[en] This study underscores the pivotal role of sodium (Na) supply in optimizing the optoelectronic properties of wide bandgap (~1.6 eV) Cu(In,Ga)S2 (CIGS) thin film absorbers for high efficiency solar cells. Our findings demonstrate that the synergistic use of Na from the glass substrate, in conjunction with in-situ sodium fluoride (NaF) co-evaporation, significantly enhances the structural and optoelectronic properties of the CIGS. CIGS grown under either Na-deficient or excess conditions exhibits inferior microstructural and optoelectronic properties, whereas an optimal Na supply leads to enhanced photovoltaic performance. Optimal Na incorporation minimizes vertical gallium fluctuations and improves the grain size and crystallinity. An absolute 1 sun calibrated photoluminescence (PL) measurement reveals a substantial suppression of bulk defects and a reduction in non-radiative losses, resulting in a high quasi-fermi level splitting (ΔEF) of 1.07 eV, 93 meV higher than in Na-deficient CIGS with the same bandgap. Optimal Na supply further increases excited carrier decay time, as revealed from time-resolved PL, and hole doping density. Cross-sectional hyperspectral cathodoluminescence mapping reveals that optimal Na supply significantly reduces defect density near the surface, thereby effectively translating ΔEF to open-circuit voltage (VOC). As a result, a champion wide bandgap CIGS solar cell with a cadmium-free ZnSnO buffer layer achieved an impressive VOC of 971 meV and an active area power conversion efficiency of 15.7%, highlighting its potential for advancing tandem photovoltaic technologies with stable inorganic top cell.
Disciplines :
Physics
Author, co-author :
Valluvar Oli, Arivazhagan ; Laboratory for Photovoltaics, Department of Physics and Materials Science Research Unit University of Luxembourg Belvaux Luxembourg
KAUR, Kulwinder ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Physics and Materials Science (DPHYMS)
GHARABEIKI, Sevan ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Physics and Materials Science (DPHYMS)
Hu, Yucheng ; Department of Materials Science and Metallurgy University of Cambridge Cambridge UK
Kusch, Gunnar; Department of Materials Science and Metallurgy University of Cambridge Cambridge UK
Hultqvist, Adam; Ångström Solar Center, Division of Solar Cell Technology, Department of Materials Science and Engineering Uppsala University Uppsala Sweden
Törndahl, Tobias; Ångström Solar Center, Division of Solar Cell Technology, Department of Materials Science and Engineering Uppsala University Uppsala Sweden
Hempel, Wolfram ; Zentrum für Sonnenenergie‐ und Wasserstoff‐Forschung Baden‐Württemberg (ZSW) Stuttgart Germany
Witte, Wolfram ; Zentrum für Sonnenenergie‐ und Wasserstoff‐Forschung Baden‐Württemberg (ZSW) Stuttgart Germany
Oliver, Rachel A.; Department of Materials Science and Metallurgy University of Cambridge Cambridge UK
SIEBENTRITT, Susanne ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Physics and Materials Science (DPHYMS)
I. V. Bodnar and A. I. Lukomskii, “The Concentration Dependence of the Band Gap for CuGaxIn1-xS2 and AgGaxIn1-xS2 Solid Solutions,” Physica Status Solidi (A) 98 (1986): K165–K169.
M. Powalla, S. Paetel, D. Hariskos, et al., “Advances in Cost-Efficient Thin-Film Photovoltaics Based on Cu(In,Ga)Se2,” Engineering 3 (2017): 445–451.
J. S. S. B. H. King, D. Riley, C. B. Jones, and C. D. Robinson, “Degradation Assessment of Fielded CIGS Photovoltaic Arrays,” in 44th Photovoltaic Specialist Conference (PVSC) (IEEE, 2017), 3155.
F. Karg, “High Efficiency CIGS Solar Modules,” Energy Procedia 15 (2012): 275–282.
S. Niki, M. Contreras, I. Repins, et al., “CIGS Absorbers and Processes,” Progress in Photovoltaics: Research and Applications 18 (2010): 453–466.
