6G; computational latency; computational throughput; energy consumption; Internet of Things (IoT); mobile edge computing (MEC); secure encryption; 6g; Communications systems; Computational latency; Computational resources; Computational throughput; Edge computing; Energy-consumption; Internet of thing; Mobile edge computing; Secure encryption; Computer Science (all); Materials Science (all); Engineering (all); Internet of Things; Security; Resource management; Optimization; 6G mobile communication; Encryption; Dynamic scheduling; Computational efficiency; Servers
Abstract :
[en] With the advent of advancements in future sixth-generation (6G) communication systems, Internet of Things (IoT) devices, characterized by their limited computational and communication capacities, have become integral in our lives. These devices are deployed extensively to gather vast amounts of data in real-time applications. However, their restricted battery life and computational resources present significant challenges in meeting the requirements of advanced communication systems. Mobile Edge Computing (MEC) has emerged as a promising solution to these challenges within the IoT realm in recent years. Despite its potential, securing MEC infrastructure in the context of IoT remains an open task. This study explores the operational dynamics of a secured IoT-enabled MEC infrastructure, focusing on providing real-time, on-demand, secure computational resources to low-powered IoT devices. It outlines a joint optimization problem to maximize computational throughput, minimize device energy consumption, reduce computational latency, and mitigate security overhead. An optimization algorithm is introduced to address these challenges by jointly allocating resources, thereby optimizing throughput, conserving energy, and meeting latency benchmarks through dynamic system adaptation. The effectiveness of the proposed model and algorithm is demonstrated through comparisons with relevant benchmark schemes, highlighting its efficiency in various scenarios. This work showcases the potential of advancements in encryption to deliver scalable security solutions with reduced resource consumption as the number of devices increases.
Disciplines :
Electrical & electronics engineering
Author, co-author :
Ahmed, Manzoor ; Hubei Engineering University, School of Computer and Information Science, Institute for AI Industrial Technology Research, Xiaogan, China
KHAN, Wali Ullah ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom
Alrayes, Fatma S. ; Princess Nourah bint Abdulrahman University, College of Computer and Information Sciences, Department of Information Systems, Riyadh, Saudi Arabia
Said, Yahia ; Northern Border University, Center for Scientific Research and Entrepreneurship, Arar, Saudi Arabia
Al-Sharafi, Ali M. ; University of Bisha, College of Computing and Information Technology, Department of Computer Science and Artificial Intelligence, Bisha, Saudi Arabia
Kim, Mi-Hye; Chungbuk National University, Department of Computer Engineering, Cheongju-si, South Korea
Dashdondov, Khongorzul; Gachon University, College of IT Convergence, Department of Computer Engineering, Seongnam, South Korea
Ullah, Inam ; Gachon University, Department of Computer Engineering, Seongnam, South Korea
External co-authors :
yes
Language :
English
Title :
Joint Encryption and Optimization for 6G MEC-Enabled IoT Networks
Publication date :
2025
Journal title :
IEEE Access
ISSN :
2169-3536
Publisher :
Institute of Electrical and Electronics Engineers Inc.
Princess Nourah bint Abdulrahman University Researchers Supporting Project, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia Northern Border University, Saudi Arabia Deanship of Graduate Studies and Scientific Research at the University of Bisha through the Fast-Track Research Support Program “Regional Innovation Cluster Development (Research and Development) Project (Open Innovation of Base Institutions)” supported by the Ministry of Trade, Industry and Energy
Funding text :
This work was supported in part by the Princess Nourah bint Abdulrahman University Researchers Supporting Project, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia, under Grant PNURSP2025R319; in part by the Northern Border University, Saudi Arabia, under Project NBU-CRP-2025-3030; in part by the Deanship of Graduate Studies and Scientific Research at the University of Bisha through the Fast-Track Research Support Program; and in part by the \u2018\u2018Regional Innovation Cluster Development (Research and Development) Project (Open Innovation of Base Institutions)\u2019\u2019 supported by the Ministry of Trade, Industry and Energy.
