2020;122(5):603–612. doi:10.1038/s41416-019-0635-y
Zarantonello A, Revel M, Grunenwald A, Roumenina LT. C3-dependent effector functions of complement. Immunol Rev. 2023;313(1):120–138. doi:10.1111/imr.13147
Revel M, Daugan MV, Sautés-Fridman C, Fridman WH, Roumenina LT. Complement system: promoter or suppressor of cancer progression?. Antibodies. 2020;9(4). doi:10.3390/antib9040057
Cserhalmi M, Papp A, Brandus B, Uzonyi B, Józsi M. Regulation of regulators: role of the complement factor H-related proteins. Semin Immunol. 2019;45:101341. doi:10.1016/j.smim.2019.101341
Jozsi M, Meri S. Factor H-related proteins. Methods Mol Biol. 2014;1100:225–236. doi:10.1007/978-1-62703-724-2_18
Seguin-Devaux C, Plesseria JM, Verschueren C, et al.FHR4-based immunoconjugates direct complement-dependent cytotoxicity and phagocytosis towards HER2-positive cancer cells. Mol Oncol. 2019;13(12):2531–2553. doi:10.1002/1878-0261.12554
Hofmeyer T, Schmelz S, Degiacomi MT, et al.Arranged sevenfold: structural insights into the C-terminal oligomerization domain of human C4b-binding protein. J Mol Biol. 2013;425(8):1302–1317. doi:10.1016/j.jmb.2012.12.017
Schneider CA, Rasband WS, Eliceiri KW. NIH image to imageJ: 25 years of image analysis. Nat Methods. 2012;9(7):671–675. doi:10.1038/nmeth.2089
Wielgos ME, Zhang Z, Rajbhandari R, et al.Trastuzumab-resistant HER2(+) breast cancer cells retain sensitivity to poly (ADP-ribose) polymerase (PARP) inhibition. Mol Cancer Ther. 2018;17(5):921–930. doi:10.1158/1535-7163.Mct-17-0302
Sanz-álvarez M, Luque M, Morales-Gallego M, et al.Generation and characterization of trastuzumab/pertuzumab-resistant HER2-positive breast cancer cell lines. Int J Mol Sci. 2023;25(1):207. doi:10.3390/ijms25010207
Lu Y, Zi X, Pollak M. Molecular mechanisms underlying IGF-I-induced attenuation of the growth-inhibitory activity of trastuzumab (Herceptin) on SKBR3 breast cancer cells. Int, J, Cancer. 2004;108(3):334–341. doi:10.1002/ijc.11445
Patel A, Unni N, Peng Y. The changing paradigm for the treatment of HER2-positive breast cancer. Cancers. 2020;12(8):2081. doi:10.3390/cancers12082081
Zeng L, Li W, Chen CS. Breast cancer animal models and applications. Zool Res. 2020;41(5):477–494. doi:10.24272/j.issn.2095-8137.2020.095
Martínez-Sáez O, Prat A. Current and future management of HER2-positive metastatic breast cancer. JCO Oncol Pract. 2021;17(10):594–604. doi:10.1200/op.21.00172
Swain SM, Shastry M, Hamilton E. Targeting HER2-positive breast cancer: advances and future directions. Nat Rev Drug Discov. 2023;22(2):101–126. doi:10.1038/s41573-022-00579-0
Michaeli JCM, Michaeli T, Dario Trapani D, et al.Breast cancer drugs: FDA approval, development time, efficacy, clinical benefits, innovation, trials, endpoints, quality of life, value, and price. Breast Cancer. 2024;31(6):1144–1155. doi:10.1007/s12282-024-01634-x
Yuan M, Liu L, Wang C, Zhang Y, Zhang J. The complement system: a potential therapeutic target in liver cancer. Life.2022;12(10):1532. doi:10.3390/life12101532
Harjunpää A, Junnikkala S, Meri S. Rituximab (anti-CD20) therapy of B-cell lymphomas: direct complement killing is superior to cellular effector mechanisms. Scand J Immunol. 2000;51(6):634–641. doi:10.1046/j.1365-3083.2000.00745.x
Di Gaetano N, Cittera E, Nota R, et al.Complement activation determines the therapeutic activity of rituximab in vivo. J Immunol. 2003;171(3):1581–1587. doi:10.4049/jimmunol.171.3.1581
Hörl S, Bánki Z, Huber G, et al.Reduction of complement factor H binding to CLL cells improves the induction of rituximab-mediated complement-dependent cytotoxicity. Leukemia. 2013;27(11):2200–2208. doi:10.1038/leu.2013.169
Parente R, Clark SJ, Inforzato A, Day AJ. Complement factor H in host defense and immune evasion. Cell Mol Life Sci. 2017;74(9):1605–1624. doi:10.1007/s00018-016-2418-4
