Casas, Joan R. ; Universitat Politècnica de Catalunya
Chacon, Rolando ; Universitat Politècnica de Catalunya
Cousins, Dave ; Accolade Measurement
Grimson, Jesse; Grimson consulting
Lantsoght, Eva O. L. ; Politécnico, Universidad San Francisco de Quito ; Concrete Structures, Department of Engineering Structures, Civil Engineering and Geosciences, Delft University of Technology
Losanno, Daniele ; Department of Structures for Engineering and Architecture, University of Naples Federico II
Olaszek, Piotr ; Road and Bridge Research Institute
Sas, Gabriel ; Structural Engineering, Luleå University of Technology
Schmidt, Jacob W.; Structural Engineering, Luleå University of Technology ; Pontificia Universidad Católica de Valparaíso
Valenzuela, Matías A. ; Aalborg University
Žnidarič, Aleš ; Slovenian National Building and Civil Engineering Institute
Rijkswaterstaat, Ministry of Infrastructure and the Environment, of the Netherlands Italian High Council of Public Works ReLUIS Consortium Universitat Politècnica de Catalunya
AASHTO. (2016). The manual for bridge evaluation with 2016 interim revisions (2nd ed.). American Association of State Highway and Transportation Officials.
AASHTO. (2018). AASHTO LRFD Bridge design specifications (8th ed.). American Association of State Highway and Transportation Officials.
ACI Committee 437. (2013). Code requirements for load testing of existing concrete structures (ACI 437.2M-13) and commentary (p. 24).
ACI Committee 437. (2022). Code requirements for load testing of existing concrete structures (ACI 437.2-22) and commentary (p. 24).
Addonizio, G., de Vries, R., Lantsoght, E. O., & Losanno, D., (2024). Reliability of I-girder PC bridges through proof load testing: Preliminary results [Paper presentation]. 12th International Conference on Bridge Maintenance, Safety and Management, IABMAS 2024 (pp. 306–314).
ADIF. (2019). Inspección básica de puentes de ferrocarril. NAP 2-4-0.0.2019.
ADIF. (2020). Inspección principal de puentes de ferrocarril. NAP 2.4.1.0 2020.
ADIF. (2021a). Pruebas de carga ferroviarias en puentes de ferrocarril. NAP 2-4-2.0. 2021.
ADIF. (2021b). Inspección principal de pasos superiores sobre el ferrocarril. NAP 2-4-1.4. 2021.
Agredo Chávez, A., Gonzalez-Libreros, J., Wang, C., Capacci, L., Biondini, F., Elfgren, L., & Sas, G., (2024). Assessment of residual prestress in existing concrete bridges: The Kalix bridge. Engineering Structures, 311, 118194. https://doi.org/10.1016/j.engstruct.2024.118194
Alampalli, S., (2009). Consistency of New York state bridge inspections: A research project in-progress (pp. 22–24).
Alampalli, S., Frangopol, D. M., Grimson, J., Kosnik, D., Halling, M., Lantsoght, E. O. L., Weidner, J. S., Yang, D. Y., & Zhou, Y. E., (2019). Primer on bridge load testing. V. Transportation Research E-Circular E-C257 (pp. 136).
Alampalli, S., Frangopol, D. M., Grimson, J., Halling, M. W., Kosnik, D. E., Lantsoght, E. O. L., Yang, D., & Zhou, Y. E., (2021). Bridge load testing: State-of-the-practice. Journal of Bridge Engineering, 26(3), 03120002. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001678
Bagge, N., Popescu, C., & Elfgren, L., (2018). Failure tests on concrete bridges: Have we learnt the lessons?Structure and Infrastructure Engineering, 14(3), 292–319. https://doi.org/10.1080/15732479.2017.1350985
Barker, M. G., (2001). Quantifying field-test behavior for rating steel girder bridges. Journal of Bridge Engineering, 6(4), 254–261. https://doi.org/10.1061/(ASCE)1084-0702(2001)6:4(254)
Bayane, I., & Brühwiler, E., (2020). Structural condition assessment of reinforced-concrete bridges based on acoustic emission and strain measurements. Journal of Civil Structural Health Monitoring, 10(5), 1037–1055. https://doi.org/10.1007/s13349-020-00433-0
Bayane, I., Pai, S. G. S., Smith, I. F. C., & Brühwiler, E., (2021). Model-Based Interpretation of Measurements for Fatigue Evaluation of Existing Reinforced Concrete Bridges. Journal of Bridge Engineering, 26(8), 04021054. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001742
Benitez, K., Lantsoght, E. O. L., & Yang, Y., (2018). Development of a stop criterion for load tests based on the critical shear displacement theory [Paper presentation]. Ialcce 2018, Ghent, Belgium.