A. Nauman, N. Alruwais, E. Alabdulkreem, N. Nemri, N. O. Aljehane, A. K. Dutta, M. Assiri, and W. U. Khan, ‘‘Empowering smart cities: High-altitude platforms based mobile edge computing and wireless power transfer for efficient IoT data processing,’’ Internet Things, vol. 24, Dec. 2023, Art. no. 100986.
Z. Albataineh, A. Andrawes, N. Abdullah, and R. Nordin, ‘‘Energy-efficient beyond 5G multiple access technique with simultaneous wireless information and power transfer for the factory of the future,’’ Energies, vol. 15, no. 16, p. 6059, Aug. 2022.
M. Ahmed, S. Raza, A. A. Soofi, F. Khan, W. U. Khan, S. Z. U. Abideen, F. Xu, and Z. Han, ‘‘Active reconfigurable intelligent surfaces: Expanding the frontiers of wireless communication—A survey,’’ IEEE Commun. Surveys Tuts., early access, Jul. 4, 2024, doi: 10.1109/COMST.2024.3423460.
H. Wang, Q. Chen, X. Wang, W. Du, X. Li, and A. Nallanathan, ‘‘Adaptive block sparse backtracking-based channel estimation for massive MIMOOTFS systems,’’ IEEE Internet Things J., vol. 12, no. 1, pp. 673–682, Jan. 2025.
W. U. Khan, E. Lagunas, Z. Ali, M. A. Javed, M. Ahmed, S. Chatzinotas, B. Ottersten, and P. Popovski, ‘‘Opportunities for physical layer security in UAV communication enhanced with intelligent reflective surfaces,’’ IEEE Wireless Commun., vol. 29, no. 6, pp. 22–28, Dec. 2022.
H. Wang, P. Guo, X. Li, F. Wen, X. Wang, and A. Nallanathan, ‘‘MBPD: A robust algorithm for polar-domain channel estimation in near-field wideband XL-MIMO systems,’’ IEEE Internet Things J., early access, Oct. 10, 2024, doi: 10.1109/JIOT.2024.3477573.
H. Wang, P. Xiao, and X. Li, ‘‘Channel parameter estimation of mmWave MIMO system in urban traffic scene: A training channel-based method,’’ IEEE Trans. Intell. Transp. Syst., vol. 25, no. 1, pp. 754–762, Jan. 2024.
G. Iacovelli, C. Kumar Sheemar, W. Ullah Khan, A. Mahmood, G. C. Alexandropoulos, J. Querol, and S. Chatzinotas, ‘‘Holographic MIMO for next generation non-terrestrial networks: Motivation, opportunities, and challenges,’’ 2024, arXiv:2411.10014.
C. Kumar Sheemar, P. Thiruvasagam, W. Ullah Khan, S. Solanki, G. C. Alexandropoulos, J. Querol, J. Plachy, O. Holschke, and S. Chatzinotas, ‘‘Joint communications and sensing for 6G satellite networks: Use cases and challenges,’’ 2025, arXiv:2501.05243.
H. Wang, F. H. Memon, X. Wang, X. Li, N. Zhao, and K. Dev, ‘‘Machine learning-enabled MIMO-FBMC communication channel parameter estimation in IIoT: A distributed CS approach,’’ Digit. Commun. Netw., vol. 9, no. 2, pp. 306–312, Apr. 2023.
W. U. Khan, J. Liu, F. Jameel, V. Sharma, R. Jäntti, and Z. Han, ‘‘Spectral efficiency optimization for next generation NOMA-enabled IoT networks,’’ IEEE Trans. Veh. Technol., vol. 69, no. 12, pp. 15284–15297, Dec. 2020.
A. Andrawes, R. Nordin, and N. F. Abdullah, ‘‘Energy-efficient downlink for non-orthogonal multiple access with SWIPT under constrained throughput,’’ Energies, vol. 13, no. 1, p. 107, Dec. 2019.
