[en] The spatiotemporal regulation of chromosome segregation and cell division in Caulobacter crescentus is mediated by two different P-loop ATPases, ParA and MipZ. Both of these proteins form dynamic concentration gradients that control the positioning of regulatory targets within the cell. Their proper localization depends on their nucleotide-dependent cycling between a monomeric and a dimeric state and on the ability of the dimeric species to associate with the nucleoid. In this study, we use a combination of genetic screening, biochemical analysis and hydrogen/deuterium exchange mass spectrometry to comprehensively map the residues mediating the interactions of MipZ and ParA with DNA. We show that MipZ has non-specific DNA-binding activity that relies on an array of positively charged and hydrophobic residues lining both sides of the dimer interface. Extending our analysis to ParA, we find that the MipZ and ParA DNA-binding sites differ markedly in composition, although their relative positions on the dimer surface and their mode of DNA binding are conserved. In line with previous experimental work, bioinformatic analysis suggests that the same principles may apply to other members of the P-loop ATPase family. P-loop ATPases thus share common mechanistic features, although their functions have diverged considerably during the course of evolution.
Disciplines :
Microbiology
Author, co-author :
Corrales-Guerrero, Laura ; Department of Biology, University of Marburg, D-35043 Marburg, Germany
He, Binbin; Department of Biology, University of Marburg, D-35043 Marburg, Germany
Panis, Gaël; Department of Microbiology and Molecular Medicine, University of Geneva Medical School, CH-1211 Geneva, Switzerland
Bange, Gert; Center for Synthetic Microbiology, D-35043 Marburg, Germany ; Department of Chemistry, University of Marburg, D-35043 Marburg, Germany
Viollier, Patrick H ; Department of Microbiology and Molecular Medicine, University of Geneva Medical School, CH-1211 Geneva, Switzerland
Steinchen, Wieland; Center for Synthetic Microbiology, D-35043 Marburg, Germany ; Department of Chemistry, University of Marburg, D-35043 Marburg, Germany
Thanbichler, Martin ; Department of Biology, University of Marburg, D-35043 Marburg, Germany ; Center for Synthetic Microbiology, D-35043 Marburg, Germany ; Max Planck Fellow Group Bacterial Cell Biology, Max Planck Institute for Terrestrial Microbiology, D-35043 Marburg, Germany
REFES, Yacine Marc ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Life Sciences and Medicine (DLSM) > Medical Education
External co-authors :
yes
Language :
English
Title :
Molecular architecture of the DNA-binding sites of the P-loop ATPases MipZ and ParA from Caulobacter crescentus.
Leipe, D.D., Wolf, Y.I., Koonin, E.V. and Aravind, L. (2002) Classification and evolution of P-loop GTPases and related ATPases. J. Mol. Biol., 317, 41-72.
Bange, G. and Sinning, I. (2013) SIMIBI twins in protein targeting and localization. Nat. Struct. Mol. Biol., 20, 776-780.
Koonin, E.V. (1993) A superfamily of ATPases with diverse functions containing either classical or deviant ATP-binding motif. J. Mol. Biol., 229, 1165-1174.
Leonard, T.A., Butler, P.J. and Löwe, J. (2005) Bacterial chromosome segregation: structure and DNA binding of the Soj dimer-a conserved biological switch. EMBO J., 24, 270-282.
Cordell, S.C. and Löwe, J. (2001) Crystal structure of the bacterial cell division regulator MinD. FEBS Lett., 492, 160-165.
Thanbichler, M. and Shapiro, L. (2006) MipZ, a spatial regulator coordinating chromosome segregation with cell division in Caulobacter. Cell, 126, 147-162.
Ebersbach, G. and Gerdes, K. (2001) The double par locus of virulence factor pB171: DNA segregation is correlated with oscillation of ParA. Proc. Natl. Acad. Sci. U.S.A., 98, 15078-15083.