Bertola, N., & Brühwiler, E., (2024a). Combining monitoring information and UHPFRC strengthening to extend bridge service duration. In Bridge Maintenance, Safety, Management, Digitalization and Sustainability (pp. 149–157). CRC Press.
Bertola, N., Schiltz, P., & Brühwiler, E., (2024). A global framework for data-informed bridge examination. Structure and Infrastructure Engineering, 1–20. https://doi.org/10.1080/15732479.2024.2337088
Bertola, N. J., Papadopoulou, M., Vernay, D., & Smith, I. F. C., (2017). Optimal multi-type sensor placement for structural identification by static-load testing. Sensors, 17(12), 2904. https://doi.org/10.3390/s17122904
Bertola, N. J., Proverbio, M., & Smith, I. F. C., (2020). Framework to approximate the value of information of bridge load testing for reserve capacity assessment. Frontiers in Built Environment, 6. https://doi.org/10.3389/fbuil.2020.00065
Bertola, N. J., Henriques, G., & Brühwiler, E., (2023). Assessment of the information gain of several monitoring techniques for bridge structural examination. Journal of Civil Structural Health Monitoring, 13(4-5), 983–1001. https://doi.org/10.1007/s13349-023-00685-6
Bertola, N. J., & Brühwiler, E., (2024b). Framework to evaluate the value of monitoring-technique information for structural performance monitoring. Structure and Infrastructure Engineering, 20(7-8), 1033–1052. https://doi.org/10.1080/15732479.2023.2280727
Bettiza, S., (2023). Genoa bridge disaster: Risk of collapse ‘was known for years. https://www.bbc.com/news/world-europe-65684334
Bonifaz, J., Zaruma, S., Robalino, A., & Sanchez, T. A., (2018). Bridge diagnostic load testing in ecuador–case studies [Paper presentation]. IALCCE 2018, Ghent, Belgium.
Bridge Diagnostics Inc. (2012). Integrated approach to load testing (p. 44).
Burdet, O., (1993). Load testing and monitoring of Swiss bridges. CEB Bulletin D’Information, Safety and Performance Concepts, 219.
Calderón, E., Valenzuela, M., Minatogawa, V., & Pinto, H., (2023). Development of the historical analysis of the seismic parameters for retroffiting measures in Chilean bridges. Buildings, 13(2), 274. https://doi.org/10.3390/buildings13020274
Cantieni, R., (1983). Dynamic load tests on highway bridges in Switzerland. Rep, 211.
Casas, J. R., Olaszek, P., Šajna, A., Žnidarič, A., Lavrič, I., & Bevc, L., (2009). Recommendations on the use of soft, diagnostic or proof load testing. FEHRL.
Casas, J. R., & Gómez, J. D., (2013). Load rating of highway bridges by proof-loading. KSCE Journal of Civil Engineering, 17(3), 556–567. https://doi.org/10.1007/s12205-013-0007-8
Cement. (2017). Proefbelasting 100 jaar oude brug verhoogt belastbaarheid en levensduur.
CEN-TC 250-SC 10. (2025). Eurocode - Basis of structural and geotechnical assessment of existing structures - Part 2: Assessment of existing structures, Draft prEN 1990-2:2025. Comité Européen de Normalisation (pp. 34).
CEN. (2003). Eurocode 1 - Actions on structures - Part 2: Traffic loads on bridges. Comité Européen de Normalisation (pp. 168).
Cervantes, E., Flores, K., Lantsoght, E., & Matos, J. C., (2024a). UAV-visual inspection: Bridge condition assessment over a decade [Paper presentation]. IABSE Congress 2024: Beyond structural engineering in a changing world (pp. 1298–1306).
Cervantes, E., Matos, J., & Lantsoght, E., (2024b). Bridge infrastructure in Ecuador: Challenges and solutions. Revista de Ativos de Engenharia, 2(2), 087–103. https://doi.org/10.29073/rae.v2i2.927
Cervantes, E., Matos, J., & Lantsoght, E. O. L., (2025). Framework for the seismic vulnerability assessment of reinforced concrete structures considering climate change effects [Paper presentation]. IABSE Congress Ghent 2025–The Essence of Structural Engineering for Society, Ghent, Belgium.
