[en] This study utilizes molecular dynamics simulations to examine the mechanical response of Cu/Zr multilayer nanofilms under tension and compression deformation with the assistance of machine learning. The results demonstrate slip behavior during the tensile process, occurring exclusively in the Cu film, and phase transformation during the compression process, occurring solely in the Zr film. Additionally, this study investigates the effects of temperature, layer thickness, and strain rate on dislocation evolution within nanofilms. This study reveals that lattice disorder in Cu/Zr nanofilms mitigates the impact of external conditions by inhibiting the reverse movement of dislocations. Temperature and strain rate significantly affect the mechanical behavior, while the number of layers is negligible. Therefore, temperature and strain rate primarily influence plastic deformation in Cu/Zr nanofilms. Additionally, the research elucidates how temperature, strain rates, and layer configuration contribute to lattice disorder. These findings offer novel insights into the mechanical characteristics and deformation mechanisms of Cu/Zr at the atomic scale.
Disciplines :
Materials science & engineering
Author, co-author :
Nguyen, Hoang-Giang; Department of Mechanical Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan ; Department of Electronic Engineering, National United University, Miaoli, Taiwan ; Faculty of Engineering, Kien Giang University, Kien Giang Province, Viet Nam
Young, Sheng-Joue; Department of Electronic Engineering, National United University, Miaoli, Taiwan
LE, Thanh-Dung ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom ; Department of Electrical Engineering, Écolede Technologie Supérieure, University of Québec, Montréal, Canada
Nguyen, Chi-Ngon; College of Engineering, Can Tho University, Ninh Kieu District, Can Tho, Viet Nam
Do, Le-Binh; Faculty of Engineering, Kien Giang University, Kien Giang Province, Viet Nam
Nguyen, Thai-Nam; Department of Electronic Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan
Fang, Te-Hua ; Department of Mechanical Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan ; Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, Kaohsiung, Taiwan
External co-authors :
yes
Language :
English
Title :
Molecular dynamics simulation and machine learning to predict mechanical behavior of Cu/Zr multilayer nanofilms under tension-compression
The authors acknowledge the support from the National Science and Technology Council, Taiwan , under grant numbers NSTC 113\u20132221-E-992\u2013067-MY3 , NSTC 113\u20132811-E239\u2013002 , and Industry Cooperation Project no. 113A00262 .
Zhang, Y., Li, J., Zhang, Q., Ding, S., Wu, W., Xia, R., Tetrachiral nanostructured metallic glasses with mechanically tunable performance. Mater Chem Phys, 276, 2022, 125315.
Tran, A.S., Strengthening mechanism and plasticity deformation of crystalline/amorphous Cu/CuTa nanomultilayer. J Non Cryst Solids, 559, 2021, 120685.
Wang, D., Kups, T., Schawohl, J., Schaaf, P., Deformation behavior of Au/Ti multilayers under indentation. J. Mater. Sci.: Mater. Electron 23 (2012), 1077–1082.
Anderson, P.M., Carpenter, J.S., Estimates of interfacial properties in Cu/Ni multilayer thin films using hardness data. Scr Mater 62:6 (2010), 325–328.
Cammarata, R.C., Schlesinger, T.E., Kim, C., Qadri, S.B., Edelstein, A.S., Nanoindentation study of the mechanical properties of copper-nickel multilayered thin films. Appl Phys Lett 56:19 (1990), 1862–1864.
Zhou, H., Mu, X., Zhao, W., Tang, D., Wei, P., Zhu, W., Zhang, Q., Low interface resistance and excellent anti-oxidation of Al/Cu/Ni multilayer thin-film electrodes for Bi2Te3-based modules. Nano Energy 40 (2017), 274–281.
Fu, T., Peng, X., Chen, X., Weng, S., Hu, N., Li, Q., Wang, Z., Molecular dynamics simulation of nanoindentation on Cu/Ni nanotwinned multilayer films using a spherical indenter. Sci Rep, 6(1), 2016, 35665.
Sarkar, J., Das, D.K., Nanoindentation study of mechanical behavior and response of a single layer pristine silicene sheet using molecular dynamics simulations. Comput. Mater. Sci 147 (2018), 64–71.