H. Hiroi, Y. Iwata, S. Adachi, H. Sugimoto, and A. Yamada, “New World-Record Efficiency for Pure-Sulfide Cu(In,Ga)S2 Thin-Film Solar Cell With Cd-Free Buffer Layer via KCN-Free Process,” IEEE Journal of Photovoltaics 6 (2016): 760–763.
S. Shukla, M. Sood, D. Adeleye, et al., “Over 15% Efficient Wide-Band-Gap Cu(In,Ga)S2 Solar Cell: Suppressing Bulk and Interface Recombination Through Composition Engineering,” Joule 5 (2021): 1816–1831.
N. Barreau, E. Bertin, A. Crossay, et al., “Investigation of Co-Evaporated Polycrystalline Cu(In,Ga)S2 Thin Film Yielding 16.0% Efficiency Solar Cell,” EPJ Photovoltaics 13 (2022): 17.
J. Keller, K. Kiselman, O. D. Gargand, et al., “High-Concentration Silver Alloying and Steep Back-Contact Gallium Grading Enabling Copper Indium Gallium Selenide Solar Cell With 23.6% Efficiency,” Nature Energy 9 (2024): 467–478.
S. Siebentritt, A. Lomuscio, D. Adeleye, M. Sood, and A. Dwivedi, “Sulfide Chalcopyrite Solar Cells–Are They the Same as Selenides with a Wider Bandgap?,” physica status solidi (RRL) – Rapid Research Letters 16 (2022): 2200126.
H. Hiroi, Y. Iwata, H. Sugimoto, and A. Yamada, “Progress Toward 1000-mV Open-Circuit Voltage on Chalcopyrite Solar Cells,” IEEE Journal of Photovoltaics 6 (2016): 1630–1634.
S. Siebentritt, T. P. Weiss, M. Sood, M. H. Wolter, A. Lomuscio, and O. Ramirez, “How Photoluminescence Can Predict the Efficiency of Solar Cells,” Journal of Physics: Materials 4 (2021): 042010.
S. Siebentritt, U. Rau, S. Gharabeiki, et al., “Photoluminescence Assessment of Materials for Solar Cell Absorbers,” Faraday Discussions 239 (2022): 112–129.
F. Babbe, L. Choubrac, and S. Siebentritt, “Quasi Fermi Level Splitting of Cu-Rich and Cu-Poor Cu(In,Ga)Se2 Absorber Layers,” Applied Physics Letters 109 (2016): 082105.
A. Lomuscio, T. Rodel, T. Schwarz, et al., “Quasi-Fermi-Level Splitting of Cu-Poor and Cu-Rich CuInS2 Absorber Layers,” Physical Review Applied 11 (2019): 054052.
D. Adeleye, A. Lomuscio, M. Sood, and S. Siebentritt, “Lifetime, Quasi-Fermi Level Splitting and Doping Concentration of Cu-Rich CuInS2 Absorbers,” Materials Research Express 8 (2021): 025905.
T. Wang, F. Ehre, T. P. Weiss, et al., “Diode Factor in Solar Cells With Metastable Defects and Back Contact Recombination,” Advanced Energy Materials 12 (2022): 2202076.
L. Weinhardt, O. Fuchs, D. Groß, et al., “Band Alignment at the CdS/Cu(In,Ga)S2 Interface in Thin-Film Solar Cells,” Applied Physics Letters 86 (2005): 062109.
M. Sood, P. Gnanasambandan, D. Adeleye, et al., “Electrical Barriers and Their Elimination by Tuning (Zn,Mg)O Buffer Composition in Cu(In,Ga)S2 Solar Cells: Systematic Approach to Achieve Over 14% Power Conversion Efficiency,” Journal of Physics. Energy 4 (2022): 045005.
H. Hiroi, Y. Iwata, K. Horiguchi, and H. Sugimoto, “960-mV Open-Circuit Voltage Chalcopyrite Solar Cell,” IEEE Journal of Photovoltaics 6 (2016): 309–312.