Chacón, R., Casas, J. R., Ramonell, C., Posada, H., Stipanovic, I., & Škarić, S., (2023a). Requirements and challenges for infusion of SHM systems within Digital Twin platforms. Structure and Infrastructure Engineering, 21(4), 599–615. https://doi.org/10.1080/15732479.2023.2225486
Chacón, R., Ramonell, C., Posada, H., Sierra, P., Tomar, R., Martínez de la Rosa, C., Rodriguez, A., Koulalis, I., Ioannidis, K., & Wagmeister, S., (2023b). Digital twinning during load tests of railway bridges - case study: The high-speed railway network, Extremadura, Spain. Structure and Infrastructure Engineering, 20(7-8), 1105–1119. https://doi.org/10.1080/15732479.2023.2264840
Christensen, C., (2023). Monitoring thresholds and output assessment related to in-situ concrete bridge testing [PhD Thesis]. DTU.
Christensen, C. O., Zhang, F., Garnica, G. Z., Lantsoght, E. O. L., Goltermann, P., & Schmidt, J. W., (2022). Identification of stop criteria for large-scale laboratory slab tests using digital image correlation and acoustic emission. Infrastructures, 7(3), 36. https://doi.org/10.3390/infrastructures7030036
Christensen, C. O., Damsgaard, K. D. S., Sørensen, J. D., Engelund, S., Goltermann, P., & Schmidt, J. W., (2023). Reliability-based proof load factors for assessment of bridges. Buildings, 13(4), 1060. https://doi.org/10.3390/buildings13041060
Code Committee 351001. (2011). Assessement of structural safety of an existing structure at repair or unfit for use - Loads. NEN 8701:2011 (in Dutch). Civil center for the execution of research and standard, Dutch Normalisation Institute (pp. 26).
Collins, J., Ashurst, D., Webb, J., Sparkes, P., & Ghose, A., (2017). Hidden Defects in Bridges: Guidance for Detection and Management. Ciria.
Commander, B., (2019). Evolution of Bridge Diagnostic Load Testing in the USA. Frontiers in Built Environment, 5(57), 11. https://doi.org/10.3389/fbuil.2019.00057
Cosenza, E., & Losanno, D., (2021). Assessment of existing reinforced-concrete bridges under road-traffic loads according to the new Italian guidelines. Structural Concrete, 22(5), 2868–2881. https://doi.org/10.1002/suco.202100147
Cousins, D. P., (2017). Reinforced-concrete beam hinge joint fatigue assessment. Proceedings of the Institution of Civil Engineers - Bridge Engineering, 170(1), 3–13. https://doi.org/10.1680/jbren.15.00008
Cousins, D. P., McAra, D., & Hill, C., (2025). Monitoring of the Queensferry Crossing, Scotland. Proceedings of the Institution of Civil Engineers - Bridge Engineering, 178(1), 52–66. https://doi.org/10.1680/jbren.22.00018
Damsgaard, K., Engelund, S., Sørensen, J., Schmidt, J., Christensen, C., & von Scholten, C., (2024). A comparative study of proof load configurations related to bridge classification. In Bridge maintenance, safety, management, digitalization and sustainability (pp. 323–331). CRC Press.
de Vries, R., Lantsoght, E. O. L., & Steenbergen, R. D. J. M., (2021). Case study proof loading in an annual reliability framework. Stevin Report 25.5-21-02, Delft University of Technology.
de Vries, R., Lantsoght, E. O. L., Steenbergen, R. D. J. M., & Fennis, S. A. A. M., (2022). Reliability assessment of existing reinforced concrete bridges and viaducts through proof load testing [Paper presentation]. IABMAS 2022, Barcelona, Spain.
de Vries, R., Lantsoght, E. O. L., Steenbergen, R. D. J. M., & Fennis, S. A. A. M., (2024). Time-dependent reliability assessment of existing concrete bridges with varying knowledge levels by proof load testing. Structure and Infrastructure Engineering, 20(7-8), 1053–1067. https://doi.org/10.1080/15732479.2023.2280712
de Vries, R., Lantsoght, E., Steenbergen, R., Hendriks, M., & Naaktgeboren, M., (2024). Structural reliability updating using monitoring data from in-situ load testing and laboratory test results (pp. 409–417). CRC Press/Balkema-Taylor & Francis Group.
de Vries, R., Lantsoght, E. O. L., Steenbergen, R. D. J. M., Hendriks, M. A. N., & Naaktgeboren, M., (2025). Structural reliability updating on the basis of proof load testing and monitoring data. Engineering Structures, 330, 119863. https://doi.org/10.1016/j.engstruct.2025.119863
Department for transport. (2009). Derailment of a freight train near Stewarton (pp. 94).
