bis-FASIs; fluorine mass balance; hexafluorophosphate; inorganic fluorinated compounds; ultrashort-chain PFAS; Wastewater; Ionic Liquids; Water Pollutants, Chemical; Fluorocarbons; Water Pollutants, Chemical/analysis; Europe; Chromatography, Supercritical Fluid; Bis-FASI; Fluorinated compound; Hexafluorophosphates; Inorganic fluorinated compound; Inorganics; Mass balance; Polyfluoroalkyl substances; Super critical fluid chromatography; Ultrashort-chain polyfluoroalkyl substance; Chemistry (all); Environmental Chemistry; fluorine massbalance; ultrashort-chainPFAS
Abstract :
[en] Per- and polyfluoroalkyl substances (PFAS) and fluorinated ionic liquids were investigated in municipal effluents from 30 wastewater treatment plants (WWTPs) across 15 European countries using supercritical fluid chromatography-high-resolution mass spectrometry (SFC-HRMS) for nontarget screening. Bis-perfluoroalkyl sulfonimide (bis-FASI) ionic liquids were detected as bis(trifluoromethanesulfonyl)imide (NTf2-), two rarely reported homologues (±2 CF2, namely FSI- and BETI-), and two previously unreported homologues (±1 CF2, namely FTFSI- and FTNTf2-). Bis-FASIs were present in 85% of samples and were more abundant in effluents from larger WWTPs. The fluorinated anion PF6-, commonly used in ionic liquids, was found in all samples (≤3 μg/L). Hexafluoroarsenate (AsF6-), reported here for the first time in municipal wastewater, was detected in 32% of samples in eight countries. PF6- and AsF6- concentrations exceeded those of traditional PFSAs and PFCAs in 97% of the samples. No removal was detected for perfluorinated compounds, inorganic anions, and low-fluorinated pharmaceuticals and pesticides. Low-fluorinated substances were detected in 90% of samples (>100 ng/L), yet PF6- alone surpassed the combined concentration of all low-fluorinated substances in 27 out of 30 samples. These results reveal the significance of unconventional fluorinated substances for the overall fluorine load in wastewater, highlighting the need to extend monitoring strategies beyond legacy PFAS.
Disciplines :
Chemistry
Author, co-author :
Tisler, Selina ; Analytical Chemistry Group, Department of Plant and Environmental Science, Faculty of Science, University of Copenhagen, 1871 Frederiksberg C, Denmark
Zweigle, Jonathan ; Analytical Chemistry Group, Department of Plant and Environmental Science, Faculty of Science, University of Copenhagen, 1871 Frederiksberg C, Denmark
Gotil, Maria Kregler ; Analytical Chemistry Group, Department of Plant and Environmental Science, Faculty of Science, University of Copenhagen, 1871 Frederiksberg C, Denmark
Finckh, Saskia; Department of Effect-Directed Analysis, UFZ─Helmholtz Centre for Environmental Research, 04318 Leipzig, Germany
Brack, Werner; Department of Effect-Directed Analysis, UFZ─Helmholtz Centre for Environmental Research, 04318 Leipzig, Germany ; Department of Evolutionary Ecology and Environmental Toxicology, Faculty of Biological Sciences, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
Braxmaier, Eva-Maria ; Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600 Dübendorf, Switzerland
Meyer, Corina ; Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600 Dübendorf, Switzerland
Hollender, Juliane ; Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600 Dübendorf, Switzerland ; Institute of Biogeochemistry and Pollutant Dynamics (IBP), ETH Zurich, 8092 Zürich, Switzerland