A. Thomere, N. Barreau, N. Stephant, et al., “Formation of Cu(In,Ga)S2 Chalcopyrite Thin Films Following a 3-Stage Co-Evaporation Process,” Solar Energy Materials and Solar Cells 237 (2022): 111563.
B. Marsen, H. Wilhelm, L. Steinkopf, et al., “Effect of Copper-Deficiency on Multi-Stage Co-Evaporated Cu(In,Ga)S2 Absorber Layers and Solar Cells,” Thin Solid Films 519 (2011): 7224–7227.
M. A. Contreras, B. Egaas, P. Dippo, et al., “On the Role of Na and Modifications to Cu(In,Ga)Se2 Absorber Materials Using Thin-MF (M=Na, K, Cs) Precursor Layers,” in 26th IEEE Photovoltaic Specialists Conference (IEEE, 1997), 359–362.
J. Hedstrom, H. Ohlsen, M. Bodegard, et al., “ZnO/CdS/Cu(In,Ga)Se2 Thin Film Solar Cells With Improved Performance,” in Conference Record of the Twenty Third IEEE Photovoltaic Specialists Conference, Anaheim, CA, USA - 1993 (Cat. No.93CH3283-9) (IEEE, 1993), 364–371.
M. Ruckh, D. Schmid, M. Kaiser, R. Schäffler, T. Walter, and H. W. Schock, “Influence of Substrates on the Electrical Properties of Cu(In,Ga)Se2 Thin Films,” Solar Energy Materials and Solar Cells 41-42 (1996): 335–343.
D. Rudmann, A. F. De Cunha, M. Kaelin, et al., “Efficiency Enhancement of Cu(In,Ga)Se2 Solar Cells due to Post-Deposition Na Incorporation,” Applied Physics Letters 84 (2004): 1129–1131.
P. M. P. Salomé, A. Hultqvist, V. Fjällström, et al., “Incorporation of Na in Cu(In,Ga)Se2 Thin-Film Solar Cells: A Statistical Comparison Between Na From Soda-Lime Glass and From a Precursor Layer of NaF,” IEEE Journal of Photovoltaics 4 (2014): 1659–1664.
V. Probst, J. Rimmasch, W. Riedl, et al., “The Impact of Controlled Sodium Incorporation on Rapid Thermal Processed Cu(InGa)Se2 Thin Films and Devices,” in Proceedings of IEEE 1st World Conference on Photovoltaic Energy Conversion, vol. 1 (IEEE, 1994), 144–147.
D. Güttler, A. Chirila, S. Seyrling, et al., “Influence of NaF Incorporation During Cu(In,Ga)Se2 Growth on Microstructure and Photovoltaic Performance,” in 35th IEEE Photovoltaic Specialists Conference (IEEE, 2010), 3420–3424.
S.-H. Wei, S. B. Zhang, and A. Zunger, “Effects of Na on the Electrical and Structural Properties of CuInSe2,” Journal of Applied Physics 85 (1999): 7214–7218.
A. Rockett, “The Effect of Na in Polycrystalline and Epitaxial Single-Crystal CuIn1−xGaxSe2,” Thin Solid Films 480-481 (2005): 2–7.
Z. K. Yuan, S. Chen, Y. Xie, et al., “Na-Diffusion Enhanced p-Type Conductivity in Cu(In,Ga)Se2: A New Mechanism for Efficient Doping in Semiconductors,” Advanced Energy Materials 6 (2016): 1601191.
D. Colombara, F. Werner, T. Schwarz, et al., “Sodium Enhances Indium-Gallium Interdiffusion in Copper Indium Gallium Diselenide Photovoltaic Absorbers,” Nature Communications 9 (2018): 826.
S. Siebentritt, E. Avancini, M. Bär, et al., “Heavy Alkali Treatment of Cu(In,Ga)Se2 Solar Cells: Surface Versus Bulk Effects,” Advanced Energy Materials 10 (2020): 1903752.