Elfgren, L., Täljsten, B., Blanksvärd, T., Sas, G., Nilimaa, J., Bagge, N., Tu, Y., Puurula, A., Häggström, J., & Paulsson, B., (2018). Load-testing used for quality control of bridges [Paper presentation]. Workshop of COST TU 1406 in Wroclaw, Poland (pp. 1–6).
Ensink, S., Lantsoght, E., & Hendriks, M., (accepted for publication). Collapse test of the vecht brige: Post-tensioned concrete slab-between-girder bridge. Structure and Infrastructure Engineering.
Ensink, S. W. H., (2024). System behaviour in prestressed concrete T-beam bridges [PhD. Thesis]. Delft University of Technology (pp. 286).
Federal Highway Administration. (2022). National Bridge Inspection Standards (NBIS).
Fennis, S. A. A. M., & Hordijk, D. A., (2014). Proof loading Halvemaans Bridge Alkmaar (in Dutch). Stevin Report 25.5-14-05, Delft University of Technology (pp. 72).
fib. (2012). Model code 2010: Final draft. International Federation for Structural Concrete (pp. 676).
fib TG 3.2. (2024). Modelling structural performance of existing concrete structures: State-of-the-Art Report. V. Bulletin. fédération internationale du béton (pp. 203).
Fu, G., Pezze, F., & Alampalli, S., (1997). Diagnostic load testing for bridge load rating. Transportation Research Record, National Research Council, Washington, D.C,1594, 125–133.
Garg, R., & Kumar, R., (2006). Strength assessment of existing bridges for bridge management system. Advances in Bridge Engineering. https://doi.org/10.13140/2.1.1560.2887
Government of India - Ministry of Railways. (2024). Code of practice for plain, reinforced & prestressed concrete for general bridge construction (pp. 124).
Hekič, D., Ribeiro, D., Anžlin, A., Žnidarič, A., & Češarek, P., (2024). Improved finite element model updating of a highway viaduct using acceleration and strain data. Sensors, 24(9), 2788. https://doi.org/10.3390/s24092788
Hernandez, E. S., & Myers, J. J., (2018). Diagnostic test for load rating of a prestressed SCC bridge. ACI Special Publication,323, 5–1.
Highways England. (2019). CS 463–Load testing for bridge assessment. Version 0. Design Manual for Roads and Bridges. National Highways.
IABMAS (2021). IABMAS technical committee on bridge load testing.
Indian Roads Congress. (2010). Guidelines for evaluation of load carrying capacity of bridges (first revision) IRC:SP:37-2010 (pp. 92).
Indian Roads Congress. (2015). Guidelines for load testing of bridges (first revision). IRC:SP:51-2015 (pp. 25).
Jauregui, D. V., Weldon, B. D., & Aguilar, C. V., (2019). Chapter 3: Load rating of prestressed concrete bridges without design plans by non-destructive field testing. In E. O. L., Lantsoght (Ed.), Load testing of bridges: proof load testing and the future of load testing. Structures and Infrastructures, Series Editor: D.M. Frangopol. Taylor & Francis.
Jia, S., Akiyama, M., Han, B., & Frangopol, D. M., (2024). Probabilistic structural identification and condition assessment of prestressed concrete bridges based on Bayesian inference using deflection measurements. Structure and Infrastructure Engineering, 20(1), 131–147. https://doi.org/10.1080/15732479.2023.2192508
Jin, N., Dertimanis, V. K., Chatzi, E. N., Dimitrakopoulos, E. G., & Katafygiotis, L. S., (2022). Subspace identification of bridge dynamics via traversing vehicle measurements. Journal of Sound and Vibration, 523, 116690. https://doi.org/10.1016/j.jsv.2021.116690
Kalin, J., Žnidarič, A., Anžlin, A., & Kreslin, M., (2022). Measurements of bridge dynamic amplification factor using bridge weigh-in-motion data. Structure and Infrastructure Engineering, 18(8), 1164–1176. https://doi.org/10.1080/15732479.2021.1887291
Kamariotis, A., Chatzi, E., & Straub, D., (2023). A framework for quantifying the value of vibration-based structural health monitoring. Mechanical Systems and Signal Processing, 184, 109708. https://doi.org/10.1016/j.ymssp.2022.109708
Lai, Z., Mylonas, C., Nagarajaiah, S., & Chatzi, E., (2021). Structural identification with physics-informed neural ordinary differential equations. Journal of Sound and Vibration, 508, 116196. https://doi.org/10.1016/j.jsv.2021.116196
Lantsoght, E., Yang, Y., van der Veen, C., de Boer, A., & Hordijk, D., (2016). Ruytenschildt Bridge: Field and laboratory testing. Engineering Structures, 128(December), 111–123. https://doi.org/10.1016/j.engstruct.2016.09.029
Lantsoght, E., Koekkoek, R., Yang, Y., Van der Veen, C., Hordijk, D., & De Boer, A., (2017a). Proof load testing of the viaduct De Beek [Paper presentation]. 39th IABSE Symposium - Engineering the Future, Vancouver, Canada. https://doi.org/10.2749/vancouver.2017.2824
Lantsoght, E., Van der Veen, C., Hordijk, D., & De Boer, A., (2017b). Recommendations for proof load testing of reinforced concrete slab bridges [Paper presentation]. 39th IABSE Symposium - Engineering the Future, Vancouver, Canada. https://doi.org/10.2749/vancouver.2017.0346
Lantsoght, E., Schmidt, J., & Sas, G., (2024). Bridge load testing: Recent advances in research, collaboration, and codes (pp. 297–305). CRC Press/Balkema-Taylor & Francis Group.
