[en] This study employs molecular dynamics (MD) simulations to examine materials with comparable tension-compression behavior but markedly different cyclic fatigue performances. The findings reveal that the cyclic fatigue properties of AlCoCrCuFeNi high-entropy alloys (HEAs) are primarily governed by microscopic deformation mechanisms, particularly dislocation slip modes, which subtly affect initial work hardening. However, the slight initial differences in work hardening affected by the butterfly and Bauschinger effects gradually accumulate and intensify with repeated fatigue cycling. As the number of loading cycles increases, β-asymmetry steadily declines. Interactions between partial dislocations and stacking faults (SFs) at lower temperatures disrupt the lattice structure and impede dislocation reversal, thereby diminishing the Bauschinger effect. This mechanism contributes to marked variations in fatigue life and cyclic stress response.
Disciplines :
Materials science & engineering
Author, co-author :
Nguyen, Hoang-Giang; Department of Mechanical Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan ; Department of Electronic Engineering, National United University, Miaoli City, Taiwan ; Faculty of Engineering, Kien Giang University, Viet Nam
Young, Sheng-Joue; Department of Electronic Engineering, National United University, Miaoli City, Taiwan
LE, Thanh-Dung ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom
Vu, Thi-Nhai; Department of Mechanical Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan ; Faculty of Mechanical Engineering, Nha Trang University, Viet Nam
Fang, Te-Hua ; Department of Mechanical Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan ; Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, Kaohsiung, Taiwan
External co-authors :
yes
Language :
English
Title :
Bauschinger effect on high entropy alloy under cyclic deformation
The authors acknowledge the support by the National Science and Technology Council, Taiwan, under grant numbers NSTC 113-2221-E-992-067-MY3, NSTC 113-2811-E239-002, and Industry Cooperation Project no. 113A00262.
Jeddi, D., Palin‐Luc, T., A review about the effects of structural and operational factors on the gigacycle fatigue of steels. Fatig. Fract. Eng. Mater. Struct. 41:5 (2018), 969–990, 10.1111/ffe.12779.
Shao, C.W., Zhang, P., Liu, R., Zhang, Z.J., Pang, J.C., Zhang, Z.F., Low-cycle and extremely-low-cycle fatigue behaviors of high-Mn austenitic TRIP/TWIP alloys: property evaluation, damage mechanisms, and life prediction. Acta Mater. 103 (2016), 781–795, 10.1016/j.actamat.2015.11.015.
Adamczyk-Cieślak, B., Koralnik, M., Kuziak, R., Brynk, T., Zygmunt, T., Mizera, J., Low-cycle fatigue behaviour and microstructural evolution of pearlitic and bainitic steels. Mater. Sci. Eng., A 747 (2019), 144–153, 10.1016/j.msea.2019.01.043.
Long, X.Y., Branco, R., Zhang, F.C., Berto, F., Martins, R.F., Influence of Mn addition on cyclic deformation behaviour of bainitic rail steels. Int. J. Fatig., 132, 2020, 105362, 10.1016/j.ijfatigue.2019.105362.
Nguyen, H.G., Le, T.D., Nguyen, H.G., Fang, T.H., Mechanical properties of AlCoCrCuFeNi high-entropy alloys using molecular dynamics and machine learning. Mater. Sci. Eng. R Rep., 160, 2024, 100833, 10.1016/j.mser.2024.100833.
Hu, M., Song, K., Song, W., Dynamic mechanical properties and microstructure evolution of AlCoCrFeNi2. 1 eutectic high-entropy alloy at different temperatures. J. Alloys Compd., 892, 2022, 162097, 10.1016/j.jallcom.2021.162097.
Vu, T.N., Pham, V.T., Fang, T.H., Influences of grain size, temperature, and strain rate on mechanical properties of Al0. 3CoCrFeNi high–entropy alloys. Mater. Sci. Eng., A, 858, 2022, 144158, 10.1016/j.msea.2022.144158.
Mughrabi, H., Höppel, H.W., Kautz, M., Fatigue and microstructure of ultrafine-grained metals produced by severe plastic deformation. Scr. Mater. 51:8 (2004), 807–812, 10.1016/j.scriptamat.2004.05.012.
Nguyen, H.G., Fang, T.H., Doan, D.Q., Cyclic plasticity and deformation mechanism of AlCrCuFeNi high entropy alloy. J. Alloys Compd., 940, 2023, 168838, 10.1016/j.jallcom.2023.168838.
Shao, C.W., Zhang, P., Liu, R., Zhang, Z.J., Pang, J.C., Duan, Q.Q., Zhang, Z.F., A remarkable improvement of low-cycle fatigue resistance of high-Mn austenitic TWIP alloys with similar tensile properties: importance of slip mode. Acta Mater. 118 (2016), 196–212, 10.1016/j.actamat.2016.07.034.
Picak, S., Wegener, T., Sajadifar, S.V., Sobrero, C., Richter, J., Kim, H., Karaman, I., On the low-cycle fatigue response of CoCrNiFeMn high entropy alloy with ultra-fine grain structure. Acta Mater., 205, 2021, 116540, 10.1016/j.actamat.2020.116540.
