Telesat, “Telesat Lightspeed - High Throughput LEO & GEO Satellites,” 2024, accessed: 15-Feb-2025. [Online]. Available: https://www.telesat.com/leo/
T. Rossi, M. De Sanctis, F. Maggio, M. Ruggieri, C. Hibberd, and C. Togni, “Smart gateway diversity optimization for EHF satellite networks,” IEEE Transactions on Aerospace and Electronic Systems, vol. 56, no. 1, pp. 130–141, 2020.
C. Sacchi, T. Rossi, M. Murroni, and M. Ruggieri, “Extremely high frequency (ehf) bands for future broadcast satellite services: Opportunities and challenges,” IEEE Transactions on Broadcasting, vol. 65, no. 3, pp. 609–626, 2019.
V. M. Baeza, F. Ortiz, E. Lagunas, T. S. Abdu, and S. Chatzinotas, “Multi-criteria ground segment dimensioning for non-geostationary satellite constellations,” in Joint European Conference on Networks and Communications & 6G Summit (EuCNC/6G Summit), 2023, pp. 252–257.
S. Kisseleff and et al., “Centralized gateway concept for precoded multi-beam GEO satellite networks,” in Proc. IEEE 94th Vehicular Technology Conference (VTC2021-Fall), 2021, pp. 1–6. [Online]. Available: https://api.semanticscholar.org/CorpusID:245015873
M. Beshley, N. Kryvinska, H. Beshley, O. Panchenko, and M. Medvetskyi, “Traffic engineering and QoS/QoE supporting techniques for emerging service-oriented software-defined network,” Journal of Communications and Networks, vol. 26, no. 1, pp. 99–114, 2024.
O. B. Yahia, Z. Garroussi, O. Bélanger, B. Sansò, J.-F. Frigon, S. Martel, A. Lesage-Landry, and G. K. Kurt, “Evolution of high-throughput satellite systems: A vision of programmable regenerative payload,” IEEE Communications Surveys & Tutorials, pp. 1–1, 2024.
T. de Cola, M. Marchese, M. Mongelli, and F. Patrone, “A unified optimisation framework for qos management and congestion control in vhts systems,” IEEE Transactions on Vehicular Technology, vol. 69, no. 10, pp. 11 619–11 631, 2020.
B. A. Homssi and et al., “Deep learning forecasting and statistical modeling for Q/V-band LEO satellite channels,” IEEE Transactions on Machine Learning in Communications and Networking, vol. 1, pp. 78–89, 2023.
A. Ferdowsi and D. Whitefield, “Deep learning for rain fade prediction in satellite communications,” in 2021 IEEE Globecom Workshops (GC Wkshps), 2021, pp. 1–6.
F. Kavehmadavani, V.-D. Nguyen, T. X. Vu, and S. Chatzinotas, “Intelligent traffic steering in beyond 5G open ran based on LSTM traffic prediction,” IEEE Transactions on Wireless Communications, vol. 22, no. 11, pp. 7727–7742, 2023.
C. Han, A. Liu, L. Huo, H. Wang, and X. Liang, “A prediction-based resource matching scheme for rentable LEO satellite communication network,” IEEE Communications Letters, vol. 24, no. 2, pp. 414–417, 2020.
L. Makara and L. Csurgai-Horváth, “Deep-learning-based ModCod predictor for satellite channels,” IEEE Transactions on Aerospace and Electronic Systems, vol. 59, no. 1, pp. 123–134, 2023.
X. Wang, H. Li, and Q. Wu, “Optimizing adaptive coding and modulation for satellite network with ML-based CSI prediction,” in 2019 IEEE Wireless Communications and Networking Conference (WCNC), 2019, pp. 1–6.
C. N. Efrem and A. D. Panagopoulos, “On the computation and approximation of outage probability in satellite networks with smart gateway diversity,” IEEE Transactions on Aerospace and Electronic Systems, vol. 57, no. 1, pp. 476–484, 2021.
M. Vázquez, P. Henarejos, and L. Blanco, “Deep gateway switching,” in 39th International Communications Satellite Systems Conference (ICSSC 2022), vol. 2022, 2022, pp. 233–236.
A. Kyrgiazos, B. G. Evans, and P. Thompson, “On the gateway diversity for high throughput broadband satellite systems,” IEEE Transactions on Wireless Communications, vol. 13, no. 10, pp. 5411–5426, 2014.
J. Smith and J. Doe, “A new gateway switching strategy in Q/V band high throughput satellite communication systems,” Journal of Satellite Communications, vol. 34, no. 2, pp. 123–134, 2021.
J. Liu, R. Luo, T. Huang, and C. Meng, “A load balancing routing strategy for leo satellite network,” IEEE Access, vol. 8, pp. 155 136–155 144, 2020.
W. Liu, Y. Tao, and L. Liu, “Load-balancing routing algorithm based on segment routing for traffic return in leo satellite networks,” IEEE Access, vol. 7, pp. 112 044–112 053, 2019.