F. Jameel, S. Zeb, W. U. Khan, S. A. Hassan, Z. Chang, and J. Liu, ‘‘NOMA-enabled backscatter communications: Toward battery-free IoT networks,’’ IEEE Internet Things Mag., vol. 3, no. 4, pp. 95–101, Dec. 2020.
W. Ullah Khan, C. Kumar Sheemar, E. Lagunas, and S. Chatzinotas, ‘‘Beyond diagonal RIS: A new frontier for 6G Internet of Things networks,’’ 2025, arXiv:2502.03637.
W. U. Khan, A. Mahmood, M. A. Jamshed, E. Lagunas, M. Ahmed, and S. Chatzinotas, ‘‘Beyond diagonal RIS for 6G non-terrestrial networks: Potentials and challenges,’’ IEEE Netw., vol. 39, no. 1, pp. 80–89, Jan. 2025.
M. Ahmed, A. Wahid, S. S. Laique, W. U. Khan, A. Ihsan, F. Xu, S. Chatzinotas, and Z. Han, ‘‘A survey on STAR-RIS: Use cases, recent advances, and future research challenges,’’ IEEE Internet Things J., vol. 10, no. 16, pp. 14689–14711, Aug. 2023.
M. Ahmed, F. Xu, A. Wahid, K. Ali, M. A. Mirza, W. U. Khan, K. Dev, S. A. Hassan, and H. Zhu, ‘‘A comprehensive survey of artificial intelligence advances in RIS-assisted wireless networks,’’ Authorea Preprints, Aug. 2024.
A. Mahmood, A. Ahmed, M. Naeem, and Y. Hong, ‘‘Partial offloading in energy harvested mobile edge computing: A direct search approach,’’ IEEE Access, vol. 8, pp. 36757–36763, 2020.
M. Ahmed, S. Raza, A. A. Soofi, F. Khan, W. U. Khan, F. Xu, S. Chatzinotas, O. A. Dobre, and Z. Han, ‘‘A survey on reconfigurable intelligent surfaces assisted multi-access edge computing networks: State of the art and future challenges,’’ Comput. Sci. Rev., vol. 54, Nov. 2024, Art. no. 100668.
M. Ahmed, A. A. Soofi, S. Raza, F. Khan, S. Ahmad, W. U. Khan, M. Asif, F. Xu, and Z. Han, ‘‘Advancements in RIS-assisted UAV for empowering multiaccess edge computing: A survey,’’ IEEE Internet Things J., vol. 12, no. 6, pp. 6325–6346, Mar. 2025.
X. Qin, Z. Song, T. Hou, W. Yu, J. Wang, and X. Sun, ‘‘Joint resource allocation and configuration design for STAR-RIS-enhanced wireless-powered MEC,’’ IEEE Trans. Commun., vol. 71, no. 4, pp. 2381–2395, Apr. 2023.
Z. Ding, D. Xu, R. Schober, and H. V. Poor, ‘‘Hybrid NOMA offloading in multi-user MEC networks,’’ IEEE Trans. Wireless Commun., vol. 21, no. 7, pp. 5377–5391, Jul. 2022.
Z. Zhao, R. Zhao, J. Xia, X. Lei, D. Li, C. Yuen, and L. Fan, ‘‘A novel framework of three-hierarchical offloading optimization for MEC in industrial IoT networks,’’ IEEE Trans. Ind. Informat., vol. 16, no. 8, pp. 5424–5434, Aug. 2020.
Y. He, M. Yang, Z. He, and M. Guizani, ‘‘Computation offloading and resource allocation based on DT-MEC-assisted federated learning framework,’’ IEEE Trans. Cognit. Commun. Netw., vol. 9, no. 6, pp. 1707–1720, Dec. 2023.