Kosjek, Tina ; Department of Environmental Sciences, Jožef Stefan Institute, 1000 Ljubljana, Slovenia
Larsson, Pontus; Man-Technology-Environment Research Center (MTM), Örebro University, 701 82 Örebro, Sweden
Kärrman, Anna; Man-Technology-Environment Research Center (MTM), Örebro University, 701 82 Örebro, Sweden
Selin, Erica; Man-Technology-Environment Research Center (MTM), Örebro University, 701 82 Örebro, Sweden
Elabbadi, Dalia; Department of Chemistry and Centre of Excellence in Water-Based Early Warning Systems for Health Protection, University of Bath, Bath BA2 7AY, U.K
Elliss, Harry; Department of Chemistry and Centre of Excellence in Water-Based Early Warning Systems for Health Protection, University of Bath, Bath BA2 7AY, U.K
Kasprzyk-Hordern, Barbara ; Department of Chemistry and Centre of Excellence in Water-Based Early Warning Systems for Health Protection, University of Bath, Bath BA2 7AY, U.K
Boogaerts, Tim; Toxicological Center, University of Antwerp, 2610 Wilrijk, Belgium
Covaci, Adrian ; Toxicological Center, University of Antwerp, 2610 Wilrijk, Belgium
Oberacher, Herbert; Institute of Legal Medicine and Core Facility Metabolomics, Medical University of Innsbruck, 6020 Innsbruck, Austria
Flores Quintana, Harold; Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), Uppsala 75007, Sweden
Lai, Foon Yin; Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), Uppsala 75007, Sweden
Ahrens, Lutz ; Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), Uppsala 75007, Sweden
Assoumani, Azziz ; Unité Méthodes et développements en Analyses pour l'Environnement, INERIS, 60550 Verneuil-en-Halatte, France
Béen, Frederic; Amsterdam Institute for Life and Environment, Vrije Universiteit Amsterdam, 1081HV Amsterdam, The Netherlands ; KWR Water Research Institute, 3433BB Nieuwegein, The Netherlands
Christensen, Jan H ; Analytical Chemistry Group, Department of Plant and Environmental Science, Faculty of Science, University of Copenhagen, 1871 Frederiksberg C, Denmark
European Commission Fonds Wetenschappelijk Onderzoek
Funding text :
This work was carried out in the framework of the European Partnership for the Assessment of Risks from Chemicals (PARC) and has received funding from the European Union\u2019s Horizon Europe research and innovation program under Grant Agreement No 101057014. Views and opinions expressed are, however, those of the author(s) only and do not necessarily reflect those of the European Union or the Health and Digital Executive Agency. Neither the European Union nor the granting authority can be held responsible for them. TB was cofinanced by Research Foundation Flanders (Grant number: 1225924N). Additionally, we would like to acknowledge the stakeholders (WWTP operators), especially Vand Center Syd (Denmark), Aquafin (Belgium), water board de Dommel and HDSR (Netherlands), Rey Eyer and Jo\u0308rg Ringwald (Switzerland), Jo\u0308rg Ahlheim and Margit Petre (Germany), Tomas Mackulak (Slovakia), Wessex Water staff and Megan Robertson and John Bagnall (Great Britain), Bilbao-Bizkaia Water Council and In\u0303igo Gonzalez (Spain), Theodor Crispin and Va\u0308stra Ma\u0308lardalens Energi och Miljo\u0308 AB (Sweden). Noelia Salgueiro Gonzalez and Sara Castiglioni (Mario Negri Institute for Pharmacological Research, Milan, Italy) are acknowledged for collection, extraction and metadata gathering of samples from Italy.