Nguyen, H.G., Fang, T.H., Doan, D.Q., Cyclic plasticity and deformation mechanism of AlCrCuFeNi high entropy alloy. J Alloys Compd, 940, 2023, 168838.
Lu, Y.Y., Kotoka, R., Ligda, J.P., Cao, B.B., Yarmolenko, S.N., Schuster, B.E., Wei, Q., The microstructure and mechanical behavior of Mg/Ti multilayers as a function of individual layer thickness. Acta Mater 63 (2014), 216–231.
Chang, W.J., Fang, T.H., Influence of temperature on tensile and fatigue behavior of nanoscale copper using molecular dynamics simulation. J. Phys. Chem. Solids 64:8 (2003), 1279–1283.
Wang, D., Mu, J., Chen, Y., Qi, Y., Wu, W., Wang, Y., An, K., A study of stress-induced phase transformation and micromechanical behavior of CuZr-based alloy by in-situ neutron diffraction. J Alloys Compd 696 (2017), 1096–1104.
Luo, J., Dahmen, K., Liaw, P.K., Shi, Y., Low-cycle fatigue of metallic glass nanowires. Acta Mater 87 (2015), 225–232.
Zientarski, T., Chocyk, D., Structure and stress in Cu/Au and Fe/Au systems: a molecular dynamics study. Thin Solid Films 562 (2014), 347–352.
Louzguine-Luzgin, D.V., Zadorozhnyy, V.Y., Ketov, S.V., Wang, Z., Tsarkov, A.A., Greer, A.L., On room-temperature quasi-elastic mechanical behaviour of bulk metallic glasses. Acta Mater 129 (2017), 343–351.
Doan, D.Q., Fang, T.H., Tran, A.S., Chen, T.H., Residual stress and elastic recovery of imprinted Cu-Zr metallic glass films using molecular dynamic simulation. Comput. Mater. Sci, 170, 2019, 109162.
Jeng, Y.R., Tan, C.M., Investigation into the nanoindentation size effect using static atomistic simulations. Appl Phys Lett, 89(25), 2006.
Fu, T., Peng, X., Wan, C., Lin, Z., Chen, X., Hu, N., Wang, Z., Molecular dynamics simulation of plasticity in VN (001) crystals under nanoindentation with a spherical indenter. Appl Surf Sci 392 (2017), 942–949.
Doan, D.Q., Fang, T.H., Chen, T.H., Influences of grain size and temperature on tribological characteristics of CuAlNi alloys under nanoindentation and nanoscratch. Int. J. Mech. Sci, 185, 2020, 105865.
Nguyen, H.G., Fang, T.H., Machining mechanism and residual stress of AlCuCrFeNi alloy. Int. J. Mech. Sci, 2024, 109429.
Bui, T.X., Fang, T.H., Lee, C.I., Strain rate and shear-transformation zone response of nanoindentation and nanoscratching on Ni50Zr50 metallic glasses using molecular dynamics. Phys. B: Condens. Matter, 583, 2020, 412021.
Tschopp, M.A., Tucker, G.J., McDowell, D.L., Atomistic simulations of tension–compression asymmetry in dislocation nucleation for copper grain boundaries. Comput. Mater. Sci 44:2 (2008), 351–362.
Wang, X.L., Jiang, F., Hahn, H., Li, J., Gleiter, H., Sun, J., Fang, J.X., Plasticity of a scandium-based nanoglass. Scr Mater 98 (2015), 40–43.
Jeng, Y.R., Tsai, P.C., Fang, T.H., Molecular dynamics investigation of the mechanical properties of gallium nitride nanotubes under tension and fatigue. Nanotechnology, 15(12), 2004, 1737.
Vu, T.N., Pham, V.T., Nguyen, V.T., Fang, T.H., Interfacial strength and deformation mechanism of Ni/Co multilayers under uniaxial tension using molecular dynamics simulation. Mater. Today Commun, 30, 2022, 103088.
Doan, D.Q., Fang, T.H., Chen, T.H., Machining mechanism and deformation behavior of high-entropy alloy under elliptical vibration cutting. Intermetallics, 131, 2021, 107079.