Lantsoght, E., Cervantes, E., Santamaria, M., Matos, J. C., Akiyama, M., & Ruan, X., (2025). Bridge testing field data for damage quantification and decision-making [Paper presentation]. IABSE Symposium Tokyo 2025–Environmentally Friendly Technologies and Structures: Focusing on Sustainable Approaches, Tokyo, Japan. https://doi.org/10.2749/tokyo.2025.0205
Lantsoght, E. O. L., van der Veen, C., de Boer, A., & Walraven, J. C., (2013). Recommendations for the shear assessment of reinforced concrete slab bridges from experiments. Structural Engineering International, 23(4), 418–426. https://doi.org/10.2749/101686613X13627347100239
Lantsoght, E. O. L., De Boer, A., & Van der Veen, C., (2017c). Levels of approximation for the shear assessment of reinforced concrete slab bridges. Structural Concrete, 18(1), 143–152.), https://doi.org/10.1002/suco.201600012
Lantsoght, E. O. L., Koekkoek, R. T., Hordijk, D. A., & De Boer, A., (2017d). Towards standardization of proof load testing: Pilot test on viaduct Zijlweg. Structure and Infrastructure Engineering, 14(3), 365–380. https://doi.org/10.1080/15732479.2017.1354032
Lantsoght, E. O. L., Van der Veen, C., De Boer, A., & Hordijk, D. A., (2017e). Proof load testing of reinforced concrete slab bridges in the Netherlands. Structural Concrete, 18(4), 597–606. https://doi.org/10.1002/suco.201600171
Lantsoght, E. O. L., Van der Veen, C., De Boer, A., & Hordijk, D. A., (2017f). Collapse test and moment capacity of the Ruytenschildt Reinforced Concrete Slab Bridge. Structure and Infrastructure Engineering, 13(9), 1130–1145. https://doi.org/10.1080/15732479.2016.1244212
Lantsoght, E. O. L., van der Veen, C., Hordijk, D. A., & de Boer, A., (2017g). Development of recommendations for proof load testing of reinforced concrete slab bridges. Engineering Structures, 152, 202–210. https://doi.org/10.1016/j.engstruct.2017.09.018
Lantsoght, E. O. L., Yang, Y., van der Veen, C., Hordijk, D. A., & de Boer, A., (2019). Stop criteria for flexure for proof load testing of reinforced concrete structures. Frontiers in Built Environment, 5(47), 14. https://doi.org/10.3389/fbuil.2019.00047
Lichtenstein, A. G., (1993). Bridge Rating Through Nondestructive Load Testing. V. NCHRP 12-28(13)A (pp. 30).
Liu, W., Lai, Z., Bacsa, K., & Chatzi, E., (2022). Physics-guided deep markov models for learning nonlinear dynamical systems with uncertainty. Mechanical Systems and Signal Processing, 178, 109276. https://doi.org/10.1016/j.ymssp.2022.109276
Lu, J., Yang, Y., Hendriks, M. A. N., & Lantsoght, E. O. L., (2025). Experiments on skewed reinforced concrete slabs failing in shear [Paper presentation]. IABSE Congress Ghent 2025–The Essence of Structural Engineering for Society, Ghent, Belgium.
Mandić Ivanković, A., Skokandić, D., Žnidarič, A., & Kreslin, M., (2019). Bridge performance indicators based on traffic load monitoring. Structure and Infrastructure Engineering, 15(7), 899–911. https://doi.org/10.1080/15732479.2017.1415941
Marquez, M., Valenzuela, M., Acuña, L., & Valenzuela, P., (2021). Proposed bridge management system and quality control plan in Chile. In Bridge maintenance, safety, Management, life-cycle sustainability and innovations (pp. 1977–1984). CRC Press.