Evich, M. G.; Davis, M. J. B.; McCord, J. P.; Acrey, B.; Awkerman, J. A.; Knappe, D. R. U.; Lindstrom, A. B.; Speth, T. F.; Tebes-Stevens, C.; Strynar, M. J.; Wang, Z.; Weber, E. J.; Henderson, W. M.; Washington, J. W. Per- and Polyfluoroalkyl Substances in the Environment. Science 2022, 375 (6580), eabg9065 10.1126/science.abg9065
Glüge, J.; Scheringer, M.; Cousins, I. T.; DeWitt, J. C.; Goldenman, G.; Herzke, D.; Lohmann, R.; Ng, C. A.; Trier, X.; Wang, Z. An Overview of the Uses of Per- and Polyfluoroalkyl Substances (PFAS). Environ. Sci.: Processes Impacts 2020, 22 (12), 2345–2373, 10.1039/D0EM00291G
Buck, R. C.; Franklin, J.; Berger, U.; Conder, J. M.; Cousins, I. T.; de Voogt, P.; Jensen, A. A.; Kannan, K.; Mabury, S. A.; van Leeuwen, S. P. Perfluoroalkyl and Polyfluoroalkyl Substances in the Environment: Terminology, Classification, and Origins. Integr. Environ. Assess. Manage. 2011, 7 (4), 513–541, 10.1002/ieam.258
Müller, V.; Kindness, A.; Feldmann, J. Fluorine Mass Balance Analysis of PFAS in Communal Waters at a Wastewater Plant from Austria. Water Res. 2023, 244, 120501 10.1016/j.watres.2023.120501
Islam, M.; Thompson, K.; Dickenson, E.; Quiñones, O.; Steinle-Darling, E.; Westerhoff, P. Sucralose and Predicted De Facto Wastewater Reuse Levels Correlate with PFAS Levels in Surface Waters. Environ. Sci. Technol. Lett. 2023, 10 (5), 431–438, 10.1021/acs.estlett.3c00185
Kim, J.; Xin, X.; Hawkins, G. L.; Huang, Q.; Huang, C.-H. Occurrence, Fate, and Removal of Per- and Polyfluoroalkyl Substances (PFAS) in Small- and Large-Scale Municipal Wastewater Treatment Facilities in the United States. ACS ES&T Water 2024, 4 (12), 5428–5436, 10.1021/acsestwater.4c00541
Cousins, I. T.; DeWitt, J. C.; Glüge, J.; Goldenman, G.; Herzke, D.; Lohmann, R.; Ng, C. A.; Scheringer, M.; Wang, Z. The High Persistence of PFAS Is Sufficient for Their Management as a Chemical Class. Environ. Sci.: Processes Impacts 2020, 22 (12), 2307–2312, 10.1039/D0EM00355G
Janousek, R. M.; Mayer, J.; Knepper, T. P. Is the Phase-out of Long-Chain PFASs Measurable as Fingerprint in a Defined Area? Comparison of Global PFAS Concentrations and a Monitoring Study Performed in Hesse, Germany from 2014 to 2018. TrAC, Trends Anal. Chem. 2019, 120, 115393 10.1016/j.trac.2019.01.017
Ateia, M.; Maroli, A.; Tharayil, N.; Karanfil, T. The Overlooked Short- and Ultrashort-Chain Poly- and Perfluorinated Substances: A Review. Chemosphere 2019, 220, 866–882, 10.1016/j.chemosphere.2018.12.186
Munoz, G.; Liu, J.; Vo Duy, S.; Sauvé, S. Analysis of F-53B, Gen-X, ADONA, and Emerging Fluoroalkylether Substances in Environmental and Biomonitoring Samples: A Review. Trends Environ. Anal. Chem. 2019, 23, e00066 10.1016/j.teac.2019.e00066
Olsen, G. W.; Chang, S.-C.; Noker, P. E.; Gorman, G. S.; Ehresman, D. J.; Lieder, P. H.; Butenhoff, J. L. A Comparison of the Pharmacokinetics of Perfluorobutanesulfonate (PFBS) in Rats, Monkeys, and Humans. Toxicology 2009, 256 (1–2), 65–74, 10.1016/j.tox.2008.11.008
Munoz, G.; Liu, M.; Vo Duy, S.; Liu, J.; Sauvé, S. Target and Nontarget Screening of PFAS in Drinking Water for a Large-Scale Survey of Urban and Rural Communities in Québec, Canada. Water Res. 2023, 233, 119750 10.1016/j.watres.2023.119750
Tisler, S.; Mrkajic, N. S.; Reinhardt, L. M.; Jensen, C. M.; Clausen, L.; Thomsen, A. H.; Albrechtsen, H.-J.; Christensen, J. H. A Non-Target Evaluation of Drinking Water Contaminants in Pilot Scale Activated Carbon and Anion Exchange Resin Treatments. Water Res. 2025, 271, 122871 10.1016/j.watres.2024.122871