Bai, Y., She, C., Atomic structure evolution in metallic glasses under cyclic deformation. Comput. Mater. Sci, 169, 2019, 109094.
Anggono, A.D., Mahmoud, M.Z., Suksatan, W., Chupradit, S., Ali, M.H., Mustafa, Y.F., Surendar, A., Combined effects of annealing and cyclic loading on structural rejuvenation and mechanical properties of CuZr metallic glass: a molecular dynamics study. Mater. Res, 25, 2022, e20210494.
Wang, P., Yang, X., Atomistic investigation of aging and rejuvenation in CuZr metallic glass under cyclic loading. Comput. Mater. Sci, 185, 2020, 109965.
Wang, X.D., Qu, R.T., Wu, S.J., Liu, Z.Q., Zhang, Z.F., Fatigue damage and fracture behavior of metallic glass under cyclic compression. Mater. Sci. Eng.: A 717 (2018), 41–47.
Meylan, C.M., Papparotto, F., Nachum, S., Orava, J., Miglierini, M., Basykh, V., Greer, A.L., Stimulation of shear-transformation zones in metallic glasses by cryogenic thermal cycling. J Non Cryst Solids, 548, 2020, 120299.
Priezjev, N.V., The effect of cryogenic thermal cycling on aging, rejuvenation, and mechanical properties of metallic glasses. J Non Cryst Solids 503 (2019), 131–138.
Sepúlveda-Macías, M., Amigo, N., Gutiérrez, G., Onset of plasticity and its relation to atomic structure in CuZr metallic glass nanowire: a molecular dynamics study. J Alloys Compd 655 (2016), 357–363.
Li, J., Guo, J., Luo, H., Fang, Q., Wu, H., Zhang, L., Liu, Y., Study of nanoindentation mechanical response of nanocrystalline structures using molecular dynamics simulations. Appl Surf Sci 364 (2016), 190–200.
Jiang, S.S., Huang, Y.J., Wu, F.F., Xue, P., Sun, J.F., A CuZr-based bulk metallic glass composite with excellent mechanical properties by optimizing microstructure. J Non Cryst Solids 483 (2018), 94–98.
Nakamura, A., Kamimura, Y., Edagawa, K., Takeuchi, S., Elastic and plastic characteristics of a model Cu–Zr amorphous alloy. Mater. Sci. Eng.: A 614 (2014), 16–26.
Ning, Z., Liang, W., Zhang, M., Li, Z., Sun, H., Liu, A., Sun, J., High tensile plasticity and strength of a CuZr-based bulk metallic glass composite. Mater Des 90 (2016), 145–150.
Xue, P., Pauly, S., Gan, W., Jiang, S., Fan, H., Ning, Z., Sun, J., Enhanced tensile plasticity of a CuZr-based bulk metallic glass composite induced by ion irradiation. J. mater. sci. technol 35:10 (2019), 2221–2226.
Wu, D.Y., Song, K.K., Gargarella, P., Cao, C.D., Li, R., Kaban, I., Eckert, J., Glass-forming ability, thermal stability of B2 CuZr phase, and crystallization kinetics for rapidly solidified Cu–Zr–Zn alloys. J Alloys Compd 664 (2016), 99–108.
Pal, S., Reddy, K.V., Deng, C., On the role of Cu-Zr amorphous intergranular films on crack growth retardation in nanocrystalline Cu during monotonic and cyclic loading conditions. Comput. Mater. Sci, 169, 2019, 109122.
Nguyen, H.G., Wu, M.J., Fang, T.H., Study on copper-to-copper bonding of three-dimensional integrated circuits using the quasicontinuum method. Phys. Scr, 99(6), 2024, 065114.
Ngo, T.T.B., Nguyen, V.T., Fang, T.H., Study of nanoindentation behavior of NiCrCoAl medium entropy alloys under indentation process using molecular dynamics. Model. Simul. Mater. Sci. Eng, 32(3), 2024, 035003.
Ngo, T.T.B., Nguyen, V.T., Fang, T.H., Nanoscale friction behavior and deformation during copper chemical mechanical polishing process. J Mol Model, 29(9), 2023, 293.
