[en] [en] BACKGROUND: Regulatory networks controlling aging and disease trajectories remain incompletely understood. MicroRNAs (miRNAs) are a class of regulatory non-coding RNAs that contribute to the regulation of tissue homeostasis by modulating the stability and abundance of their target mRNAs. MiRNA genes are transcribed similarly to protein-coding genes which has facilitated their annotation and quantification from bulk transcriptomes. Here, we show that droplet, spatial, and plate-based single-cell RNA-sequencing platforms can be used to decipher miRNA gene signatures at cellular resolution to reveal their expression dynamics in vivo.
METHODS: We first benchmarked the approach examining concordance between platforms, species, and cell type-specific bulk expression data. To discover changes in miRNA gene expression that could contribute to the progressive loss of cellular homeostasis during aging and disease development, we annotated the comprehensive aging mouse dataset, Tabula Muris Senis, with cell type-specific miRNA expression and acquired transcriptome and translatome profiles from an atherosclerosis disease model.
RESULTS: We generated an openly available workflow and aging-profile resource to characterize miRNA expression from single-cell genomics studies. Comparing immune cells in spleen tissue between young and old mice revealed concordance with previous functional studies, highlighting the upregulation of mmu-mir-146a, mmu-mir-101a, and mmu-mir-30 family genes involved in senescence and inflammatory pathways. Atherosclerosis progression is reflected within adipose tissue as expansion of the myeloid compartment, with elevated pro-inflammatory mmu-mir-511 expression in several macrophage subtypes. Upregulation of the immunosuppressive mmu-mir-23b ~ mir-24-2 ~ mir-27b locus was specific to Trem2 + lipid-associated macrophages, prevalent at late disease. Accordingly, ribosome-associated RNA profiling from myeloid cells in vivo validated significant mmu-mir-23b target gene enrichment in disease-regulated translatomes. Prominent tissue infiltration of monocytes led to upregulated mmu-mir-1938 and mmu-mir-22 expression and in classical monocytes activated mmu-mir-221 ~ 222, mmu-mir-511, and mmu-mir-155 gene loci, confirmed by bulk nascent transcriptomics data from ex vivo macrophage cultures. Overall, the monocyte-associated changes in miRNA expression represented the most significant target gene associations in the disease-trajectory translatome profiles.
CONCLUSIONS: We demonstrate that miRNA gene transcriptional activity is widely impacted in immune cells by aging and during disease development and further identify the corresponding translatome signature of inflamed adipose tissue.
Disciplines :
Life sciences: Multidisciplinary, general & others
Author, co-author :
de Sande, Ana Hernández; School of Medicine, University of Eastern Finland, 70200, Kuopio, North-Savo, Finland
Turunen, Tanja; School of Medicine, University of Eastern Finland, 70200, Kuopio, North-Savo, Finland
Bouvy-Liivrand, Maria; School of Medicine, University of Eastern Finland, 70200, Kuopio, North-Savo, Finland ; Department of Chemistry and Biotechnology, Tallinn University of Technology, 12616, Tallinn, Estonia
Örd, Tiit; A. I. Virtanen Institute, University of Eastern Finland, 70200, Kuopio, North-Savo, Finland
Palani, Senthil; Turku PET Centre, University of Turkuand, Turku University Hospital , 20520, Turku, Finland
Lahnalampi, Mari; School of Medicine, University of Eastern Finland, 70200, Kuopio, North-Savo, Finland
Tundidor-Centeno, Celia; School of Medicine, University of Eastern Finland, 70200, Kuopio, North-Savo, Finland
Liljenbäck, Heidi; Turku PET Centre, University of Turkuand, Turku University Hospital , 20520, Turku, Finland ; Turku Center for Disease Modeling, University of Turku, 20520, Turku, Finland
Virta, Jenni; Turku PET Centre, University of Turkuand, Turku University Hospital , 20520, Turku, Finland
Niskanen, Henri; A. I. Virtanen Institute, University of Eastern Finland, 70200, Kuopio, North-Savo, Finland