Wang, Z.; Buser, A. M.; Cousins, I. T.; Demattio, S.; Drost, W.; Johansson, O.; Ohno, K.; Patlewicz, G.; Richard, A. M.; Walker, G. W.; White, G. S.; Leinala, E. A New OECD Definition for Per- and Polyfluoroalkyl Substances. Environ. Sci. Technol. 2021, 55 (23), 15575–15578, 10.1021/acs.est.1c06896
Spaan, K. M.; Seilitz, F.; Plassmann, M. M.; de Wit, C. A.; Benskin, J. P. Pharmaceuticals Account for a Significant Proportion of the Extractable Organic Fluorine in Municipal Wastewater Treatment Plant Sludge. Environ. Sci. Technol. Lett. 2023, 10 (4), 328–336, 10.1021/acs.estlett.3c00108
Freeling, F.; Björnsdotter, M. K. Assessing the Environmental Occurrence of the Anthropogenic Contaminant Trifluoroacetic Acid (TFA). Curr. Opin. Green Sustainable Chem. 2023, 41, 100807 10.1016/j.cogsc.2023.100807
Tisler, S.; Zindler, F.; Freeling, F.; Nödler, K.; Toelgyesi, L.; Braunbeck, T.; Zwiener, C. Transformation Products of Fluoxetine Formed by Photodegradation in Water and Biodegradation in Zebrafish Embryos (Danio rerio). Environ. Sci. Technol. 2019, 53 (13), 7400, 10.1021/acs.est.9b00789
Margot, J.; Rossi, L.; Barry, D. A.; Holliger, C. A Review of the Fate of Micropollutants in Wastewater Treatment Plants. WIREs Water 2015, 2 (5), 457–487, 10.1002/wat2.1090
Rensmo, A.; Savvidou, E. K.; Cousins, I. T.; Hu, X.; Schellenberger, S.; Benskin, J. P. Lithium-Ion Battery Recycling: A Source of per- and Polyfluoroalkyl Substances (PFAS) to the Environment?. Environ. Sci.: Processes Impacts 2023, 25 (6), 1015–1030, 10.1039/D2EM00511E
Neuwald, I. J.; Zahn, D.; Knepper, T. P. Are (Fluorinated) Ionic Liquids Relevant Environmental Contaminants? High-Resolution Mass Spectrometric Screening for per- and Polyfluoroalkyl Substances in Environmental Water Samples Led to the Detection of a Fluorinated Ionic Liquid. Anal. Bioanal. Chem. 2020, 412 (20), 4881–4892, 10.1007/s00216-020-02606-8
Teymoorian, T.; Munoz, G.; Sauvé, S. PFAS Contamination in Tap Water: Target and Suspect Screening of Zwitterionic, Cationic, and Anionic Species across Canada and Beyond. Environ. Int. 2025, 195, 109250 10.1016/j.envint.2025.109250
Muschket, M.; Neuwald, I. J.; Zahn, D.; Seelig, A. H.; Kuckelkorn, J.; Knepper, T. P.; Reemtsma, T. Fate of Persistent and Mobile Chemicals in the Water Cycle: From Municipal Wastewater Discharges to River Bank Filtrate. Water Res. 2024, 266, 122436 10.1016/j.watres.2024.122436
He, Z.; Plassmann, M.; Cousins, I. T.; Benskin, J. P. A Novel Fluorine Mass Balance Method for Improved Characterization and Quantification of Extractable (Organo)Fluorine in Drinking Water. Environ. Sci. Technol. Lett. 2025, 12 (1), 73–78, 10.1021/acs.estlett.4c00774
Kärrman, A.; Yeung, L. W. Y.; Spaan, K. M.; Lange, F. T.; Nguyen, M. A.; Plassmann, M.; de Wit, C. A.; Scheurer, M.; Awad, R.; Benskin, J. P. Can. Determination of Extractable Organofluorine (EOF) Be Standardized? First Interlaboratory Comparisons of EOF and Fluorine Mass Balance in Sludge and Water Matrices. Environ. Sci.: Processes Impacts 2021, 23 (10), 1458–1465, 10.1039/D1EM00224D
Baqar, M.; Chen, H.; Yao, Y.; Sun, H. Latest Trends in the Environmental Analysis of PFAS Including Nontarget Analysis and EOF-, AOF-, and TOP-Based Methodologies. Anal. Bioanal. Chem. 2025, 417 (3), 555–571, 10.1007/s00216-024-05643-9