Zhong, C., Zhang, H., Cao, Q.P., Wang, X.D., Zhang, D.X., Hu, J.W., Jiang, J.Z., Non-localized deformation in CuZr multi-layer amorphous films under tension. J Alloys Compd 678 (2016), 410–420.
Guan, Y.L., Dai, L.S., Shao, J.L., Song, W.D., Molecular dynamics study on the nanovoid collapse and local deformation in shocked Cu50Zr50 metallic glasses. J Non Cryst Solids, 559, 2021, 120703.
Le, T.D., Noumeir, R., Quach, H.L., Kim, J.H., Kim, J.H., Kim, H.M., Critical temperature prediction for a superconductor: a variational bayesian neural network approach. IEEE Trans. Appl. Supercond 30:4 (2020), 1–5.
Masson, J.F., Biggins, J.S., Ringe, E., Machine learning for nanoplasmonics. Nat Nanotechnol 18:2 (2023), 111–123.
Nguyen, H.G., Le, T.D., Nguyen, H.G., Fang, T.H., Mechanical properties of AlCoCrCuFeNi high-entropy alloys using molecular dynamics and machine learning. Mater. Sci. Eng.: R: Rep, 160, 2024, 100833.
Doan, D.Q., Fang, T.H., Chen, T.H., Bui, T.X., Effects of void and inclusion sizes on mechanical response and failure mechanism of AlCrCuFeNi2 high-entropy alloy. Eng Fract Mech, 252, 2021, 107848.
Li, J., Fang, Q., Liu, B., Liu, Y., Liu, Y., Atomic-scale analysis of nanoindentation behavior of high-entropy alloy. J. Micromech. Mol. Phys, 1(01), 2016, 1650001.
Wu, C.D., Hou, C.J., Molecular dynamics analysis of plastic deformation and mechanics of imprinted metallic glass films. Comput. Mater. Sci 144 (2018), 248–255.
Qiu, C., Zhu, P., Fang, F., Yuan, D., Shen, X., Study of nanoindentation behavior of amorphous alloy using molecular dynamics. Appl Surf Sci 305 (2014), 101–110.
Daw, M.S., Foiles, S.M., Baskes, M.I., The embedded-atom method: a review of theory and applications. Mater. Sci. Rep 9:7–8 (1993), 251–310.
Mendelev, M.I., Sordelet, D.J., Kramer, M.J., Using atomistic computer simulations to analyze x-ray diffraction data from metallic glasses. J Appl Phys, 102(4), 2007.
Mendelev, M.I., Kramer, M.J., Ott, R.T., Sordelet, D.J., Yagodin, D., Popel, P.J.P.M., Development of suitable interatomic potentials for simulation of liquid and amorphous Cu–Zr alloys. Philos. Mag 89:11 (2009), 967–987.
Stukowski, A., Structure identification methods for atomistic simulations of crystalline materials. Model. Simul. Mater. Sci. Eng, 20(4), 2012, 045021.
Stukowski, A., Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool. Model. simul. mater. sci. eng, 18(1), 2009, 015012.
Tsuzuki, H., Branicio, P.S., Rino, J.P., Structural characterization of deformed crystals by analysis of common atomic neighborhood. Comput Phys Commun 177:6 (2007), 518–523.
Stukowski, A., Albe, K., Extracting dislocations and non-dislocation crystal defects from atomistic simulation data. Model. Simul. Mater. Sci. Eng, 18(8), 2010, 085001.
Stukowski, A., Bulatov, V.V., Arsenlis, A., Automated identification and indexing of dislocations in crystal interfaces. Model. Simul. Mater. Sci. Eng, 20(8), 2012, 085007.
Wang, J., An intuitive tutorial to Gaussian processes regression. Comput Sci Eng, 2023.
Deringer, V.L., Bartók, A.P., Bernstein, N., Wilkins, D.M., Ceriotti, M., Csányi, G., Gaussian process regression for materials and molecules. Chem. Rev 121:16 (2021), 10073–10141.
Schulz, E., Speekenbrink, M., Krause, A., A tutorial on Gaussian process regression: modelling, exploring, and exploiting functions. J Math Psychol 85 (2018), 1–16.