Jayasingha, Buddika; School of Medicine, University of Eastern Finland, 70200, Kuopio, North-Savo, Finland
Smålander, Olli-Pekka; Department of Chemistry and Biotechnology, Tallinn University of Technology, 12616, Tallinn, Estonia ; Department of Neurology, Helsinki University Hospital, Helsinki, Finland
SINKKONEN, Lasse ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Life Sciences and Medicine (DLSM)
Mikkola, Lea; InFLAMES Research Flagship Center, University of Turku, 20520, Turku, Finland ; Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520, Turku, Finland
SAUTER, Thomas ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Life Sciences and Medicine (DLSM)
Roivainen, Anne; Turku PET Centre, University of Turkuand, Turku University Hospital , 20520, Turku, Finland ; Turku Center for Disease Modeling, University of Turku, 20520, Turku, Finland ; InFLAMES Research Flagship Center, University of Turku, 20520, Turku, Finland
Lönnberg, Tapio; InFLAMES Research Flagship Center, University of Turku, 20520, Turku, Finland ; Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520, Turku, Finland
Kaikkonen, Minna U; A. I. Virtanen Institute, University of Eastern Finland, 70200, Kuopio, North-Savo, Finland
Heinäniemi, Merja; School of Medicine, University of Eastern Finland, 70200, Kuopio, North-Savo, Finland. merja.heinaniemi@uef.fi
Research Council of Finland Suomen Kulttuurirahasto Saastamoisen säätiö Marie Skłodowska-Curie Actions of the European Commission Sigrid Juséliuksen Säätiö Fondation du Pélican de Marie et Pierre Hippert-Faber Jane ja Aatos Erkon Säätiö
Funding text :
This work was supported by the Research Council of Finland grants (314553, 335964 to M.H.; 335973, 314554, 333021 to M.U.K., 314556, 335975 to A.R.;335977, 314557 to T.L., 295094 to M.B.L., and\u00A0352727), Jane and Aatos Erkko Foundation to A.R., the Finnish Cultural Foundation to A.H.S., the Saastamoinen Foundation to A.H.S., the Marie Sk\u0142odowska-Curie Actions of the European Commission to A.H.S. (Grant Agreement HORIZON-MSCA-2024-PF-101211997), the Sigrid Jus\u00E9lius Foundation to M.U.K and T.T.,\u00A0Finnish\u00A0Foundation for Cardiovascular Research to M.U.K, and Fondation du P\u00E9lican de Marie et Pierre Hippert-Faber (Luxembourg) Graduate Fellowship to M.B.L.
S. Islam A. Zeisel S. Joost G. La Manno P. Zajac M. Kasper et al. Quantitative single-cell RNA-seq with unique molecular identifiers Nat Methods 11 163 6 1:CAS:528:DC%2BC3sXhvFOls7zK 24363023 10.1038/nmeth.2772
D.P. Bartel MicroRNAs: genomics, biogenesis, mechanism, and function Cell 116 281 297 1:CAS:528:DC%2BD2cXhtVals7o%3D 14744438 10.1016/S0092-8674(04)00045-5
C. Franceschi P. Garagnani P. Parini C. Giuliani A. Santoro Inflammaging: a new immune–metabolic viewpoint for age-related diseases Nat Rev Endocrinol 14 576 90 1:CAS:528:DC%2BC1cXhtl2gtL7N 30046148 10.1038/s41574-018-0059-4
G.C. Leonardi G. Accardi R. Monastero F. Nicoletti M. Libra Ageing: from inflammation to cancer Immun Ageing 15 29387133 5775596 10.1186/s12979-017-0112-5 1
S. Benesova M. Kubista L. Valihrach Small RNA-sequencing: approaches and considerations for miRNA analysis Diagnostics 11 964 1:CAS:528:DC%2BB3MXis1Sgs7zL 34071824 8229417 10.3390/diagnostics11060964
O.R. Faridani I. Abdullayev M. Hagemann-Jensen J.P. Schell F. Lanner R. Sandberg Single-cell sequencing of the small-RNA transcriptome Nat Biotechnol 34 1264 6 1:CAS:528:DC%2BC28Xhsl2hs7fM 27798564 10.1038/nbt.3701
X. Wang Y. He Q. Zhang X. Ren Z. Zhang Direct comparative analyses of 10X genomics chromium and smart-seq2 Genomics Proteomics Bioinform 19 253 66 10.1016/j.gpb.2020.02.005
G. La Manno R. Soldatov A. Zeisel E. Braun H. Hochgerner V. Petukhov et al. RNA velocity of single cells Nature 560 494 8 30089906 6130801 10.1038/s41586-018-0414-6
Bouvy-Liivrand M, Hernández de Sande A, Pölönen P, Mehtonen J, Vuorenmaa T, Niskanen H, et al. Analysis of primary microRNA loci from nascent transcriptomes reveals regulatory domains governed by chromatin architecture. Nucleic Acids Res. 2017;45:9837–49.