Moore SR, Menon SS, Cortes C, Ferreira VP. Hijacking factor H for complement immune evasion. Front Immunol. 2021;12:602277. doi:10.3389/fimmu.2021.602277
Józsi M. Factor H family proteins in complement evasion of microorganisms. Front Immunol. 2017;8:571. doi:10.3389/fimmu.2017.00571
Saxena R, Gottlin EB, Campa MJ, et al.Complement factor H: a novel innate immune checkpoint in cancer immunotherapy. Front Cell Dev Biol. 2024;12:1302490. doi:10.3389/fcell.2024.1302490
Hörl S, Banki Z, Huber G, et al.Complement factor H-derived short consensus repeat 18–20 enhanced complement-dependent cytotoxicity of ofatumumab on chronic lymphocytic leukemia cells. Haematologica. 2013;98(12):1939–1947. doi:10.3324/haematol.2013.089615
Csincsi, Á I, Szabó Z, Bánlaki Z, et al.FHR-1 binds to C-reactive protein and enhances rather than inhibits complement activation. J Immunol. 2017;199(1):292–303. doi:10.4049/jimmunol.1600483
Reiss T, Rosa TFA, Blaesius K, et al.Cutting edge: FHR-1 binding impairs factor H-mediated complement evasion by the malaria parasite plasmodium falciparum. J Immunol. 2018;201(12):3497–3502. doi:10.4049/jimmunol.1800662
González-Alsina A, Martín-Merinero H, Mateu-Borrás M, et al.Factor H-related protein 1 promotes complement-mediated opsonization of Pseudomonas aeruginosa. Front Cell Infect Microbiol. 2024;14:1328185. doi:10.3389/fcimb.2024.1328185
Lee CH, Romain G, Yan W, et al.IgG Fc domains that bind C1q but not effector Fcγ receptors delineate the importance of complement-mediated effector functions. Nat Immunol. 2017;18(8):889–898. doi:10.1038/ni.3770
Gogesch P, Dudek S, van Zandbergen G, Waibler Z, Anzaghe M. The role of fc receptors on the effectiveness of therapeutic monoclonal antibodies. Int J Mol Sci. 2021;22(16):8947. doi:10.3390/ijms22168947
Lu LL, Suscovich TJ, Fortune SM, Alter G. Beyond binding: antibody effector functions in infectious diseases. Nat Rev Immunol. 2018;18(1):46–61. doi:10.1038/nri.2017.106
Hori A, Shimoda M, Naoi Y, et al.Vasculogenic mimicry is associated with trastuzumab resistance of HER2-positive breast cancer. Breast Cancer Res. 2019;21(1):88. doi:10.1186/s13058-019-1167-3
Morales-Guadarrama G, García-Becerra R, Méndez-Pérez EA, García-Quiroz J, Avila E, Díaz L. Vasculogenic mimicry in breast cancer: clinical relevance and drivers. Cells. 2021;10(7):1758. doi:10.3390/cells10071758
Pio R, Ajona D, Ortiz-Espinosa S, Mantovani A, Lambris JD. Complementing the cancer-immunity cycle. Front Immunol. 2019;10:774. doi:10.3389/fimmu.2019.00774
Magrini E, Minute L, Dambra M, Garlanda C. Complement activation in cancer: effects on tumor-associated myeloid cells and immunosuppression. Semin Immunol. 2022;60:101642. doi:10.1016/j.smim.2022.101642
Taylor C, Hershman D, Shah N, et al.Augmented HER-2 specific immunity during treatment with trastuzumab and chemotherapy. Clin Cancer Res. 2007;13(17):5133–5143. doi:10.1158/1078-0432.Ccr-07-0507
Zong HF, Li X, Han L, et al.A novel bispecific antibody drug conjugate targeting HER2 and HER3 with potent therapeutic efficacy against breast cancer. Acta Pharmacol Sin. 2024;45(8):1727–1739. doi:10.1038/s41401-024-01279-8
Geller A, Yan J. The role of membrane bound complement regulatory proteins in tumor development and cancer immunotherapy. Front Immunol. 2019;10:1074. doi:10.3389/fimmu.2019.01074
Mamidi S, Cinci M, Hasmann M, Fehring V, Kirschfink M. Lipoplex mediated silencing of membrane regulators (CD46, CD55 and CD59) enhances complement-dependent anti-tumor activity of trastuzumab and pertuzumab. Mol Oncol. 2013;7(3):580–594. doi:10.1016/j.molonc.2013.02.011
Elvington M, Huang Y, Morgan BP, et al.A targeted complement-dependent strategy to improve the outcome of mAb therapy, and characterization in a murine model of metastatic cancer. Blood. 2012;119(25):6043–6051. doi:10.1182/blood-2011-10-383232