M. J. Alam, R. Chugh, S. Azad, and M. R. Hossain, “Ant colony optimization-based solution to optimize load balancing and throughput for 5G and beyond heterogeneous networks,” EURASIP J. Wirel. Commun. Netw., vol. 2024, p. 44, 2024. [Online]. Available: https://api.semanticscholar.org/CorpusID:270219362
N. Gogineni and S. M. S, “Contention-aware greedy heuristic method and learning based method for load balancing through scheduling for containers in cloud computing environments,” SSRN, 2024. [Online]. Available: https://ssrn.com/abstract=4775837
G. Sinha and D. K. Sinha, “Enhanced weighted round robin algorithm to balance the load for effective utilization of resource in cloud environment,” EAI Endorsed Transactions on Cloud Systems, vol. 6, no. 18, p. e4, 2020. [Online]. Available: https://eudl.eu/pdf/10.4108/eai.7-9-2020.166284
X. Xie, K. Fan, W. Deng, N. Pappas, and Q. Zhang, “Multi-satellite beam hopping and power allocation using deep reinforcement learning,” arXiv preprint arXiv:2501.02309, Jan 2025. [Online]. Available: https://arxiv.org/abs/2501.02309
S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, UK: Cambridge University Press, 2004. [Online]. Available: https://web.stanford.edu/∼boyd/cvxbook/
P. S. S. Markappa and B.-L. Wenning, “Comparative analysis of LSTM and GRU for uplink data rate prediction in 5g networks,” in Applied Soft Computing and Communication Networks, S. M. Thampi, J. Hu, A. K. Das, J. Mathew, and S. Tripathi, Eds. Singapore: Springer Nature Singapore, 2024, pp. 177–191.
J. B. Malone, A. Nevo, and J. W. Williams, “The tragedy of the last mile: Economic solutions to congestion in broadband networks,” IO: Empirical Studies of Firms & Markets eJournal, 2016.
P. Rebari and B. R. Killi, “Deep learning based traffic prediction for resource allocation in multi-tenant virtualized 5G networks,” in IEEE Region 10 Conference (TENCON), 2023, pp. 97–102.
A. Rahimian. (2024) Time-stepped LSTM framework for 5G beamforming vector prediction. [Online]. Available: https://dx.doi.org/10.21227/7zzs-b612
Meteostat, “Weather data for luxembourg,” 2023, accessed: 2024-09-19. [Online]. Available: https://meteostat.net/en/place/lu/luxembourg?s=06590&t=2023-12-01/2023-12-31
L. Emiliani, L. Luini, and A. Rolón-Heredia, “One-minute integrated rainfall rate statistics from a rain gauge network in colombia: accuracy of prediction methods,” Electronics Letters, vol. 56, 08 2020.
A. D. Pinto-Mangones and et al., “Evaluation of 1-minute integration time rain rate statistics in ecuador for radio propagation applications,” IEEE Antennas and Wireless Propagation Letters, vol. 21, no. 7, pp. 1298–1302, 2022.
International Telecommunication Union, “Specific attenuation model for rain for use in prediction methods,” ITU Radiocommunication Sector, Tech. Rep. P.838-3, 2005. [Online]. Available: https://www.itu.int/rec/R-REC-P.838-3-200503-I/en
A. Gharanjik, M. R. B. Shankar, F. Zimmer, and B. Ottersten, “Centralized rainfall estimation using carrier to noise of satellite communication links,” IEEE Journal on Selected Areas in Communications, vol. 36, no. 5, pp. 1065–1073, 2018.
A. P. e. a. Batista, “A methodology for estimating radiofrequency signal attenuation from rainfall and atmospheric gases in 5G-and-beyond networks,” IET Networks, vol. 23, no. 1, pp. 1–25, 2025.
International Telecommunication Union, “Specific attenuation model for rain for use in prediction methods,” ITU Radiocommunication Sector, Recommendation P.838-2, 2003. [Online]. Available: https://www.itu.int/dms_pubrec/itu-r/rec/p/R-REC-P.838-2-200304-S!!PDF-E.pdf
M. Harary, “Efficient algorithms for the sensitivities of the pearson correlation coefficient and its statistical significance to online data,” arXiv preprint arXiv:2405.12345, 2024.
I. Abdullah et al., “Conversion of 15-minutes to 1-minute rainfall distribution derived from tropical rainfall distribution measurement,” in 2022 IEEE International RF and Microwave Conference (RFM). IEEE, 2022, pp. 1–4.
R. T. Zoppei, M. A. J. Delgado, L. H. Macedo, M. J. Rider, and R. Romero, “A branch and bound algorithm for transmission network expansion planning using nonconvex mixed-integer nonlinear programming models,” IEEE Access, vol. 10, pp. 39 875–39 888, 2022.
M. Dorigo and T. Stützle, Ant Colony Optimization. Cambridge, MA: MIT Press, 2004.
F. Vavak, T. C. Fogarty, and P. Cheng, “Load balancing application of the genetic algorithm in a nonstationary environment,” in Evolutionary Computing, T. C. Fogarty, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995, pp. 224–233.
M. Bolanowski, A. Gerka, A. Paszkiewicz, M. Ganzha, and M. Paprzycki, “Application of genetic algorithm to load balancing in networks with a homogeneous traffic flow,” in Computational Science – ICCS 2023, J. Mikyška, C. de Mulatier, M. Paszynski, V. V. Krzhizhanovskaya, J. J. Dongarra, and P. M. Sloot, Eds., 2023.
V. Patil and D. Pawar, “The optimal crossover or mutation rates in genetic algorithm: A review,” Journal of Engineering Technology, vol. 5, no. 3, pp. 1–10, 2015.