Yeung, L. W. Y.; De Silva, A. O.; Loi, E. I. H.; Marvin, C. H.; Taniyasu, S.; Yamashita, N.; Mabury, S. A.; Muir, D. C. G.; Lam, P. K. S. Perfluoroalkyl Substances and Extractable Organic Fluorine in Surface Sediments and Cores from Lake Ontario. Environ. Int. 2013, 59, 389–397, 10.1016/j.envint.2013.06.026
Jiao, E.; Larsson, P.; Wang, Q.; Zhu, Z.; Yin, D.; Kärrman, A.; van Hees, P.; Karlsson, P.; Qiu, Y.; Yeung, L. W. Y. Further Insight into Extractable (Organo)Fluorine Mass Balance Analysis of Tap Water from Shanghai, China. Environ. Sci. Technol. 2023, 57 (38), 14330–14339, 10.1021/acs.est.3c02718
Arp, H. P. H.; Gredelj, A.; Glüge, J.; Scheringer, M.; Cousins, I. T. The Global Threat from the Irreversible Accumulation of Trifluoroacetic Acid (TFA). Environ. Sci. Technol. 2024, 58 (45), 19925–19935, 10.1021/acs.est.4c06189
Wang, Y.; Liu, M.; Vo Duy, S.; Munoz, G.; Sauvé, S.; Liu, J. Fast Analysis of Short-Chain and Ultra-Short-Chain Fluorinated Organics in Water by on-Line Extraction Coupled to HPLC-HRMS. Sci. Total Environ. 2024, 943, 173682 10.1016/j.scitotenv.2024.173682
Björnsdotter, M. K.; Hartz, W. F.; Kallenborn, R.; Ericson Jogsten, I.; Humby, J. D.; Kärrman, A.; Yeung, L. W. Y. Levels and Seasonal Trends of C1– C4Perfluoroalkyl Acids and the Discovery of Trifluoromethane Sulfonic Acid in Surface Snow in the Arctic. Environ. Sci. Technol. 2021, 55 (23), 15853–15861, 10.1021/acs.est.1c04776
Tisler, S.; Savvidou, P.; Jørgensen, M. B.; Castro, M.; Christensen, J. H. Supercritical Fluid Chromatography Coupled to High-Resolution Mass Spectrometry Reveals Persistent Mobile Organic Compounds with Unknown Toxicity in Wastewater Effluents. Environ. Sci. Technol. 2023, 57, 9287, 10.1021/acs.est.3c00120
Tsugawa, H.; Ikeda, K.; Takahashi, M.; Satoh, A.; Mori, Y.; Uchino, H.; Okahashi, N.; Yamada, Y.; Tada, I.; Bonini, P.; Higashi, Y.; Okazaki, Y.; Zhou, Z.; Zhu, Z.-J.; Koelmel, J.; Cajka, T.; Fiehn, O.; Saito, K.; Arita, M.; Arita, M. A Lipidome Atlas in MS-DIAL 4. Nat. Biotechnol. 2020, 38 (10), 1159–1163, 10.1038/s41587-020-0531-2
Schymanski, E. S111 | PMTPFAS | Fluorine-Containing Compounds in PMT Suspect Lists; Zenodo, 2023. 10.5281/zenodo.8417075.
Tisler, S.; Zweigle, J.; Schymanski, E. S124 | IONICLIQUIDS | Ionic Liquids Suspect List (NORMAN-SLE-S124.0.1.0); Zenodo, 2025. 10.5281/zenodo.15348269.
Place, B. Suspect List of Possible Per- and Polyfluoroalkyl Substances (PFAS); National Institute of Standards and Technology, 2021.
Tisler, S.; Engler, N.; Jørgensen, M. B.; Kilpinen, K.; Tomasi, G.; Christensen, J. H. From Data to Reliable Conclusions: Identification and Comparison of Persistent Micropollutants and Transformation Products in 37 Wastewater Samples by Non-Target Screening Prioritization. Water Res. 2022, 219, 118599 10.1016/j.watres.2022.118599
Mohammed Taha, H.; Aalizadeh, R.; Alygizakis, N.; Antignac, J.-P.; Arp, H. P. H.; Bade, R.; Baker, N.; Belova, L.; Bijlsma, L.; Bolton, E. E.; Brack, W.; Celma, A.; Chen, W.-L.; Cheng, T.; Chirsir, P.; Čirka, L’.; D’Agostino, L. A.; Djoumbou Feunang, Y.; Dulio, V.; Fischer, S.; Gago-Ferrero, P.; Galani, A.; Geueke, B.; Głowacka, N.; Glüge, J.; Groh, K.; Grosse, S.; Haglund, P.; Hakkinen, P. J.; Hale, S. E.; Hernandez, F.; Janssen, E. M.