Márquez, M., Cabezas, R., Espinoza, F., Acuña, L., Valenzuela, M., Rodrigues, F., & Pinto, H., (2021). Management program on monitoring Chilean bridges during operational stage. Bridge Maintenance, Safety, Management, Life-Cycle Sustainability and Innovations (pp. 4070–4075). CRC Press.
Mckibbins, L., Abbott, T., Atkins, C., Moss, E., & Wright, D., (2022). Non-destructive testing of civil structures (C798D) (pp. 248). CIRIA.
Michels, J., Staśkiewicz, M., Czaderski, C., Kotynia, R., Harmanci, Y. E., & Motavalli, M., (2016). Prestressed CFRP strips for concrete bridge girder retrofitting: Application and static loading test. Journal of Bridge Engineering, 21(5), 04016003. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000835
Ministerio de Fomento - Direccion General de Carreteras. (1999). Recomendaciones para la realizacion de pruebas de carga de recepcion en puentes de carretera (pp. 22).
Ministerio de Fomento. (2009). Guía de inspecciones básicas de obras de paso. Red de carreteras del estado., Dirección General de Carreteras.
Ministerio de Fomento. (2012). Guía para la realización de inspecciones principales de obras de paso en la Red de Carreteras del Estado. Dirección General de Carreteras.
Ministerio de Transporte y Obras Públicas del Ecuador. (2013). Norma Ecuatoriana Vial NEVI-12. Volumen 6, Operaciones de mantenimiento vial (pp. 508).
Ministero delle Infrastrutture e dei Trasporti - Consiglio Superiore dei Lavori Pubblici. (2020). Linee guida per la classificazione e gestione del rischio, la valutazione della sicurezza ed il monitoraggio dei ponti esistenti.
Ministero delle Infrastrutture e dei Trasporti. (2018). Aggiornamento delle Norme tecniche per le costruzioni. Gazzetta Ufficiale Serie Generale (pp. 42).
Ministry of Infrastructure. (2021). Guidelines for performing road tests of bridge structures under test load (in Polish Wytyczne wykonywania badań drogowych obiektów mostowych pod próbnym obciążeniem).
Ministry of Land, Infrastructure, Transport and Tourism. (2024). Roads In Japan 2024.
MOP. (2019). Manual de Carreteras (Vol. 3). Dirección de Vialidad. (in Spanish)
Moses, F., Lebet, J. P., & Bez, R., (1994). Applications of field testing to bridge evaluation. Journal of Structural Engineering, 120(6), 1745–1762. https://doi.org/10.1061/(asce)0733-9445(1994)120:6(1745)
Muttoni, A., & Simões, J. T., (2023). Shear and punching shear according to the Critical Shear Crack Theory: Background, recent developments and integration in codes. Revista IBRACON de Estruturas e Materiais, 16(3). https://doi.org/10.1590/s1983-41952023000300002
Normcommissie 351001. (2011a). Assessement of structural safety of an existing structure at repair or unfit for use - Loads. NEN 8701:2011 (in Dutch). Civil center for the execution of research and standard, Dutch Normalisation Institute (pp. 26).
Normcommissie 351001. (2011b). Beoordeling van de constructieve veiligheid van een bestaand bouwwerk bij verbouw en afkeuren - Grondslagen. NEN 8700:2011. Civieltechnisch centrum uitvoering research en regelgeving, Nederlands Normalisatie-instituut (pp. 56).
Olaszek, P., Świt, G., & Casas, J. R., (2012). Proof load testing supported by acoustic emission. An example of application [Paper presentation]. IABMAS 2012.
Olaszek, P., Casas, J. R., & Świt, G., (2016). On-site assessment of bridges supported by acoustic emission. Proceedings of the Institution of Civil Engineers - Bridge Engineering, 169(2), 81–92. https://doi.org/10.1680/jbren.15.00007
Olaszek, P., Biskup, M., Matysek, A., & Twardosz, E., (2021). Load testing of bridges in the light of the IBDiM experience (in Polish Próbne obciążenia obiektów mostowych w świetle doświadcze IBDiM). Road and Bridge Research Institute.
Pai, S. G. S., & Smith, I. F. C., (2022). Methodology maps for model-based sensor-data interpretation to support civil-infrastructure management. Frontiers in Built Environment, 8. https://doi.org/10.3389/fbuil.2022.801583
Palu, S., & Mahmoud, H., (2019). Impact of climate change on the integrity of the superstructure of deteriorated U.S. bridges. PloS One, 14(10), e0223307. https://doi.org/10.1371/journal.pone.0223307
Paredes, J. E., & Lantsoght, E. O. L., (2018). Nonlinear finite element analysis of beam experiments for stop criteria [Paper presentation]. IALCCE 2018, Ghent, Belgium.
