C. Wu, X. Yi, Y. Zhu, W. Wang, L. You, and X. Gao, "Channel prediction in high-mobility massive MIMO: From spatio-temporal autoregression to deep learning, " IEEE J. Sel. Areas Commun., vol. 39, no. 7, pp. 1915-1930, Jul. 2021.
M. K. Shehzad, L. Rose, S. Wesemann, and M. Assaad, "MLbased massive MIMO channel prediction: Does it work on real-world data?" IEEE Wireless Commun. Lett., vol. 11, no. 4, pp. 811-815, Apr. 2022.
K. He, T. X. Vu, D. T. Hoang, D. N. Nguyen, S. Chatzinotas, and B. Ottersten, "Risk-aware antenna selection for multiuser massive MIMO under incomplete CSI, " IEEE Trans. Wireless Commun., vol. 23, no. 9, pp. 11001-11014, Sep. 2024.
S. Mehrizi and S. Chatzinotas, "Network traffic modeling and prediction using graph Gaussian processes, " IEEE Access, vol. 10, pp. 132644-132655, 2022.
D. Cai, P. Fan, Q. Zou, Y. Xu, Z. Ding, and Z. Liu, "Active device detection and performance analysis of massive non-orthogonal transmissions in cellular Internet of Things, " Sci. China Inf. Sci., vol. 65, no. 8, Aug. 2022, Art. no. 182301.
Q. Liu, J. Li, and Z. Lu, "ST-TRAN: Spatial-temporal transformer for cellular traffic prediction, " IEEE Commun. Lett., vol. 25, no. 10, pp. 3325-3329, Oct. 2021.
X.Wang et al., "A survey on deep learning for cellular traffic prediction, " Intell. Comput., vol. 3, p. 54, Jan. 2024.
X. Liu et al., "LargeST: A benchmark dataset for large-scale traffic forecasting, " in Proc. NeurIPS, 2023, pp. 1-18.
F. Chiariotti, M. Drago, P. Testolina, M. Lecci, A. Zanella, and M. Zorzi, "Temporal characterization and prediction of VR traffic:A network slicing use case, " IEEE Trans. Mobile Comput., vol. 23, no. 5, pp. 3890-3908, May 2024.
S. Siami-Namini, N. Tavakoli, and A. S. Namin, "Acomparison of ARIMA and LSTM in forecasting time series, " in Proc. 17th IEEE Int. Conf. Mach. Learn. Appl. (ICMLA), Dec. 2018, pp. 1394-1401.
C. Zhang, H. Zhang, D. Yuan, and M. Zhang, "Citywide cellular traffic prediction based on densely connected convolutional neural networks, " IEEE Commun. Lett., vol. 22, no. 8, pp. 1656-1659, Aug. 2018.
C. Qiu, Y. Zhang, Z. Feng, P. Zhang, and S. Cui, "Spatio-temporal wireless traffic prediction with recurrent neural network, " IEEE Wireless Commun. Lett., vol. 7, no. 4, pp. 554-557, Aug. 2018.
C. Tan et al., "Temporal attention unit: Towards efficient spatiotemporal predictive learning, " in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2023, pp. 18770-18782.
G. Liu, Z. Hu, L. Wang, J. Xue, H. Yin, and D. Gesbert, "Spatio-temporal neural network for channel prediction in massive MIMO-OFDM systems, " IEEE Trans. Commun., vol. 70, no. 12, pp. 8003-8016, Dec. 2022.
T. Zhou, H. Zhang, B. Ai, C. Xue, and L. Liu, "Deep-learning-based spatial-temporal channel prediction for smart high-speed railway communication networks, " IEEE Trans. Wireless Commun., vol. 21, no. 7, pp. 5333-5345, Jul. 2022.
F. Sun et al., "Mobile data traffic prediction by exploiting time-evolving user mobility patterns, " IEEE Trans. Mobile Comput., vol. 21, no. 12, pp. 4456-4470, Dec. 2022.
T. Qi, G. Li, L. Chen, and Y. Xue, "ADGCN: An asynchronous dilation graph convolutional network for traffic flow prediction, " IEEE Internet Things J., vol. 9, no. 5, pp. 4001-4014, Mar. 2022.
Z. Chen, M. Ma, T. Li, H. Wang, and C. Li, "Long sequence time-series forecasting with deep learning: A survey, " Inf. Fusion, vol. 97, Sep. 2023, Art. no. 101819.
Q. Wen et al., "Transformers in time series: A survey, " in Proc. 32nd Int. Joint Conf. Artif. Intell., Aug. 2023, pp. 6778-6786.
M. Xu et al., "Spatial-temporal transformer networks for traffic flow forecasting, " 2020, arXiv:2001.02908.
X. Shi, Z. Chen, H. Wang, D. Yeung, W. Wong, and W. Woo, "Convolutional LSTM network: A machine learning approach for precipitation nowcasting, " in Proc. NIPS, 2015, pp. 802-810.
H. Jiang, M. Cui, D. W. K. Ng, and L. Dai, "Accurate channel prediction based on transformer: Making mobility negligible, " IEEE J. Sel. Areas Commun., vol. 40, no. 9, pp. 2717-2732, Sep. 2022.
