[en] Characterization and exploitation of multiple channels between the transmitter and the receiver in multiple-input multiple-output (MIMO) communications brought a paradigm shift in classical communication systems. The techniques developed around MIMO communication systems not only brought unprecedented advancements in communication rates but also substantially improved the reliability of communication, measured by low error rates. We develop a framework for MIMO quantum communications with discrete-variable quantum systems. We propose a general model of MIMO quantum channels incorporating noise, losses, and crosstalk among multiple channels. We leverage the approximate quantum cloning to transmit imperfect clones of the input state over this channel setup. We demonstrate that transmitting multiple imperfect clones achieves better communication fidelity as compared to transmitting a single perfect copy of the state due to the diversity of the MIMO setup. We also demonstrate a practical tradeoff between fidelity and rate of communication and call it quantum diversity multiplexing tradeoff (DMT) due to its similarity with the well-known DMT in classical MIMO setups.
Disciplines :
Physics
Author, co-author :
ur Rehman, Junaid; Interdisciplinary Centre for Security, Reliability, and Trust (SnT), University of Luxembourg, Luxembourg City, Luxembourg ; Department of Electrical Engineering, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia ; The Interdisciplinary Research Center for Intelligent Secure Systems, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
OLEYNIK, Leonardo ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom
KOUDIA, Seid ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom
BAYRAKTAR, Mert ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom
CHATZINOTAS, Symeon ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom
External co-authors :
yes
Language :
English
Title :
Diversity and multiplexing in quantum MIMO channels
Publication date :
December 2025
Journal title :
EPJ Quantum Technology
eISSN :
2196-0763
Publisher :
Springer Science and Business Media Deutschland GmbH
Funded by the European Union - Next Generation EU, with the collaboration of the Department of Media, Connectivity and Digital Policy of the Luxembourgish Government in the framework of the RRF program
S. Li J.K. Zhang X. Mu Double full diversity massive unitary space–time codes for MIMO channels IEEE Trans Veh Technol 68 4 3686 3701 10.1109/TVT.2019.2900403 1151.78009
A. Wittneben Basestation modulation diversity for digital simulcast IEEE 41st vehicular technology conference 848 853 0800.68454
N. Seshadri J.H. Winters Two signaling schemes for improving the error performance of frequency-division-duplex (FDD) transmission systems using transmitter antenna diversity IEEE 43rd vehicular technology conference 508 511
S.M. Alamouti A simple transmit diversity technique for wireless communications IEEE J Sel Areas Commun 16 8 1451 1458 10.1109/49.730453 0264.34045
L. Zheng D.N.C. Tse Diversity and multiplexing: a fundamental tradeoff in multiple-antenna channels IEEE Trans Inf Theory 49 5 1073 1096 10.1109/TIT.2003.810646 1063.94531
E.J. Shin V.W.S. Chan Optical communication over the turbulent atmospheric channel using spatial diversity IEEE global telecommunications conference, 2002. GLOBECOM ’02 2055 2060 10.1109/GLOCOM.2002.1188992 1131.86300 3
M. Razavi J.H. Shapiro Wireless optical communications via diversity reception and optical preamplification IEEE Trans Wirel Commun 4 3 975 983 10.1109/TWC.2005.847102 1058.30041
A. Jaiswal M.R. Bhatnagar Free-space optical communication: a diversity-multiplexing tradeoff perspective IEEE Trans Inf Theory 65 2 1113 1125 3904936 10.1109/TIT.2018.2856116 1427.94045