W. U. Khan, Z. Ali, E. Lagunas, A. Mahmood, M. Asif, A. Ihsan, S. Chatzinotas, B. Ottersten, and O. A. Dobre, ‘‘Rate splitting multiple access for next generation cognitive radio enabled LEO satellite networks,’’ IEEE Trans. Wireless Commun., vol. 22, no. 11, pp. 8423–8435, Nov. 2023.
A. Mahmood, Y. Hong, M. K. Ehsan, and S. Mumtaz, ‘‘Optimal resource allocation and task segmentation in IoT enabled mobile edge cloud,’’ IEEE Trans. Veh. Technol., vol. 70, no. 12, pp. 13294–13303, Dec. 2021.
M. Deng, M. Ahmed, A. Wahid, A. A. Soofi, W. U. Khan, F. Xu, M. Asif, and Z. Han, ‘‘Reconfigurable intelligent surfaces enabled vehicular communications: A comprehensive survey of recent advances and future challenges,’’ IEEE Trans. Intell. Vehicles, early access, Oct. 14, 2025, doi: 10.1109/TIV.2024.3476934.
W. U. Khan, E. Lagunas, Z. Ali, A. Mahmood, C. K. Sheemar, M. Ahmed, K. Dev, S. Chatzinotas, and B. Ottersten, ‘‘Deep reinforcement learning for backscatter communications: Augmenting intelligence in future Internet of Things,’’ IEEE Internet Things Mag., vol. 7, no. 5, pp. 72–78, Sep. 2024.
A.-N. Nguyen, D.-B. Ha, T. V. Truong, V. N. Vo, S. Sanguanpong, and C. So-In, ‘‘Secrecy performance analysis and optimization for UAV-relay-enabled WPT and cooperative NOMA MEC in IoT networks,’’ IEEE Access, vol. 11, pp. 127800–127816, 2023.
H. Mai Do, T. P. Tran, and M. Yoo, ‘‘Deep reinforcement learning-based task offloading and resource allocation for industrial IoT in MEC federation system,’’ IEEE Access, vol. 11, pp. 83150–83170, 2023.
D. Sabella, A. Vaillant, P. Kuure, U. Rauschenbach, and F. Giust, ‘‘Mobile-edge computing architecture: The role of MEC in the Internet of Things,’’ IEEE Consum. Electron. Mag., vol. 5, no. 4, pp. 84–91, Oct. 2016.
G. Cui, X. Li, L. Xu, and W. Wang, ‘‘Latency and energy optimization for MEC enhanced SAT-IoT networks,’’ IEEE Access, vol. 8, pp. 55915–55926, 2020.
M. Ahmed, M. A. Mirza, S. Raza, H. Ahmad, F. Xu, W. U. Khan, Q. Lin, and Z. Han, ‘‘Vehicular communication network enabled CAV data offloading: A review,’’ IEEE Trans. Intell. Transp. Syst., vol. 24, no. 8, pp. 7869–7897, Aug. 2023.
B. Liu, C. Liu, and M. Peng, ‘‘Resource allocation for energy-efficient MEC in NOMA-enabled massive IoT networks,’’ IEEE J. Sel. Areas Commun., vol. 39, no. 4, pp. 1015–1027, Apr. 2021.
J. Hwang, L. Nkenyereye, N. Sung, J. Kim, and J. Song, ‘‘IoT service slicing and task offloading for edge computing,’’ IEEE Internet Things J., vol. 8, no. 14, pp. 11526–11547, Jul. 2021.
L. Nkenyereye, J. Hwang, Q.-V. Pham, and J. Song, ‘‘Virtual IoT service slice functions for multiaccess edge computing platform,’’ IEEE Internet Things J., vol. 8, no. 14, pp. 11233–11248, Jul. 2021.
H. Hu, Q. Wang, R. Q. Hu, and H. Zhu, ‘‘Mobility-aware offloading and resource allocation in a MEC-enabled IoT network with energy harvesting,’’ IEEE Internet Things J., vol. 8, no. 24, pp. 17541–17556, Dec. 2021.