Shi, J., Yang, J., Zhou, J., Ji, H., Tang, X., Gao, T., Effect of graphene on thermal stability and mechanical properties of ethylene-vinyl acetate: a molecular dynamics simulation. Mater. Res. Express, 7(3), 2020, 035304.
Nabarro, F., Dislocations in a simple cubic lattice. Proc. Phys. Soc, 59(2), 1947, 256.
Zhao, Y.Y., Nieh, T.G., Correlation between lattice distortion and friction stress in Ni-based equiatomic alloys. Intermetallics 86 (2017), 45–50.
Dietze, H.D., Die temperaturabhängigkeit der versetzungsstruktur. Z. fuer Phys 132:1 (1952), 107–110.
Wu, Z., Bei, H., Pharr, G.M., George, E.P., Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures. Acta Mater 81 (2014), 428–441.
Jiang, S., Zhang, H., Zheng, Y., Chen, Z., Atomistic study of the mechanical response of copper nanowires under torsion. J Phys D Appl Phys, 42(13), 2009, 135408.
Zhou, K., Liu, B., Shao, S., Yao, Y., Molecular dynamics simulations of tension–compression asymmetry in nanocrystalline copper. Phys. Lett. A 381:13 (2017), 1163–1168.
Yang, Z., Zhang, G., Zhao, J., Molecular dynamics simulations of void effect of the copper nanocubes under triaxial tensions. Phys. Lett. A 380:7–8 (2016), 917–922.
Doan, D.Q., Fang, T.H., Chen, T.H., Nanotribological characteristics and strain hardening of amorphous Cu64Zr36/crystalline Cu nanolaminates. Tribol Int, 147, 2020, 106275.
Zhou, H., Qu, S., Yang, W., An atomistic investigation of structural evolution in metallic glass matrix composites. Int. J. Plast 44 (2013), 147–160.
Hussain, F., Imran, M., Rashid, M., Ullah, H., Shakoor, A., Ahmad, E., Ahmad, S.A., Molecular dynamics simulation of mechanical characteristics of CuZr bulk metallic glasses using uni-axial tensile loading technique. Phys. Scr, 89(11), 2014, 115701.
Potirniche, G.P., Horstemeyer, M.F., Wagner, G.J., Gullett, P.M., A molecular dynamics study of void growth and coalescence in single crystal nickel. Int. J. Plast 22:2 (2006), 257–278.
Lu, L., Huang, C., Pi, W., Xiang, H., Gao, F., Fu, T., Peng, X., Molecular dynamics simulation of effects of interface imperfections and modulation periods on Cu/Ta multilayers. Comput. Mater. Sci 143 (2018), 63–70.
Li, D., Wang, F., Yang, Z., Zhao, Y., How to identify dislocations in molecular dynamics simulations?. Sci. China Phys. Mech. Astron 57 (2014), 2177–2187.
Tran, A.S., Phase transformation and interface fracture of Cu/Ta multilayers: a molecular dynamics study. Eng Fract Mech, 239, 2020, 107292.
Waitz, T., Karnthaler, H.P., The fcc to hcp martensitic phase transformation in CoNi studied by TEM and AFM methods. Acta Mater 45:2 (1997), 837–847.
Yang, J.H., Wayman, C.M., Self-accomodation and shape memory mechanism of ϵ-martensite—I. Experimental observations. Mater Charact 28:1 (1992), 23–35.
Zhang, D., Chaudhuri, S., Solidification dynamics and microstructure evolution in nanocrystalline cobalt. Comput. Mater. Sci 160 (2019), 222–232.
Deng, B., Luo, J., Harris, J.T., Smith, C.M., McKenzie, M.E., Molecular dynamics simulations on fracture toughness of Al2O3-SiO2 glass-ceramics. Scr Mater 162 (2019), 277–280.
Matthews, A.G.D.G., Van Der Wilk, M., Nickson, T., Fujii, K., Boukouvalas, A., Le, P., Hensman, J., GPflow: a Gaussian process library using TensorFlow. J. Mach. Learn. Res 18:40 (2017), 1–6.