-L.; Jonkers, T.; Kiefer, K.; Kirchner, M.; Koschorreck, J.; Krauss, M.; Krier, J.; Lamoree, M. H.; Letzel, M.; Letzel, T.; Li, Q.; Little, J.; Liu, Y.; Lunderberg, D. M.; Martin, J. W.; McEachran, A. D.; McLean, J. A.; Meier, C.; Meijer, J.; Menger, F.; Merino, C.; Muncke, J.; Muschket, M.; Neumann, M.; Neveu, V.; Ng, K.; Oberacher, H.; O’Brien, J.; Oswald, P.; Oswaldova, M.; Picache, J. A.; Postigo, C.; Ramirez, N.; Reemtsma, T.; Renaud, J.; Rostkowski, P.; Rüdel, H.; Salek, R. M.; Samanipour, S.; Scheringer, M.; Schliebner, I.; Schulz, W.; Schulze, T.; Sengl, M.; Shoemaker, B. A.; Sims, K.; Singer, H.; Singh, R. R.; Sumarah, M.; Thiessen, P. A.; Thomas, K. V.; Torres, S.; Trier, X.; van Wezel, A. P.; Vermeulen, R. C. H.; Vlaanderen, J. J.; von der Ohe, P. C.; Wang, Z.; Williams, A. J.; Willighagen, E. L.; Wishart, D. S.; Zhang, J.; Thomaidis, N. S.; Hollender, J.; Slobodnik, J.; Schymanski, E. L. The NORMAN Suspect List Exchange (NORMAN-SLE): Facilitating European and Worldwide Collaboration on Suspect Screening in High Resolution Mass Spectrometry. Environ. Sci. Eur. 2022, 34 (1), 104 10.1186/s12302-022-00680-6
Zweigle, J.; Bugsel, B.; Fabregat-Palau, J.; Zwiener, C. PFΔScreen─an Open-Source Tool for Automated PFAS Feature Prioritization in Non-Target HRMS Data. Anal. Bioanal. Chem. 2024, 416 (2), 349–362, 10.1007/s00216-023-05070-2
Zweigle, J.; Simon, F.; Meermann, B.; Zwiener, C. Can Qualitative Nontarget Data Be Indicative of PFAS Contamination? First Evidence by Correlation with EOF in Environmental Samples. Environ. Sci. Technol. Lett. 2024, 11 (9), 996–1001, 10.1021/acs.estlett.4c00442
Zweigle, J.; Bugsel, B.; Zwiener, C. Efficient PFAS Prioritization in Non-Target HRMS Data: Systematic Evaluation of the Novel MD/C-m/C Approach. Anal. Bioanal. Chem. 2023, 415 (10), 1791–1801, 10.1007/s00216-023-04601-1
Kaufmann, A.; Butcher, P.; Maden, K.; Walker, S.; Widmer, M. Simplifying Nontargeted Analysis of PFAS in Complex Food Matrixes. J. AOAC Int. 2022, 105 (5), 1280–1287, 10.1093/jaoacint/qsac071
Bugsel, B.; Zweigle, J.; Zwiener, C. Nontarget Screening Strategies for PFAS Prioritization and Identification by High Resolution Mass Spectrometry: A Review. Trends Environ. Anal. Chem. 2023, 40, e00216 10.1016/j.teac.2023.e00216
Koelmel, J. P.; Stelben, P.; McDonough, C. A.; Dukes, D. A.; Aristizabal-Henao, J. J.; Nason, S. L.; Li, Y.; Sternberg, S.; Lin, E.; Beckmann, M.; Williams, A. J.; Draper, J.; Finch, J. P.; Munk, J. K.; Deigl, C.; Rennie, E. E.; Bowden, J. A.; Godri Pollitt, K. J. FluoroMatch 2.0─Making Automated and Comprehensive Non-Targeted PFAS Annotation a Reality. Anal. Bioanal. Chem. 2022, 414 (3), 1201–1215, 10.1007/s00216-021-03392-7
Schymanski, E. L.; Jeon, J.; Gulde, R.; Fenner, K.; Ruff, M.; Singer, H. P.; Hollender, J. Identifying Small Molecules via High Resolution Mass Spectrometry: Communicating Confidence. Environ. Sci. Technol. 2014, 48, 2097–2098, 10.1021/es5002105
Charbonnet, J. A.; McDonough, C. A.; Xiao, F.; Schwichtenberg, T.; Cao, D.; Kaserzon, S.; Thomas, K. V.; Dewapriya, P.; Place, B. J.; Schymanski, E. L.; Field, J. A.; Helbling, D. E.; Higgins, C. P. Communicating Confidence of Per- and Polyfluoroalkyl Substance Identification via High-Resolution Mass Spectrometry. Environ. Sci. Technol. Lett. 2022, 9 (6), 473–481, 10.1021/acs.estlett.2c00206
Wang, K.; Wang, R.; Shan, W.; Yang, Z.; Chen, Y.; Wang, L.; Zhang, Y. Unravel the In-Source Fragmentation Patterns of Per- and Polyfluoroalkyl Substances during Analysis by LC-ESI-HRMS. Environ. Sci. Technol. 2024, 58 (51), 22766–22776, 10.1021/acs.est.4c08442
Tisler, S.; Zweigle, J.; Schymanski, E. S126 | SFCPFASFIONS | PFAS and Fluorinated Ions Detected with SFC; Zenodo, 2025. 10.5281/zenodo.15348558 (accessed May 14, 2025).