Z. Xue, P. Zhou, Z. Xu, X. Wang, Y. Xie, X. Ding, and S. Wen, ‘‘A resource-constrained and privacy-preserving edge-computing-enabled clinical decision system: A federated reinforcement learning approach,’’ IEEE Internet Things J., vol. 8, no. 11, pp. 9122–9138, Jun. 2021.
S. R. Chaudhry, A. Palade, A. Kazmi, and S. Clarke, ‘‘Improved QoS at the edge using serverless computing to deploy virtual network functions,’’ IEEE Internet Things J., vol. 7, no. 10, pp. 10673–10683, Oct. 2020.
W.-Z. Zhang, I. A. Elgendy, M. Hammad, A. M. Iliyasu, X. Du, M. Guizani, and A. A. A. El-Latif, ‘‘Secure and optimized load balancing for multitier IoT and edge-cloud computing systems,’’ IEEE Internet Things J., vol. 8, no. 10, pp. 8119–8132, May 2021.
B. S. Premananda, K. J. Nikhil, and C. M. N. Jain, ‘‘MEC S-box based PRESENT lightweight cipher for enhanced security and throughput,’’ in Proc. IEEE Int. Conf. Distrib. Comput., VLSI, Electr. Circuits Robot. (DISCOVER), Oct. 2020, pp. 212–217.
M. Qin, N. Cheng, Z. Jing, T. Yang, W. Xu, Q. Yang, and R. R. Rao, ‘‘Service-oriented energy-latency tradeoff for IoT task partial offloading in MEC-enhanced multi-RAT networks,’’ IEEE Internet Things J., vol. 8, no. 3, pp. 1896–1907, Feb. 2021.
Z. Zhou, S. Yu, W. Chen, and X. Chen, ‘‘CE-IoT: Cost-effective cloud-edge resource provisioning for heterogeneous IoT applications,’’ IEEE Internet Things J., vol. 7, no. 9, pp. 8600–8614, Sep. 2020.
Z. Xu, W. Gong, Q. Xia, W. Liang, O. F. Rana, and G. Wu, ‘‘NFV-enabled IoT service provisioning in mobile edge clouds,’’ IEEE Trans. Mobile Comput., vol. 20, no. 5, pp. 1892–1906, May 2021.
R. Han, Y. Wen, L. Bai, J. Liu, and J. Choi, ‘‘Rate splitting on mobile edge computing for UAV-aided IoT systems,’’ IEEE Trans. Cognit. Commun. Netw., vol. 6, no. 4, pp. 1193–1203, Dec. 2020.
F. Rezazadeh, H. Chergui, L. Christofi, and C. Verikoukis, ‘‘Actor-critic-based learning for zero-touch joint resource and energy control in network slicing,’’ in Proc. ICC-IEEE Int. Conf. Commun., Jun. 2021, pp. 1–6.
Y. Li, R. Zhao, L. Fan, and A. Liu, ‘‘Antenna mode switching for full-duplex destination-based jamming secure transmission,’’ IEEE Access, vol. 6, pp. 9442–9453, 2018.
F. A. Potra and S. J. Wright, ‘‘Interior-point methods,’’ J. Comput. Appl. Math., vol. 124, nos. 1–2, pp. 281–302, Dec. 2000.
H. Song, B. Gu, K. Son, and W. Choi, ‘‘Joint optimization of edge computing server deployment and user offloading associations in wireless edge network via a genetic algorithm,’’ IEEE Trans. Netw. Sci. Eng., vol. 9, no. 4, pp. 2535–2548, Jul. 2022.
A. Mahmood, A. Ahmed, M. Naeem, M. R. Amirzada, and A. Al-Dweik, ‘‘Weighted utility aware computational overhead minimization of wireless power mobile edge cloud,’’ Comput. Commun., vol. 190, pp. 178–189, Jun. 2022.