Raskin, D.M. and de Boer, P.A. (1999) Rapid pole-to-pole oscillation of a protein required for directing division to the middle of Escherichia coli. Proc. Natl. Acad. Sci. U.S.A., 96, 4971-4976.
Marston, A.L. and Errington, J. (1999) Dynamic movement of the ParA-like Soj protein of B. subtilis and its dual role in nucleoid organization and developmental regulation. Mol. Cell, 4, 673-682.
Quisel, J.D., Lin, D.C. and Grossman, A.D. (1999) Control of development by altered localization of a transcription factor in B. subtilis. Mol. Cell, 4, 665-672.
Lutkenhaus, J. (2012) The ParA/MinD family puts things in their place. Trends Microbiol., 20, 411-418.
Gerdes, K., Howard, M. and Szardenings, F. (2010) Pushing and pulling in prokaryotic DNA segregation. Cell, 141, 927-942.
Kiekebusch, D., Michie, K.A., Essen, L.O., Löwe, J. and Thanbichler, M. (2012) Localized dimerization and nucleoid binding drive gradient formation by the bacterial cell division inhibitorMipZ. Mol. Cell, 46, 245-259.
Lutkenhaus, J. and Sundaramoorthy, M. (2003) MinD and role of the deviant Walker A motif, dimerization and membrane binding in oscillation. Mol. Microbiol., 48, 295-303.
Donovan, C., Schwaiger, A., Kramer, R. and Bramkamp, M. (2010) Subcellular localization and characterization of the ParAB system from Corynebacterium glutamicum. J. Bacteriol., 192, 3441-3451.
Treuner-Lange, A., Aguiluz, K., van der Does, C., Gomez-Santos, N., Harms, A., Schumacher, D., Lenz, P., Hoppert, M., Kahnt, J., Munoz-Dorado, J. et al. (2013) PomZ, a ParA-like protein, regulates Z-ring formation and cell division in Myxococcus xanthus. Mol. Microbiol., 87, 235-253.
Schumacher, D., Bergeler, S., Harms, A., Vonck, J., Huneke-Vogt, S., Frey, E. and Sogaard-Andersen, L. (2017) The PomXYZ proteins self-organize on the bacterial nucleoid to stimulate cell division. Dev. Cell, 41, 299-314.
MacCready, J.S., Hakim, P., Young, E.J., Hu, L., Liu, J., Osteryoung, K.W., Vecchiarelli, A.G. and Ducat, D.C. (2018) Protein gradients on the nucleoid position the carbon-fixing organelles of cyanobacteria. Elife, 7, e39723.
Ringgaard, S., Schirner, K., Davis, B.M. and Waldor, M.K. (2011) A family of ParA-like ATPases promotes cell pole maturation by facilitating polar localization of chemotaxis proteins. Genes Dev., 25, 1544-1555.
Roberts, M.A., Wadhams, G.H., Hadfield, K.A., Tickner, S. and Armitage, J.P. (2012) ParA-like protein uses nonspecific chromosomal DNA binding to partition protein complexes. Proc. Natl. Acad. Sci. U.S.A., 109, 6698-6703.
Atmakuri, K., Cascales, E., Burton, O.T., Banta, L.M. and Christie, P.J. (2007) Agrobacterium ParA/MinD-like VirC1 spatially coordinates early conjugative DNA transfer reactions. EMBO J., 26, 2540-2551.
Toro, E., Hong, S.H., McAdams, H.H. and Shapiro, L. (2008) Caulobacter requires a dedicated mechanism to initiate chromosome segregation. Proc. Natl. Acad. Sci. U.S.A., 105, 15435-15440.
Mohl, D.A. and Gober, J.W. (1997) Cell cycle-dependent polar localization of chromosome partitioning proteins in Caulobacter crescentus. Cell, 88, 675-684.
Lin, D.C. and Grossman, A.D. (1998) Identification and characterization of a bacterial chromosome partitioning site. Cell, 92, 675-685.