Abashev, D.R., Bondar, V.S., Modified theory of plasticity for monotonic and cyclic deformation processes. Mech. Solid. 56:1 (2021), 4–12, 10.3103/S0025654421010027.
Abashev, D., Bondar, V., Refinement of plasticity theory for modeling monotonic and cyclic loading processes. J. Mech. Mater. Struct. 15:2 (2020), 225–239 http://10.0.8.92/jomms.2020.15.225.
Bondar, V.S., Abashev, D.R., Mathematical modeling of the monotonic and cyclic loading processes. Strength Mater. 52:3 (2020), 366–373, 10.1007/s11223-020-00186-7.
Li, J., Fang, Q., Liu, B., Liu, Y., Liu, Y., Atomic-scale analysis of nanoindentation behavior of high-entropy alloy. J. Micromech. Mole. Phys., 1(1), 2016, 1650001, 10.1142/S2424913016500016.
Doan, D.Q., Fang, T.H., Chen, T.H., Bui, T.X., Effects of void and inclusion sizes on mechanical response and failure mechanism of AlCrCuFeNi2 high-entropy alloy. Eng. Fract. Mech., 252, 2021, 107848, 10.1016/j.engfracmech.2021.107848.
Wang, Z., Li, J., Fang, Q., Liu, B., Zhang, L., Investigation into nanoscratching mechanical response of AlCrCuFeNi high-entropy alloys using atomic simulations. Appl. Surf. Sci. 416 (2017), 470–481, 10.1016/j.apsusc.2017.04.009.
Li, J., Fang, Q., Liu, B., Liu, Y., Liu, Y., Mechanical behaviors of AlCrFeCuNi high-entropy alloys under uniaxial tension via molecular dynamics simulation. RSC Adv. 6:80 (2016), 76409–76419, 10.1039/C6RA16503F.
Nguyen, H.G., Fang, T.H., Machining mechanism and residual stress of AlCuCrFeNi alloy. Int. J. Mech. Sci., 2024, 109429, 10.1016/j.ijmecsci.2024.109429.
Xu, H., Xiao, Y., Yu, G., He, Z., Hai, Z., Molecular dynamics study on transport process of membrane separation for carbon dioxide capture. Comput. Mater. Sci., 244, 2024, 113233, 10.1016/j.commatsci.2024.113233.
Daw, M.S., Foiles, S.M., Baskes, M.I., The embedded-atom method: a review of theory and applications. Mater. Sci. Rep. 9:7–8 (1993), 251–310, 10.1016/0920-2307(93)90001-U.
Utt, D., Stukowski, A., Albe, K., Grain boundary structure and mobility in high-entropy alloys: a comparative molecular dynamics study on a Σ11 symmetrical tilt grain boundary in face-centered cubic CuNiCoFe. Acta Mater. 186 (2020), 11–19, 10.1016/j.actamat.2019.12.031.
Stukowski, A., Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool. Model. Simulat. Mater. Sci. Eng., 18(1), 2009, 015012 https://doi10.1088/0965-0393/18/1/015012.
Pham, A.V., Fang, T.H., Tran, A.S., Chen, T.H., Structural and mechanical characterization of sputtered CuxNi100-x thin film using molecular dynamics. J. Phys. Chem. Solid., 147, 2020, 109663, 10.1016/j.jpcs.2020.109663.
Honeycutt, J.D., Andersen, H.C., Molecular dynamics study of melting and freezing of small Lennard-Jones clusters. J. Phys. Chem. 91:19 (1987), 4950–4963, 10.1021/j100303a014.
Qi, Y., Xu, H., He, T., Wang, M., Feng, M., Atomistic simulation of deformation behaviors polycrystalline CoCrFeMnNi high-entropy alloy under uniaxial loading. Int. J. Refract. Metals Hard Mater., 95, 2021, 105415, 10.1016/j.ijrmhm.2020.105415.
Ranjan, P., Owhal, A., Chakrabarti, D., Belgamwar, S.U., Roy, T., Balasubramaniam, R., Fundamental insights of mechanical polishing on polycrystalline Cu through molecular dynamics simulations. Mater. Today Commun., 32, 2022, 103980, 10.1016/j.mtcomm.2022.103980.
Ghaffarian, H., Taheri, A.K., Kang, K., Ryu, S., Molecular dynamics simulation study of the effect of temperature and grain size on the deformation behavior of polycrystalline cementite. Scr. Mater. 95 (2015), 23–26, 10.1016/j.scriptamat.2014.09.022.
Stukowski, A., Albe, K., Extracting dislocations and non-dislocation crystal defects from atomistic simulation data. Model. Simulat. Mater. Sci. Eng., 18(8), 2010, 085001 https://doi10.1088/0965-0393/18/8/085001.
Mohammadzadeh, R., Reversible deformation in nanocrystalline TWIP steel during cyclic loading by partial slip reversal and detwinning. Mater. Sci. Eng., A, 782, 2020, 139251, 10.1016/j.msea.2020.139251.
Bahadur, F., Biswas, K., Gurao, N.P., Micro-mechanisms of microstructural damage due to low cycle fatigue in CoCuFeMnNi high entropy alloy. Int. J. Fatig., 130, 2020, 105258, 10.1016/j.ijfatigue.2019.105258.