[en] In this paper, we studied the propagation properties of a finite-energy Fresnel–Bessel beam (FEFBB) propagating in a turbulent atmosphere. We analyzed and investigated the system parameters’ impact on the kurtosis parameters and the beam size. The results show that the FEFBB profiles turn into Gaussian-like profiles as they propagate through longer links. In long links, higher-order FEFBBs are sharper than lower-order beams. However, FEFBBs with higher Fresnel numbers are flatter than those with lower Fresnel numbers. On the other hand, beams with higher orders and bigger radii spread less. Moreover, FEFBBs have the advantage of keeping the beam size smaller than that in other classical beams. We anticipate our results will be useful for free-space optics (FSO) designers.
Disciplines :
Electrical & electronics engineering
Author, co-author :
Akcan, Cemre Irem; Defence Technologies Program, Institute of Graduate Studies, Sivas University of Science and Technology, Sivas, Türkiye
BAYRAKTAR, Mert ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom
CHATZINOTAS, Symeon ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom
Elmabruk, Kholoud; Electric Electronic Engineering Department, Engineering Faculty, Sivas University of Science and Technology, Sivas, Türkiye
External co-authors :
yes
Language :
English
Title :
Behavior of Finite-Energy Fresnel–Bessel Beams in Long Free-Space Optical Communication Links
Publication date :
February 2025
Journal title :
Photonics
eISSN :
2304-6732
Publisher :
Multidisciplinary Digital Publishing Institute (MDPI)
Special issue title :
Emerging Technologies for 6G Space Optical Communication Networks)
Wang J. Liu J. Li S. Zhao Y. Du J. Zhu L. Orbital angular momentum and beyond in free-space optical communications Nanophotonics 2022 11 645 680 10.1515/nanoph-2021-0527
Rubinsztein-Dunlop H. Forbes A. Berry M.V. Dennis M.R. Andrews D.L. Mansuripur M. Denz C. Alpmann C. Banzer P. Bauer T. et al. Roadmap on structured light J. Opt. 2017 19 013001 10.1088/2040-8978/19/1/013001
Andrews L.C. Phillips R.L. Young C.Y. Laser Beam Scintillation with Applications SPIE Bellingham, WA, USA 2001
Pu J.-X. Wang T. Lin H.-C. Li C.-L. Propagation of cylindrical vector beams in a turbulent atmosphere Chin. Phys. B 2010 19 089201 10.1088/1674-1056/19/2/024205
Bayraktar M. Performance of Airyprime beam in turbulent atmosphere Photon-Netw. Commun. 2021 41 274 279 10.1007/s11107-021-00935-x
Bayraktar M. Scintillation and bit error rate calculation of Mathieu-Gauss beam in turbulence J. Ambient. Intell. Humaniz. Comput. 2021 12 2671 2683 10.1007/s12652-020-02430-z
El Mechate B. Chafiq A. Belafhal A. Ince–Gaussian beams propagation through turbulent atmospheric medium Opt. Quantum Electron. 2024 56 667 10.1007/s11082-023-05939-7
Eyyuboğlu H.T. Voelz D. Xiao X. Scintillation analysis of truncated Bessel beams via numerical turbulence propagation simu-lation Appl Opt. 2013 52 8032 8039 10.1364/AO.52.008032
Saad F. El Halba E.M. Belafhal A. A theoretical study of the on-axis average intensity of generalized spiraling Bessel beams in a turbulent atmosphere Opt. Quantum Electron. 2017 49 94 10.1007/s11082-017-0936-4
Zhang Y. Ma D. Yuan X. Zhou Z. Numerical investigation of flat-topped vortex hollow beams and Bessel beams propagating in a turbulent atmosphere Appl. Opt. 2016 55 9211 9216 10.1364/AO.55.009211
Yuan Y. Lei T. Li Z. Li Y. Gao S. Xie Z. Yuan X. Beam wander relieved orbital angular momentum communication in turbulent atmosphere using Bessel beams Sci. Rep. 2017 7 srep42276 10.1038/srep42276 28186198
Lukin I.P. Mean intensity of vortex Bessel beams propagating in turbulent atmosphere Appl. Opt. 2014 53 3287 3293 10.1364/AO.53.003287 24922217
Litvin I.A. Munar-Vallespir P. Nötzel J. The channel capacity of the free space communication link based on Bessel-like beams J. Opt. 2024 27 015701 10.1088/2040-8986/ad9599
Wen W. Quantitative Analysis of the Effect of Atmospheric Turbulence on a Bessel–Gaussian Beam Photonics 2023 10 932 10.3390/photonics10080932
Lorenser D. Christian Singe C. Curatolo A. Sampson D.D. Energy-efficient low-Fresnel-number Bessel beams and their application in optical coherence tomography Opt. Lett. 2014 39 548 551 10.1364/OL.39.000548
El Halba E.M. Ez-Zariy L. Belafhal A. Creation of generalized spiraling bessel beams by fresnel diffraction of Bessel–Gaussian laser beams Opt. Quantum Electron. 2017 49 236 10.1007/s11082-017-1071-y
Akcan C.I. Bayraktar M. Elmabruk K. Analysis of finite energy fresnel bessel beams scintillation level in turbulent commu-nication links Phys. Scr. 2024 99 065505 10.1088/1402-4896/ad40db
Adrews L.C. Philips R.L. Weeks A.R. Propagation of a Gaussian-beam wave through a random phase screen Waves Ran-Dom Media 1997 7 229 10.1088/0959-7174/7/2/005
Whitfield E.M. Banerjee P.P. Haus J.W. Propagation of Gaussian beams through a modified von Karman phase screen Proceedings of the Laser Communication and Propagation through the Atmosphere and Oceans San Diego, CA, USA 12–16 August 2012 85170P
Lukin I.P. Rychkov D.S. Falits A.V. Lai K.S. Liu M.R. A phase screen model for simulating numerically the propagation of a laser beam in rain Quantum Electron. 2009 39 863 868 10.1070/QE2009v039n09ABEH013789
Eyyuboğlu H.T. Propagation analysis of Ince–Gaussian beams in turbulent atmosphere Appl. Opt. 2014 53 2290 2296 10.1364/AO.53.002290 24787396
Andrews L.C. Phillips R.L. Laser Beam Propagation Through Random Media 2nd ed. SPIE Press Monograph; SPIE Press Bellingham, WA, USA 2005 782p
Schmidt J.D. Numerical Simulation of Optical Wave Propagation with Examples in MATLAB SPIE-The International Society for Optical Engineering Bellingham, WA, USA 2010 9780819483270
Elmabruk K. Effect of system parameters on power scintillation of Ince Gaussian beam in turbulent atmosphere Opt. Eng. 2022 61 126105 10.1117/1.OE.61.12.126105
Yüceer M. Eyyuboğlu H.T. Laguerre-Gaussian beam scintillation on slant paths Appl. Phys. B Laser Opt. 2012 109 311 316 10.1007/s00340-012-5186-3