Turunen T, Hernández De Sande A, Pölönen P, Heinäniemi M. Genome-wide analysis of primary microRNA expression using H3K36me3 ChIP-seq data. Comput Struct Biotechnol J. 2021;19:1944–55.
N.A. O’Leary M.W. Wright J.R. Brister S. Ciufo D. Haddad R. McVeigh et al. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation Nucleic Acids Res 44 D733 D745 26553804 10.1093/nar/gkv1189
Consortium T N. Almanzar J. Antony A.S. Baghel I. Bakerman I. Bansal et al. A single-cell transcriptomic atlas characterizes ageing tissues in the mouse Nature 583 590 5 10.1038/s41586-020-2496-1
N. Schaum J. Karkanias N.F. Neff A.P. May S.R. Quake T. Wyss-Coray et al. Single-cell transcriptomics of 20 mouse organs creates a Tabula Muris Nature 562 367 372 6642641 10.1038/s41586-018-0590-4
N. Schaum B. Lehallier O. Hahn R. Pálovics S. Hosseinzadeh S.E. Lee et al. Ageing hallmarks exhibit organ-specific temporal signatures Nature 583 596 602 1:CAS:528:DC%2BB3cXhtl2gtLrJ 32669715 7757734 10.1038/s41586-020-2499-y
Bouvy-Liivrand M. GRO-seq profiles in ST2 cell line (GRO-seq). Gene Expression Omnibus. 2025;GSE241550. https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE241550.
Kaikkonen MU. GRO-seq profiles for nascent transcriptome analysis in mouse microglia (treatment control). Zenodo. 2025;16752187. https://zenodo.org/records/16752187.
Kaikkonen MU. GRO-seq profiles for nascent transcriptome analysis in mouse microglia (KLA treatment). Zenodo. 2025;16754687. https://zenodo.org/records/16754687.
Y. Zhang R. Papazyan M. Damle B. Fang J. Jager D. Feng et al. The hepatic circadian clock fine-tunes the lipogenic response to feeding through RORα/γ Genes Dev 31 12 1202 11 1:CAS:528:DC%2BC2sXhvVGlurzO 28747429 5558923 10.1101/gad.302323.117
Zhang Y. The hepatic circadian clock fine-tunes the lipogenic response to feeding through RORa/g (GRO-seq). Gene Expression Omnibus. 2017;GSE101116. https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE101116.
L. Escoubet-Lozach C. Benner M.U. Kaikkonen J. Lozach S. Heinz N.J. Spann et al. Mechanisms establishing TLR4-responsive activation states of inflammatory response genes PLoS Genet 7 1:CAS:528:DC%2BC3MXhs1OhtL%2FK 22174696 3234212 10.1371/journal.pgen.1002401 e1002401
Escoubet-Lozach L. Mechanisms establishing TLR4-responsive activation states of inflammatory response genes (GRO-seq). Gene Expression Omnibus. 2011;GSE23622. https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE23622.