S. Koudia A.S. Cacciapuoti K. Simonov C.M. How Deep the theory of quantum communications goes: superadditivity, superactivation and causal activation IEEE Commun Surv Tutor 24 4 1926 1956 10.1109/COMST.2022.3196449
W.K. Wootters W.H. Zurek A single quantum cannot be cloned Nature 299 5886 802 803 1982Natur.299.802W 10.1038/299802a0 1369.81022
S. Bandyopadhyay Impossibility of creating a superposition of unknown quantum states Phys Rev A 102 2020PhRvA.102e0202B 4189597 10.1103/PhysRevA.102.050202 1240.70019 050202
M. Oszmaniec A. Grudka M. Horodecki A. Wójcik Creating a superposition of unknown quantum states Phys Rev Lett 116 2016PhRvL.116k0403O 10.1103/PhysRevLett.116.110403 1337.81025 110403
S. Li J.K. Zhang X. Mu Noncoherent massive space-time block codes for uplink network communications IEEE Trans Veh Technol 67 6 5013 5027 10.1109/TVT.2018.2815981 1414.62192
E. Björnson J. Hoydis L. Sanguinetti Massive MIMO networks: spectral, energy, and hardware efficiency Found Trends Signal Process 11 154 655 10.1561/2000000093 1360.94143
T. Younas J. Li J. Arshad Achieving bandwidth efficiency by improved zero-forcing combining algorithm in massive MIMO Wirel Pers Commun 97 2 2581 2596 10.1007/s11277-017-4624-2 0733.76067
R. Yuan J. Cheng Free-space optical quantum communications in turbulent channels with receiver diversity IEEE Trans Commun 68 9 5706 5717 10.1109/TCOMM.2020.2997398 1459.81007
N.K. Kundu S.P. Dash M.R. McKay R.K. Mallik MIMO terahertz quantum key distribution IEEE Commun Lett 25 10 3345 3349 10.1109/LCOMM.2021.3102703
N.K. Kundu M.R. McKay A. Conti R.K. Mallik M.Z. Win MIMO terahertz quantum key distribution under restricted eavesdropping IEEE Trans Quantum Eng 4 1 15 10.1109/TQE.2023.3264638
M. Zhang S. Pirandola K. Delfanazari Millimeter-waves to terahertz SISO and MIMO continuous variable quantum key distribution IEEE Trans Quantum Eng 4 1 10 10.1109/TQE.2023.3266946 1145.81028
M.A. Nielsen I.L. Chuang Quantum computation and quantum information 10 New York Cambridge University Press 1288.81001
M.M. Wilde Quantum information theory 1 New York Cambridge University Press 10.1017/CBO9781139525343 1296.81001
J. Watrous The theory of quantum information 1 Cambridge Cambridge University Press 10.1017/9781316848142 1393.81004
Koudia S, Oleynik L, Bayraktar M, ur Rehman J, Chatzinotas S. Physical Layer Aspects of Quantum Communications: a Survey. 2024. https://doi.org/10.48550/arXiv.2407.09244. arXiv preprint. arXiv:2407.09244.
YuenH. FrontiersofQuantumComplexityandCryptography. (LectureNotes): Lecture3 – Haar-randomstates. Available from https://www.henryyuen.net/spring2022/lec3-haar.pdf.
D. Bruss G. Leuchs Quantum information: from foundations to quantum technology applications 2 Weinheim Wiley-VCH 1422.81010
M. Keyl R.F. Werner Optimal cloning of pure states, testing single clones J Math Phys 40 3283 3299 1999JMP..40.3283K 1696949 10.1063/1.532887 1059.81022
D. Bruss A. Ekert C. Macchiavello Optimal universal quantum cloning and state estimation Phys Rev Lett 81 12 2598 2601 1998PhRvL.81.2598B 10.1103/PhysRevLett.81.2598 0901.68054
R.F. Werner Optimal cloning of pure states Phys Rev A 58 3 1827 1832 1998PhRvA.58.1827W 10.1103/PhysRevA.58.1827 0653.76077
V. Scarani S. Iblisdir N. Gisin A. Acín Quantum cloning Rev Mod Phys 77 4 1225 1256 2005RvMP..77.1225S 2193880 10.1103/RevModPhys.77.1225 1205.81030
M. Murao V. Vedral Remote information concentration using a bound entangled state Phys Rev Lett 86 2 352 355 2001PhRvL.86.352M 10.1103/PhysRevLett.86.352 1451.81010
X.W. Wang D.Y. Zhang G.J. Yang S.Q. Tang L.J. Xie Remote information concentration and multipartite entanglement in multilevel systems Phys Rev A 84 2011PhRvA.84d2310W 10.1103/PhysRevA.84.042310 1211.81050 042310
J. ur Rehman A. Farooq H. Shin Discrete Weyl channels with Markovian memory IEEE J Sel Areas Commun 38 3 413 426 10.1109/JSAC.2020.2968993 1509.81043