Barola, C.; Bucaletti, E.; Moretti, S.; Buiarelli, F.; Simonetti, G.; Lucarelli, F.; Goracci, L.; Lorenzetti, S.; Di Filippo, P.; Pomata, D.; Riccardi, C.; Galarini, R. Untargeted Screening of Per- and Polyfluoroalkyl Substances (PFASs) in Airborne Particulate of Three Italian E-Waste Recycling Facilities. Separations 2023, 10 (11), 547 10.3390/separations10110547
Feng, S.; Lu, X.; Ouyang, K.; Su, G.; Li, Q.; Shi, B.; Meng, J. Environmental Occurrence, Bioaccumulation and Human Risks of Emerging Fluoroalkylether Substances: Insight into Security of Alternatives. Sci. Total Environ. 2024, 922, 171151 10.1016/j.scitotenv.2024.171151
Neuwald, I.; Muschket, M.; Zahn, D.; Berger, U.; Seiwert, B.; Meier, T.; Kuckelkorn, J.; Strobel, C.; Knepper, T. P.; Reemtsma, T. Filling the Knowledge Gap: A Suspect Screening Study for 1310 Potentially Persistent and Mobile Chemicals with SFC- and HILIC-HRMS in Two German River Systems. Water Res. 2021, 204, 117645 10.1016/j.watres.2021.117645
Montalbán, M. G.; Hidalgo, J. M.; Collado-González, M.; Díaz Baños, F. G.; Víllora, G. Assessing Chemical Toxicity of Ionic Liquids on Vibrio Fischeri : Correlation with Structure and Composition. Chemosphere 2016, 155, 405–414, 10.1016/j.chemosphere.2016.04.042
Guelfo, J. L.; Ferguson, P. L.; Beck, J.; Chernick, M.; Doria-Manzur, A.; Faught, P. W.; Flug, T.; Gray, E. P.; Jayasundara, N.; Knappe, D. R. U.; Joyce, A. S.; Meng, P.; Shojaei, M. Lithium-Ion Battery Components Are at the Nexus of Sustainable Energy and Environmental Release of per- and Polyfluoroalkyl Substances. Nat. Commun. 2024, 15 (1), 5548 10.1038/s41467-024-49753-5
Wang, X.; Feng, W.; Zhou, Z.; Zhang, H. Design of Sulfonimide Anions for Rechargeable Lithium Batteries. Chem. Commun. 2024, 60 (81), 11434–11449, 10.1039/D4CC03759F
Daus, B.; von Tümpling, W.; Wennrich, R.; Weiss, H. Removal of Hexafluoroarsenate from Waters. Chemosphere 2007, 68 (2), 253–258, 10.1016/j.chemosphere.2007.01.019
Neuwald, I. J.; Hübner, D.; Wiegand, H. L.; Valkov, V.; Borchers, U.; Nödler, K.; Scheurer, M.; Hale, S. E.; Arp, H. P. H.; Zahn, D. Ultra-Short-Chain PFASs in the Sources of German Drinking Water: Prevalent, Overlooked, Difficult to Remove, and Unregulated. Environ. Sci. Technol. 2022, 56 (10), 6380–6390, 10.1021/acs.est.1c07949
Phong Vo, H. N.; Ngo, H. H.; Guo, W.; Hong Nguyen, T. M.; Li, J.; Liang, H.; Deng, L.; Chen, Z.; Hang Nguyen, T. A. Poly-and Perfluoroalkyl Substances in Water and Wastewater: A Comprehensive Review from Sources to Remediation. J. Water Process Eng. 2020, 36, 101393 10.1016/j.jwpe.2020.101393
Pan, Y.; Zhang, H.; Cui, Q.; Sheng, N.; Yeung, L. W. Y.; Sun, Y.; Guo, Y.; Dai, J. Worldwide Distribution of Novel Perfluoroether Carboxylic and Sulfonic Acids in Surface Water. Environ. Sci. Technol. 2018, 52 (14), 7621–7629, 10.1021/acs.est.8b00829
Kotthoff, M.; Fliedner, A.; Rüdel, H.; Göckener, B.; Bücking, M.; Biegel-Engler, A.; Koschorreck, J. Per- and Polyfluoroalkyl Substances in the German Environment – Levels and Patterns in Different Matrices. Sci. Total Environ. 2020, 740, 140116 10.1016/j.scitotenv.2020.140116