W. Thongkham, A. Pankiew, K. Yoodee, and S. Chatraphorn, “Enhancing Efficiency of Cu(In,Ga)Se2 Solar Cells on Flexible Stainless Steel Foils Using NaF Co-evaporation,” Solar Energy 92 (2013): 189–195.
B. Bissig, P. Reinhard, F. Pianezzi, et al., “Effects of NaF Evaporation During Low Temperature Cu(In,Ga)Se2 Growth,” Thin Solid Films 582 (2015): 56–59.
F. Babbe, N. Nicoara, H. Guthrey, et al., “Vacuum-Healing of Grain Boundaries in Sodium-Doped CuInSe2 Solar Cell Absorbers,” Advanced Energy Materials 13 (2023): 2204183.
R. Kaigawa, Y. Satake, K. Ban, S. Merdes, and R. Klenk, “Effects of Na on the Properties of Cu(In,Ga)S2 Solar Cells,” Thin Solid Films 519 (2011): 5535–5538.
M. Bodeg Ård, K. Granath, and L. Stolt, “Growth of Cu(In,Ga)Se2 Thin Films by Coevaporation Using Alkaline Precursors,” Thin Solid Films 361–362 (2000): 9–16.
D. H. Cho, Y. D. Chung, K. S. Lee, J. H. Kim, S. J. Park, and J. Kim, “Control of Na Diffusion From Soda-Lime Glass and NaF Film Into Cu(In,Ga)Se2 for Thin-Film Solar Cells,” in IEEE 38th Photovoltaic Specialists Conference (PVSC) PART 2 (IEEE, 2012), 1–4.
M. A. Contreras, J. Tuttle, A. Gabor, et al., “High Efficiency Graded Bandgap Thin-Film Polycrystalline Cu(In,Ga)Se2-Based Solar Cells,” Solar Energy Materials and Solar Cells 41–42 (1996): 231–246.
L. Chen, J. Lee, and W. N. Shafarman, “The Comparison of (Ag,Cu)(In,Ga)Se2 and Cu(In,Ga)Se2 Thin Films Deposited by Three-Stage Coevaporation,” IEEE Journal of Photovoltaics 4 (2014): 447–451.
D. Rudmann, G. Bilger, M. Kaelin, F. J. Haug, H. Zogg, and A. N. Tiwari, “Effects of NaF Coevaporation on Structural Properties of Cu(In,Ga)Se2 Thin Films,” Thin Solid Films 431-432 (2003): 37–40.
R. Kaigawa, A. Morimotoa, K. Funahashia, et al., “Preparation of Wide Gap Cu(In,Ga)S2 Films on ZnO Coated Substrates,” Thin Solid Films 517 (2009): 2395–2398.
R. Kaigawa, T. Wada, S. Bakehe, and R. Klenk, “Three-Stage Evaporation of Cu(In,Ga)S2 Solar Cell Absorber Films without KCN Treatment and Na Control,” Thin Solid Films 511-512 (2006): 430–433.
M. Raghuwanshi, E. Cadel, S. Duguay, L. Arzel, N. Barreau, and P. Pareige, “Influence of Na on Grain Boundary and Properties of Cu(In,Ga)Se2 Solar Cells,” Progress in Photovoltaics, Research and Applications 25 (2017): 367–375.
S. Shukla, D. Adeleye, M. Sood, et al., “Carrier Recombination Mechanism and Photovoltage Deficit in 1.7-eV Band Gap Near-Stoichiometric Cu(In,Ga)S2,” Physical Review Materials 5 (2021): 055403.
S. Peedle, D. Adeleye, S. Shukla, S. Siebentritt, R. Oliver, and G. Kusch, “Role of Nanoscale Compositional Inhomogeneities in Limiting the Open Circuit Voltage in Cu(In,Ga)S2 Solar Cells,” APL Energy 1 (2023): 026104.
A. J.-C. M. Prot, M. Melchiorre, T. Schaaf, et al., “Improved Sequentially Processed Cu(In,Ga)(S,Se)2 by Ag Alloying,” Solar RRL 8 (2024): 2400208.