Z. Ji W. Luo W. Li M. Hoque Z. Pan Y. Zhao et al. Transcriptional activity regulates alternative cleavage and polyadenylation Mol Syst Biol 7 21952137 3202805 10.1038/msb.2011.69 534
Ji Z. Transcriptional activity regulates alternative cleavage and polyadenylation (GRO-seq). Gene Expression Omnibus. 2011;GSE26512. https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE26512. Accessed 30 June 2016.
I.M. Min J.J. Waterfall L.J. Core R.J. Munroe J. Schimenti J.T. Lis Regulating RNA polymerase pausing and transcription elongation in embryonic stem cells Genes Dev 25 742 54 1:CAS:528:DC%2BC3MXkvFCrtbg%3D 21460038 3070936 10.1101/gad.2005511
Min I. Regulating RNA polymerase pausing and transcription elongation in embryonic stem cells (GRO-seq). Gene Expression Omnibus. 2011;GSE27037. https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE27037. Accessed 30 June 2016.
Y.C. Lin C. Benner R. Mansson S. Heinz K. Miyazaki M. Miyazaki et al. Global changes in the nuclear positioning of genes and intra- and interdomain genomic interactions that orchestrate B cell fate Nat Immunol 13 1196 204 1:CAS:528:DC%2BC38XhsV2rsb%2FL 23064439 3501570 10.1038/ni.2432
Lin Y. Global changes in the nuclear positioning of genes and intra- and interdomain genomic interactions that orchestrate B cell fate (GRO-seq). Gene Expression Omnibus. 2012;GSE40173. https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE40173. Accessed 30 June 2016.
X. Ji Y. Zhou S. Pandit J. Huang H. Li C.Y. Lin et al. SR proteins collaborate with 7SK and promoter-associated nascent RNA to release paused polymerase Cell 153 855 68 1:CAS:528:DC%2BC3sXnsFSmtbo%3D 23663783 4103662 10.1016/j.cell.2013.04.028
Ji X. SR proteins collaborate with 7SK and promoter-associated nascent RNA to release paused polymerase (. GRO-seq). Gene Expression Omnibus2013; GSE45517. https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE45517. Accessed 30 June 2016.
Heinz S, Romanoski CE, Benner C, Allison KA, Kaikkonen MU, Orozco LD, et al. Effect of natural genetic variation on enhancer selection and function. Nature. 2013;503:487–92. Accessed 30 June 2016.
P. Li N.J. Spann M.U. Kaikkonen M. Lu D.Y. Oh J.N. Fox et al. NCoR repression of LXRs restricts macrophage biosynthesis of insulin-sensitizing omega 3 fatty acids Cell 155 200 14 1:CAS:528:DC%2BC3sXhsFemsr3N 24074869 4131699 10.1016/j.cell.2013.08.054
Li P. NCoR repression of LXRs restricts macrophage biosynthesis of insulin-sensitizing omega 3 fatty acids (GRO-seq). Gene Expression Omnibus. 2013;GSE50944. https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE50944. Accessed 30 June 2016.
I. Jonkers H. Kwak J.T. Lis Genome-wide dynamics of Pol II elongation and its interplay with promoter proximal pausing, chromatin, and exons Elife. 29 3 e02407 10.7554/eLife.02407
Jonkers I. Genome-wide dynamics of Pol II elongation and its interplay with promoter proximal pausing, chromatin, and exons (GRO-seq). Gene Expression Omnibus. 2014;GSE48895. https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE48895. Accessed 30 June 2016.
S.E. Step H.-W. Lim J.M. Marinis A. Prokesch D.J. Steger S.-H. You et al. Anti-diabetic rosiglitazone remodels the adipocyte transcriptome by redistributing transcription to PPARγ-driven enhancers Genes Dev 28 1018 28 1:CAS:528:DC%2BC2cXot12isLw%3D 24788520 4018489 10.1101/gad.237628.114
Step S. Anti-diabetic rosiglitazone remodels the adipocyte transcriptome by redistributing transcription to PPARγ-driven enhancers (GRO-seq). Gene Expression Omnibus. 2014;GSE56747. https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE56747. Accessed 30 June 2016.