Graham, T.G., Wang, X., Song, D., Etson, C.M., van Oijen, A.M., Rudner, D.Z. and Loparo, J.J. (2014) ParB spreading requires DNA bridging. Genes Dev., 28, 1228-1238.
Broedersz, C.P., Wang, X., Meir, Y., Loparo, J.J., Rudner, D.Z. and Wingreen, N.S. (2014) Condensation and localization of the partitioning protein ParB on the bacterial chromosome. Proc. Natl. Acad. Sci. U.S.A., 111, 8809-8814.
Bowman, G.R., Comolli, L.R., Zhu, J., Eckart, M., Koenig, M., Downing, K.H., Moerner, W.E., Earnest, T. and Shapiro, L. (2008) A polymeric protein anchors the chromosomal origin/ParB complex at a bacterial cell pole. Cell, 134, 945-955.
Laloux, G. and Jacobs-Wagner, C. (2013) Spatiotemporal control of PopZ localization through cell cycle-coupled multimerization. J. Cell Biol., 201, 827-841.
Lim, H.C., Surovtsev, I.V., Beltran, B.G., Huang, F., Bewersdorf, J. and Jacobs-Wagner, C. (2014) Evidence for a DNA-relay mechanism in ParABS-mediated chromosome segregation. Elife, 3, e02758.
Ptacin, J.L., Lee, S.F., Garner, E.C., Toro, E., Eckart, M., Comolli, L.R., Moerner, W.E. and Shapiro, L. (2010) A spindle-like apparatus guides bacterial chromosome segregation. Nat. Cell Biol., 12, 791-798.
Vecchiarelli, A.G., Neuman, K.C. and Mizuuchi, K. (2014) A propagating ATPase gradient drives transport of surface-confined cellular cargo. Proc. Natl. Acad. Sci. U.S.A., 111, 4880-4885.
Scholefield, G., Whiting, R., Errington, J. and Murray, H. (2011) Spo0J regulates the oligomeric state of Soj to trigger its switch from an activator to an inhibitor of DNA replication initiation. Mol. Microbiol., 79, 1089-1100.
Le Gall, A., Cattoni, D.I., Guilhas, B., Mathieu-Demaziere, C., Oudjedi, L., Fiche, J.B., Rech, J., Abrahamsson, S., Murray, H., Bouet, J.Y. et al. (2016) Bacterial partition complexes segregate within the volume of the nucleoid. Nat. Commun., 7, 12107.
Surovtsev, I.V., Campos, M. and Jacobs-Wagner, C. (2016) DNA-relay mechanism is sufficient to explain ParA-dependent intracellular transport and patterning of single and multiple cargos. Proc. Natl. Acad. Sci. U.S.A., 113, E7268-E7276.
Shebelut, C.W., Guberman, J.M., van Teeffelen, S., Yakhnina, A.A. and Gitai, Z. (2010) Caulobacter chromosome segregation is an ordered multistep process. Proc. Natl. Acad. Sci. U.S.A., 107, 14194-14198.
Surovtsev, I.V., Lim, H.C. and Jacobs-Wagner, C. (2016) The slow mobility of the ParA partitioning protein underlies its steady-state patterning in Caulobacter. Biophys. J., 110, 2790-2799.
Hester, C.M. and Lutkenhaus, J. (2007) Soj (ParA) DNA binding is mediated by conserved arginines and is essential for plasmid segregation. Proc. Natl. Acad. Sci. U.S.A., 104, 20326-20331.
Volante, A. and Alonso, J.C. (2015) Molecular anatomy of ParA-ParA and ParA-ParB interactions during plasmid partitioning. J. Biol. Chem., 290, 18782-18795.