Parker, J. S., Hardwick, G., Carroll, M., Nicholls, N. P., & Sandercock, D., (2003). Hungerford Bridge millennium project—London. Proceedings of the Institution of Civil Engineers - Civil Engineering,156(2), 70–77. https://doi.org/10.1680/cien.2003.156.2.70
Pasquier, R., D’Angelo, L., Goulet, J.-A., Acevedo, C., Nussbaumer, A., & Smith, I. F., (2016). Measurement, data interpretation, and uncertainty propagation for fatigue assessments of structures. Journal of Bridge Engineering, 21(5), 04015087. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000861
Proverbio, M., Vernay, D. G., & Smith, I. F. C., (2018). Population-based structural identification for reserve-capacity assessment of existing bridges. Journal of Civil Structural Health Monitoring, 8(3), 363–382. 2018/07/01 https://doi.org/10.1007/s13349-018-0283-6
Ramonell, C., Chacón, R., & Posada, H., (2023). Knowledge graph-based data integration system for digital twins of built assets. Automation in Construction, 156, 105109. https://doi.org/10.1016/j.autcon.2023.105109
Ransom, A. L., & Heywood, R. J., (1997). Recommendations for proof load testing in Australia [Paper presentation]. Proceedings of the Autostrads 1997 Bridge Conference “Bridging the Milenia”, Sydney, Australia.
Research Institute of Roads and Bridges. (2008). The rules for road bridges proof loadings (in Polish) (Zalecenia dotyczące wykonywania badań pod próbnym obciążeniem drogowych obiektów mostowych).
Reuland, Y., Garcia-Ramonda, L., Martakis, P., Bogoevska, S., & Chatzi, E., (2023). A full-scale case study of vibration-based structural health monitoring of bridges: Prospects and open challenges. ce/papers, 6(5), 329–336. https://doi.org/10.1002/cepa.2001
Rijkswaterstaat. (2012). Guidelines for nonlinear finite element analysis of concrete structures. RTD,1016(2012), 65.
Rijkswaterstaat. (2022). Richtlijnen Beoordeling Kunstwerken - beoordeling van de constructieve veiligheid van een bestaand kunstwerk bij verbouw, gebruik en afkeur RBK 1.2.1. RTD,1006(2022), 117.
Rodriguez, A., & Lantsoght, E. O. L., (2018). Verification of flexural stop criteria for proof load tests on concrete bridges based on beam experiments [Paper presentation]. IALCCE 2018, Ghent, Belgium.
San Martin, F., & Valenzuela, M. A., (2016). Feasibility of use of "void formers" in concrete slab bridge using Chilean Codes: Design and testing [Paper presentation]. Fib Symposium 2016, Cape Town, South Africa.
Saraf, V., Sokolik, A. F., & Nowak, A. S., (1996). Proof load testing of highway bridges. Transportation Research Record: Journal of the Transportation Research Board, 1541(1), 51–57. https://doi.org/10.1177/0361198196154100107
Sawicki, B., & Brühwiler, E., (2022). Quantification of influence of monitoring duration on measured traffic action effects on fatigue of RC deck slabs of road bridges. Structure and Infrastructure Engineering, 18(10-11), 1442–1456. https://doi.org/10.1080/15732479.2022.2059527
Schmidt, J., Christensen, C., Bang, R., von Scholten, C., Goltermann, P., & Engelund, S., (2024). Danish concrete bridge proof loading procedure and considerations. In Bridge maintenance, safety, management, digitalization and sustainability (pp. 315–322). CRC Press.
Schmidt, J. W., Halding, P. S., Jensen, T. W., & Engelund, S., (2018). High magnitude loading of concrete bridges. Special Publication, 323.
Schmidt, J. W., Thöns, S., Kapoor, M., Christensen, C. O., Engelund, S., & Sørensen, J. D., (2020). Challenges related to probabilistic decision analysis for bridge testing and reclassification. Frontiers in Built Environment, 6. https://doi.org/10.3389/fbuil.2020.00014
Schmidt, J. W., Christensen, C. O., Damsgaard, K., Lantsoght, E. O. L., Yang, Y., & Goltermann, P., (2025). Validation of proof loading methods: With a basis in collapse testing and stop criteria evaluation [Paper presentation]. IABSE Congress Ghent 2025–The Essence of Structural Engineering for Society, Ghent, Belgium.