B. Fang L.J. Everett J. Jager E. Briggs S.M. Armour D. Feng et al. Circadian enhancers coordinate multiple phases of rhythmic gene transcription in vivo Cell 159 1140 52 1:CAS:528:DC%2BC2cXhvFOgsrvE 25416951 4243056 10.1016/j.cell.2014.10.022
Fang B. Circadian enhancers coordinate multiple phases of rhythmic gene transcription in vivo (. GRO-seq). Gene Expression Omnibus2014; GSE59486. https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE59486. Accessed 30 June 2016.
The Tabula Sapiens Consortium The tabula sapiens: a multiple-organ, single-cell transcriptomic atlas of humans Science 376 9812260 10.1126/science.abl4896 eabl4896
S.A. Rose A. Wroblewska M. Dhainaut H. Yoshida J.M. Shaffer A. Bektesevic et al. A microrna expression and regulatory element activity atlas of the mouse immune system Nat Immunol 22 914 27 1:CAS:528:DC%2BB3MXht1GgsbvL 34099919 8480231 10.1038/s41590-021-00944-y
Rose S. A microRNA expression and regulatory element activity atlas of the mouse immune system (miScript miRNA PCR array mouse miRNome). Gene Expression Omnibus. 2020;GSE144081. https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE144081. Accessed 12 Jan 2022.
Bouvy-Liivrand M. Single-cell RNA sequencing of ST2 mouse cell line (10x Genomics 3′ scRNA-Seq). Gene Expression Omnibus. 2025;GSE241567. https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE241567.
A.J.C. Russell J.A. Weir N.M. Nadaf M. Shabet V. Kumar S. Kambhampati et al. Slide-tags enables single-nucleus barcoding for multimodal spatial genomics Nature 625 101 9 1:CAS:528:DC%2BB3sXis1Sks7nE 38093010 10.1038/s41586-023-06837-4
Hah N. Coordinate regulation of enhancer transcription at super-enhancers (GRO-seq). Gene Expression Omnibus. 2014;GSE60857. https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE60857. Accessed 24 Aug 2023.
Niskanen H. Single-cell and bulk RNA sequencing of mouse atherosclerosis disease stage course (TRAP-seq). Gene Expression Omnibus. 2025;GSE254396. https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE254396.
L.R. Nassar G.P. Barber A. Benet-Pagès J. Casper H. Clawson M. Diekhans et al. The UCSC Genome Browser database: 2023 update Nucleic Acids Res 51 D1188 D1195 1:CAS:528:DC%2BB3sXhtlWrsL3N 36420891 10.1093/nar/gkac1072
A.R. Quinlan I.M. Hall BEDtools: a flexible suite of utilities for comparing genomic features Bioinformatics 26 841 2 1:CAS:528:DC%2BC3cXivFGkurc%3D 20110278 2832824 10.1093/bioinformatics/btq033
A. Frankish M. Diekhans A.-M. Ferreira R. Johnson I. Jungreis J. Loveland et al. GENCODE reference annotation for the human and mouse genomes Nucleic Acids Res 47 D766 D773 1:CAS:528:DC%2BC1MXhs1Clu7rM 30357393 10.1093/nar/gky955
S. Griffiths-Jones H.K. Saini S. van Dongen A.J. Enright miRBase: tools for microRNA genomics Nucleic Acids Res 36 D154 D158 17991681 2238936 10.1093/nar/gkm952
R.M. Kuhn D. Haussler W.J. Kent The UCSC genome browser and associated tools Brief Bioinform 14 144 161 1:CAS:528:DC%2BC3sXkvFKrur0%3D 22908213 10.1093/bib/bbs038
G.X.Y. Zheng J.M. Terry P. Belgrader P. Ryvkin Z.W. Bent R. Wilson et al. Massively parallel digital transcriptional profiling of single cells Nat Commun 8 1:CAS:528:DC%2BC2sXht1WlsLo%3D 28091601 5241818 10.1038/ncomms14049 14049
T.-C. Chang M. Pertea S. Lee S.L. Salzberg J.T. Mendell Genome-wide annotation of microRNA primary transcript structures reveals novel regulatory mechanisms Genome Res 25 1401 9 1:CAS:528:DC%2BC2MXhsFChtLzJ 26290535 4561498 10.1101/gr.193607.115
J. Harrow A. Frankish J.M. Gonzalez E. Tapanari M. Diekhans F. Kokocinski et al. GENCODE: the reference human genome annotation for the ENCODE project Genome Res 22 1760 74 1:CAS:528:DC%2BC38XhtlentLvN 22955987 3431492 10.1101/gr.135350.111
10x Genomics. Cell Ranger command line arguments. https://www.10xgenomics.com/support/software/cell-ranger/latest/resources/cr-command-line-arguments. Accessed 08 Feb 2022.