J. Mattheis, U. Rau, and J. H. Werner, “Light Absorption and Emission in Semiconductors With Band Gap Fluctuations—A Study on Cu(In,Ga)Se2 Thin Films,” Journal of Applied Physics 101 (2007): 113519.
W. Shockley and H. J. Queisser, “Detailed Balance Limit of Efficiency of P-N Junction Solar Cells,” Journal of Applied Physics 32 (2004): 510–519.
M. Sood, D. Adeleye, S. Shukla, T. Torndahl, A. Hultqvist, and S. Siebentritt, “Low Temperature (Zn,Sn)O Deposition for Reducing Interface Open-Circuit Voltage Deficit to Achieve Highly Efficient Se-free Cu(In,Ga)S2 Solar Cells,” Faraday Discussions 239 (2022): 328–338.
Y. Hu, G. Kusch, D. Adeleye, S. Siebentritt, and R. Oliver, “Characterisation of the Interplay between Microstructure and Opto-Electronic Properties of Cu(In,Ga)S2 Solar Cells by Using Correlative CL-EBSD Measurements,” Nanotechnology 35 (2024): 295702.
S. Gharabeiki, F. Lodola, T. Schaaf, et al., “Effect of a Band-Gap Gradient on the Radiative Losses in the Open-Circuit Voltage of Solar Cells,” PRX Energy 4 (2025): 033006.
A. J. C. M. Prot, M. Melchiorre, F. Dingwell, et al., “Composition Variations in Cu(In,Ga)(S,Se)2 Solar Cells: Not a Gradient, but an Interlaced Network of Two Phases,” APL Materials 11 (2023): 101120.
R. Scheer and H.-W. Schock, Chalcogenide Photovoltaics: Physics, Technologies, and Thin Film Devices (John Wiley & Sons, 2011).
D. Adeleye, M. Sood, A. V. Oli, et al., “Wide Gap Cu(In,Ga)S2 Solar Cell: Mitigation of Phase Segregation in High Ga-content Thin Films Leads to Efficiencies Above 15.5%,” Small 21 (2025): 2405221.
A. Redinger, S. Levcenko, C. J. Hages, D. Greiner, C. A. Kaufmann, and T. Unold, “Time Resolved Photoluminescence on cu (In, Ga)Se2 Absorbers: Distinguishing Degradation and Trap States,” Applied Physics Letters 110 (2017): 122104.
T. P. Weiss, B. Bissig, T. Feurer, R. Carron, S. Buecheler, and A. N. Tiwari, “Bulk and Surface Recombination Properties in Thin Film Semiconductors With Different Surface Treatments From Time-Resolved Photoluminescence Measurements,” Scientific Reports 9 (2019): 5385.
A. Laemmle, R. Wuerz, and M. Powalla, “Efficiency Enhancement of Cu(In,Ga)Se2 Thin-Film Solar Cells by a Post-Deposition Treatment With Potassium Fluoride,” physica status solidi (RRL) – Rapid Research Letters 7 (2013): 631–634.
M. Sood, J. Bomasch, A. Lomuscio, et al., “Origin of Interface Limitation in Zn(O,S)/CuInS2-Based Solar Cells,” ACS Applied Materials & Interfaces 14 (2022): 9676–9684.
A. M. Gabor, J. R. Tuttle, D. S. Albin, M. A. Contreras, R. Noufi, and A. M. Hermann, “High-Efficiency CuInxGa1−xSe2 Solar Cells Made From (Inx,Ga1−x)2Se3 Precursor Films,” Applied Physics Letters 65 (1994): 198–200.
P. de Francisco la, T. Ostasevicius, V. Tonaas Fauske, et al., hyperspy/hyperspy: v2.1.1 (v2.1.1) (Zenodo, 2024), https://doi.org/10.5281/zenodo.12724131.
J. F. O. J. Lähnemann, E. Prestat, H. W. Ånes, D. N. Johnstone, LGTM Migrator, and N. Tappy, LumiSpy/Lumispy: v0.2.2 (v0.2.2) (Zenodo, 2023), https://doi.org/10.5281/zenodo.7747350.