Jeong, Y.; Da Silva, K. M.; Iturrospe, E.; Fuiji, Y.; Boogaerts, T.; van Nuijs, A. L. N.; Koelmel, J.; Covaci, A. Occurrence and Contamination Profile of Legacy and Emerging Per- and Polyfluoroalkyl Substances (PFAS) in Belgian Wastewater Using Target, Suspect and Non-Target Screening Approaches. J. Hazard. Mater. 2022, 437, 129378 10.1016/j.jhazmat.2022.129378
Wang, X.; Yu, N.; Qian, Y.; Shi, W.; Zhang, X.; Geng, J.; Yu, H.; Wei, S. Non-Target and Suspect Screening of per- and Polyfluoroalkyl Substances in Chinese Municipal Wastewater Treatment Plants. Water Res. 2020, 183, 115989 10.1016/j.watres.2020.115989
Dauchy, X.; Boiteux, V.; Colin, A.; Bach, C.; Rosin, C.; Munoz, J.-F. Poly- and Perfluoroalkyl Substances in Runoff Water and Wastewater Sampled at a Firefighter Training Area. Arch. Environ. Contam. Toxicol. 2019, 76 (2), 206–215, 10.1007/s00244-018-0585-z
Capitain, C.; Schüßler, M.; Bugsel, B.; Zweigle, J.; Vogel, C.; Leube, P.; Zwiener, C. Implementation of Matrix-Matched Semiquantification of PFAS in AFFF-Contaminated Soil. Environ. Sci. Technol. 2025, 59, 7338, 10.1021/acs.est.4c14255
Houtz, E.; Wang, M.; Park, J.-S. Identification and Fate of Aqueous Film Forming Foam Derived Per- and Polyfluoroalkyl Substances in a Wastewater Treatment Plant. Environ. Sci. Technol. 2018, 52 (22), 13212–13221, 10.1021/acs.est.8b04028
Moneta, B. G.; Feo, M. L.; Torre, M.; Tratzi, P.; Aita, S. E.; Montone, C. M.; Taglioni, E.; Mosca, S.; Balducci, C.; Cerasa, M.; Guerriero, E.; Petracchini, F.; Cavaliere, C.; Laganà, A.; Paolini, V. Occurrence of Per- and Polyfluorinated Alkyl Substances in Wastewater Treatment Plants in Northern Italy. Sci. Total Environ. 2023, 894, 165089 10.1016/j.scitotenv.2023.165089
Khan, U. A.; Löffler, P.; Spilsbury, F.; Wiberg, K.; Stålsby Lundborg, C.; Lai, F. Y. Towards Sustainable Water Reuse: A Critical Review and Meta-Analysis of Emerging Chemical Contaminants with Risk-Based Evaluation, Health Hazard Prediction and Prioritization for Assessment of Effluent Water Quality. J. Hazard. Mater. 2024, 480, 136175 10.1016/j.jhazmat.2024.136175
Moon, H. G.; Bae, S.; Lee, H. J.; Chae, Y.; Kang, W.; Min, J.; Kim, H.-M.; Seo, J.-S.; Heo, J. D.; Hyun, M.; Kim, S. Assessment of Potential Environmental and Human Risks for Bisphenol AF Contaminant. Ecotoxicol. Environ. Saf. 2024, 281, 116598 10.1016/j.ecoenv.2024.116598
Wu, Y.; Yang, T.; Wu, Y.; Liang, Y.; Zeng, X.; Yu, Z.; Peng, P. Co-Metabolic Biotransformation of Bisphenol AF by a Bisphenol A-Growing Bacterial Enrichment Culture. Environ. Sci. Technol. 2024, 58 (51), 22799–22807, 10.1021/acs.est.4c10861
Tisler, S.; Kilpinen, K.; Devers, J.; Castro, M.; Jørgensen, M. B.; Mandava, G.; Lundqvist, J.; Cedergreen, N.; Christensen, J. H. Mapping Emerging Contaminants in Wastewater Effluents through Multichromatographic Platform Analysis and Source Correlations. Environ. Sci. Technol. 2025, 59 (11), 5766–5774, 10.1021/acs.est.5c01139
Cho, C.-W.; Pham, T. P. T.; Zhao, Y.; Stolte, S.; Yun, Y.-S. Review of the Toxic Effects of Ionic Liquids. Sci. Total Environ. 2021, 786, 147309 10.1016/j.scitotenv.2021.147309