Hernandez de Sande A. GitHub. 2025 scMIR Project: pri-miRNA quantification from single-cell RNA-seq datasets. https://anahsg.github.io/scMIR/.
S. Picelli O.R. Faridani Å.K. Björklund G. Winberg S. Sagasser R. Sandberg Full-length RNA-seq from single cells using Smart-seq2 Nat Protoc 9 171 81 1:CAS:528:DC%2BC2cXls1ejtrc%3D 24385147 10.1038/nprot.2014.006
Y. Liao G.K. Smyth W. Shi The R package Rsubread is easier, faster, cheaper and better for alignment and quantification of RNA sequencing reads Nucleic Acids Res 47 1:CAS:528:DC%2BC1MXitFejtrzK 30783653 6486549 10.1093/nar/gkz114 e47
pySCENIC. Github. 2020. https://github.com/aertslab/pySCENIC. Accessed 04 Aug 2021.
F.A. Wolf P. Angerer F.J. Theis SCANPY: large-scale single-cell gene expression data analysis Genome Biol 19 15 29409532 5802054 10.1186/s13059-017-1382-0
Broad Institute. Single Cell Portal (SCP2170). https://singlecell.broadinstitute.org/single_cell. Accessed 13 Apr 2024.
T. Stuart A. Butler P. Hoffman C. Hafemeister E. Papalexi W.M. Mauck et al. Comprehensive integration of single-cell data Cell 177 1888 1902.e21 1:CAS:528:DC%2BC1MXhtFens77L 31178118 6687398 10.1016/j.cell.2019.05.031
R.V. Farese M.M. Véniant C.M. Cham L.M. Flynn V. Pierotti J.F. Loring et al. Phenotypic analysis of mice expressing exclusively apolipoprotein B48 or apolipoprotein B100 Proc Natl Acad Sci U S A 93 6393 8 1:CAS:528:DyaK28XjvFejtbo%3D 8692825 39033 10.1073/pnas.93.13.6393
L. Powell-Braxton M. Véniant R.D. Latvala K.-I. Hirano W.B. Won J. Ross et al. A mouse model of human familial hypercholesterolemia: markedly elevated low density lipoprotein cholesterol levels and severe atherosclerosis on a low-fat chow diet Nat Med 4 934 8 1:CAS:528:DyaK1cXltVCjtbs%3D 9701246 10.1038/nm0898-934
S. Palani M.W.G. Miner J. Virta H. Liljenbäck O. Eskola T. Örd et al. Exploiting glutamine consumption in atherosclerotic lesions by positron emission tomography tracer (2S,4R)-4-18F-fluoroglutamine Front Immunol 13 1:CAS:528:DC%2BB38XhtFemtbrI 35145523 8822173 10.3389/fimmu.2022.821423 821423
T. Örd T. Lönnberg V. Nurminen A. Ravindran H. Niskanen M. Kiema et al. Dissecting the polygenic basis of atherosclerosis via disease-associated cell state signatures Am J Hum Genet 110 722 40 37060905 10183377 10.1016/j.ajhg.2023.03.013
S. Durinck P.T. Spellman E. Birney W. Huber Mapping identifiers for the integration of genomic datasets with the R/bioconductor package biomaRt Nat Protoc 4 1184 91 1:CAS:528:DC%2BD1MXpt12ksrk%3D 19617889 3159387 10.1038/nprot.2009.97
C. Hafemeister R. Satija Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression Genome Biol 20 1:CAS:528:DC%2BC1MXisVyht7fF 31870423 6927181 10.1186/s13059-019-1874-1 296
Satija Lab. Using sctransform in Seurat. Compiled 31 Oct 2023. https://satijalab.org/seurat/articles/sctransform_vignette. Accessed 04 Aug 2021.