Z. Wang, J. Hu, G. Min, Z. Zhao, Z. Chang, and Z. Wang, "Spatial-temporal cellular traffic prediction for 5G and beyond: A graph neural networks-based approach, " IEEE Trans. Ind. Informat., vol. 19, no. 4, pp. 5722-5731, Apr. 2023.
S. Chaudhari, V. Mithal, G. Polatkan, and R. Ramanath, "An attentive survey of attention models, " ACM Trans. Intell. Syst. Technol., vol. 12, no. 5, pp. 1-32, Oct. 2021.
S. Ahmed, I. E. Nielsen, A. Tripathi, S. Siddiqui, R. P. Ramachandran, and G. Rasool, "Transformers in time-series analysis: A tutorial, " Circuits, Syst., Signal Process., vol. 42, no. 12, pp. 7433-7466, Dec. 2023.
S. Liu et al., "Pyraformer: Low-complexity pyramidal attention for longrange time series modeling and forecasting, " in Proc. Int. Conf. Learn. Represent., 2021, pp. 1-20.
H. Zhou et al., "Informer: Beyond efficient transformer for long sequence time-series forecasting, " in Proc. AAAI Conf. Artif. Intell., May 2021, vol. 35, no. 12, pp. 11106-11115.
N. Kitaev, L. Kaiser, and A. Levskaya, "Reformer: The efficient transformer, " 2020, arXiv:2001.04451.
A. Das, W. Kong, R. Sen, and Y. Zhou, "A decoder-only foundation model for time-series forecasting, " 2023, arXiv:2310. 10688.
S. Zheng, C. Shen, and X. Chen, "Design and analysis of uplink and downlink communications for federated learning, " IEEE J. Sel. Areas Commun., vol. 39, no. 7, pp. 2150-2167, Jul. 2021.
R. Kumar, J. Mendes-Moreira, and J. Chandra, "Spatio-temporal parallel transformer based model for traffic prediction, " ACM Trans. Knowl. Discovery Data, vol. 18, no. 9, pp. 1-25, Nov. 2024.
G. Barlacchi et al., "A multi-source dataset of urban life in the city of Milan and the Province of Trentino, " Sci. Data, vol. 2, no. 1, pp. 1-15, Oct. 2015.
D. Bahdanau, K. Cho, and Y. Bengio, "Neural machine translation by jointly learning to align and translate, " in Proc. ICLR, 2015.
A. Vaswani et al., "Attention is all you need, " in Proc. Adv. Neural Inf. Process. Syst., vol. 30, 2017, pp. 1-11.
T. Wang et al., "What language model architecture and pretraining objective works best for zero-shot generalization?" in Proc. Int. Conf. Mach. Learn., 2022, pp. 22964-22984.
M. Jin et al., "Large models for time series and spatio-temporal data: A survey and outlook, " 2023, arXiv:2310.10196.
D. P. Kingma and J. Ba, "Adam: A method for stochastic optimization, " 2014, arXiv:1412.6980.
S. Sharifi, S. Shahbazpanahi, and M. Dong, "A POMDP-based antenna selection for massive MIMO communication, " IEEE Trans. Commun., vol. 70, no. 3, pp. 2025-2041, Mar. 2022.
D. Eckles and M. Kaptein, "Thompson sampling with the online bootstrap, " 2014, arXiv:1410.4009.
T. L. Marzetta, E. G. Larsson, and H. Yang, Fundamentals of Massive MIMO. Cambridge, U.K.: Cambridge Univ. Press, 2016.
H. S. Wang and P.-C. Chang, "On verifying the first-order Markovian assumption for a Rayleigh fading channel model, " IEEE Trans. Veh. Technol., vol. 45, no. 2, pp. 353-357, May 1996.
G. J. Byers and F. Takawira, "Spatially and temporally correlated MIMO channels: Modeling and capacity analysis, " IEEE Trans. Veh. Technol., vol. 53, no. 3, pp. 634-643, May 2004.
L. Sanguinetti, E. Björnson, and J. Hoydis, "Toward massive MIMO 2.0: Understanding spatial correlation, interference suppression, and pilot contamination, " IEEE Trans. Commun., vol. 68, no. 1, pp. 232-257, Jan. 2020.
G. Caire, N. Jindal, M. Kobayashi, and N. Ravindran, "Multiuser MIMO achievable rates with downlink training and channel state feedback, " IEEE Trans. Inf. Theory, vol. 56, no. 6, pp. 2845-2866, Jun. 2010.
Y. Li, R. Yu, C. Shahabi, and Y. Liu, "Diffusion convolutional recurrent neural network: Data-driven traffic forecasting, " in Proc. ICLR, 2018, pp. 1-16.
L. Bai, L. Yao, C. Li, X. Wang, and C. Wang, "Adaptive graph convolutional recurrent network for traffic forecasting, " in Proc. NIPS, 2020, pp. 1-12.
B.Yu, H.Yin, and Z. Zhu, "Spatio-temporal graph convolutional networks: A deep learning framework for traffic forecasting, " in Proc. IJCAI, 2018, pp. 3634-3640.