Chu, C.H., Yen, C.Y., Chen, B.W., Lin, M.G., Wang, L.H., Tang, K.Z., Hsiao, C.D. and Sun, Y.J. (2019) Crystal structures of HpSoj-DNA complexes and the nucleoid-adaptor complex formation in chromosome segregation. Nucleic Acids Res., 47, 2113-2129.
Zhang, H. and Schumacher, M.A. (2017) Structures of partition protein ParA with nonspecific DNA and ParB effector reveal molecular insights into principles governingWalker-box DNA segregation. Genes Dev., 31, 481-492.
Davis, M.A., Martin, K.A. and Austin, S.J. (1992) Biochemical activities of the parA partition protein of the P1 plasmid. Mol. Microbiol., 6, 1141-1147.
Mori, H., Mori, Y., Ichinose, C., Niki, H., Ogura, T., Kato, A. and Hiraga, S. (1989) Purification and characterization of SopA and SopB proteins essential for F plasmid partitioning. J. Biol. Chem., 264, 15535-15541.
Arias-Cartin, R., Dobihal, G.S., Campos, M., Surovtsev, I.V., Parry, B. and Jacobs-Wagner, C. (2017) Replication fork passage drives asymmetric dynamics of a critical nucleoid-associated protein in Caulobacter. EMBO J., 36, 301-318.
Ricci, D.P., Melfi, M.D., Lasker, K., Dill, D.L., McAdams, H.H. and Shapiro, L. (2016) Cell cycle progression in Caulobacter requires a nucleoid-associated protein with high AT sequence recognition. Proc. Natl. Acad. Sci. U.S.A., 113, E5952-E5961.
Swinger, K.K. and Rice, P.A. (2007) Structure-based analysis of HU-DNA binding. J. Mol. Biol., 365, 1005-1016.
Konermann, L., Pan, J. and Liu, Y.H. (2011) Hydrogen exchange mass spectrometry for studying protein structure and dynamics. Chem. Soc. Rev., 40, 1224-1234.
Di Ventura, B., Knecht, B., Andreas, H., Godinez, W.J., Fritsche, M., Rohr, K., Nickel, W., Heermann, D.W. and Sourjik, V. (2013) Chromosome segregation by the Escherichia coli Min system. Mol. Syst. Biol., 9, 686.
Pausch, P., Steinchen, W., Wieland, M., Klaus, T., Freibert, S.A., Altegoer, F., Wilson, D.N. and Bange, G. (2018) Structural basis for (p)ppGpp-mediated inhibition of the GTPase RbgA. J. Biol. Chem., 293, 19699-19709.
Han, X., Altegoer, F., Steinchen, W., Binnebesel, L., Schuhmacher, J., Glatter, T., Giammarinaro, P.I., Djamei, A., Rensing, S.A., Reissmann, S. et al. (2019) A kiwellin disarms the metabolic activity of a secreted fungal virulence factor. Nature, 565, 650-653.
Wales, T.E., Fadgen, K.E., Gerhardt, G.C. and Engen, J.R. (2008) High-speed and high-resolution UPLC separation at zero degrees Celsius. Anal. Chem., 80, 6815-6820.
Geromanos, S.J., Vissers, J.P., Silva, J.C., Dorschel, C.A., Li, G.Z., Gorenstein, M.V., Bateman, R.H. and Langridge, J.I. (2009) The detection, correlation, and comparison of peptide precursor and product ions from data independent LC-MS with data dependant LC-MS/MS. Proteomics, 9, 1683-1695.
Li, G.Z., Vissers, J.P., Silva, J.C., Golick, D., Gorenstein, M.V. and Geromanos, S.J. (2009) Database searching and accounting of multiplexed precursor and product ion spectra from the data independent analysis of simple and complex peptide mixtures. Proteomics, 9, 1696-1719.
Thanbichler, M., Iniesta, A.A. and Shapiro, L. (2007) A comprehensive set of plasmids for vanillate-and xylose-inducible gene expression in Caulobacter crescentus. Nucleic Acids Res., 35, e137.