Schulz, J. L., Brett, C., Goble, G. G., & Frangopol, D. M., (1995). Efficient field testing and load rating of short-and medium-span bridges. Structural Engineering Review,7(3), 181–194.
Sparkes, P., & Webb, J., (2020). Structural Health Monitoring in Civil Engineering. Ciria.
Technical standards. (2023). Detailed technical conditions for the construction of the railway infrastructure of the Central Communication Port - design guidelines (on Polish: Standardy techniczne: Szczegółowe warunki techniczne dla budowy infrastruktury kolejowej Centralnego Portu Komunikacyjnego–wytyczne projektowania).
The Guardian. (2019). What caused the Genoa bridge collapse–and the end of an Italian national myth?. The Guardian.
The Institution of Civil Engineers - National Steering Committee for the Load Testing of Bridges. (1998). Guidelines for the Supplementary Load Testing of Bridges. (pp. 44).
Trafikverket. (2020). TRVINFRA-00213: Inspektion av bro och övriga byggnadsverk. Version 1.0.
Trafikverket. (2023). BaTMan database. Book BaTMan database.
TRVINFRA-00331. (2023). Bro och broliknande konstruktion, Bärighetsberäkning.
Valenzuela, M., & Márquez, M., (2024). Collapse of Cau Cau Bridge: Forensic engineering study. Bridge Maintenance, Safety, Management, Digitalization and Sustainability (pp. 1611–1618). CRC Press.
Vejdirektoratet - The Danish Road Directorate. (2017). DS/EN 1991-2 DK NA:2017, Annex A: Lastmodeller for klassificering og bæreevnevurdering (Models of special vehicles for road bridges).
Vejdirektoratet. (2017). DS/EN 1991-2 DK NA: 2017, Annex A: Lastmodeller for Klassificering Og Bæreevnevurdering (Models of Special Vehicles for Road Bridges). Vejdirektoratet (The Danish Road Directorate).
Vejdirektoratet (The Danish Road Directorate). (2024). Vejledning for Prøvebelastning Af Broer (Guideline for Proof-Loading of Bridges). https://vejregler.dk/h/7e0fba84-06dd-483b-898a-c7b3e3affaa1/0d2615fba8784888b6e42d41e87b86ae
Vejdirektoratet (The Danish Road Directorate). (2025). Vejledning For Prøvebelastning Af Broer - Håndbog.
Vettori, S., Di Lorenzo, E., Peeters, B., Luczak, M. M., & Chatzi, E., (2023). An adaptive-noise Augmented Kalman Filter approach for input-state estimation in structural dynamics. Mechanical Systems and Signal Processing, 184, 109654. https://doi.org/10.1016/j.ymssp.2022.109654
Waarts, P., Hordijk, D., Fennis, S., & Steenbergen, R., (2015). Proefbelasten van viaducten: Een mooi alternatief voor het aantonen van constructieve veiligheid. Cement,5, 7.
Yang, D. Y., Frangopol, D. M., & Teng, J.-G., (2019). Probabilistic life-cycle optimization of durability-enhancing maintenance actions: Application to FRP strengthening planning. Engineering Structures, 188, 340–349. https://doi.org/10.1016/j.engstruct.2019.02.055
Yang, Y., Den Uijl, J. A., & Walraven, J., (2016). The Critical Shear Displacement theory: On the way to extending the scope of shear design and assessment for members without shear reinforcement. Structural Concrete, 17(5), 790–798. https://doi.org/10.1002/suco.201500135
Zarate Garnica, G., Lu, J., Yang, Y., Hendriks, M. A. N., & Lantsoght, E. O. L., (2024a). Shear Experiments On Straight Reinforced Concrete Slabs. Proceedings of International Structural Engineering and Construction: March,11(1), 1.
Zarate Garnica, G. I., Lantsoght, E. O. L., Yang, Y., & Hendriks, M. A. N., (2024b). Shear stop criteria for reinforced concrete slab strips [Paper presentation]. IABMAS 2024.
Žnidarič, A., & Lavrič, I., (2010). Applications of B-WIM technology to bridge assessment [Paper presentation].
Žnidarič, A., Kalin, J., & Kreslin, M., (2018). Improved accuracy and robustness of bridge weigh-in-motion systems. Structure and Infrastructure Engineering, 14(4), 412–424. https://doi.org/10.1080/15732479.2017.1406958
Žnidarič, A., & Kalin, J., (2020). Using bridge weigh-in-motion systems to monitor single-span bridge influence lines. Journal of Civil Structural Health Monitoring, 10(5), 743–756. https://doi.org/10.1007/s13349-020-00407-2