Y. Hao T. Stuart M.H. Kowalski S. Choudhary P. Hoffman A. Hartman et al. Dictionary learning for integrative, multimodal and scalable single-cell analysis Nat Biotechnol 42 2 293 304 1:CAS:528:DC%2BB3sXhtFSisbvO 37231261 10.1038/s41587-023-01767-y
Y. Hao S. Hao E. Andersen-Nissen W.M. Mauck S. Zheng A. Butler et al. Integrated analysis of multimodal single-cell data Cell 184 3573 3587.e29 1:CAS:528:DC%2BB3MXhtlSrtrvE 34062119 8238499 10.1016/j.cell.2021.04.048
A. Butler P. Hoffman P. Smibert E. Papalexi R. Satija Integrating single-cell transcriptomic data across different conditions, technologies, and species Nat Biotechnol 36 411 420 1:CAS:528:DC%2BC1cXmslKrtL0%3D 29608179 6700744 10.1038/nbt.4096
R. Satija J.A. Farrell D. Gennert A.F. Schier A. Regev Spatial reconstruction of single-cell gene expression data Nat Biotechnol 33 495 502 1:CAS:528:DC%2BC2MXmtlKktLo%3D 25867923 4430369 10.1038/nbt.3192
Satija Lab. Using TransferData (label transfer) in Seurat for tissue‑wide cell type predictions. Seurat (v3) documentation. https://satijalab.org/seurat/articles/integration_mapping.html. Accessed 04 Aug 2021.
S. Durinck Y. Moreau A. Kasprzyk S. Davis B. De Moor A. Brazma et al. BioMart and bioconductor: a powerful link between biological databases and microarray data analysis Bioinformatics 21 3439 40 1:CAS:528:DC%2BD2MXovVKru74%3D 16082012 10.1093/bioinformatics/bti525
M.P. Mulè A.J. Martins J.S. Tsang Normalizing and denoising protein expression data from droplet-based single cell profiling Nat Commun 13 35440536 9018908 10.1038/s41467-022-29356-8 2099
Mulè M, Martins A, Tsang J. dsb: normalize & denoise droplet single‑cell protein data (v1.0.3) — tutorial & package. GitHub. 2021. https://github.com/niaid/dsb. Accessed 21 Nov 2021.
Luecken M, Theis F. Case study: mouse intestinal epithelium (February 2019). single‑cell‑tutorial. GitHub (v old_releases). 2019. https://github.com/theislab/single-cell-tutorial/blob/master/old_releases/Case-study_Mouse-intestinal-epithelium_1902.ipynb. Accessed 25 Aug 2022.
A.T.L. Lun D.J. McCarthy J.C. Marioni A step-by-step workflow for low-level analysis of single-cell RNA-seq data with bioconductor F1000Res 5 27909575 5112579 2122
K.D. Korthauer L.-F. Chu M.A. Newton Y. Li J. Thomson R. Stewart et al. A statistical approach for identifying differential distributions in single-cell RNA-seq experiments Genome Biol 17 27782827 5080738 10.1186/s13059-016-1077-y 222
Korthauer K. scDD: R package to identify genes with differential distributions in single‑cell RNA‑seq (v1.x). GitHub. 2016. https://github.com/kdkorthauer/scDD. Accessed 06 Oct 2022.
J. Mehtonen S. Teppo M. Lahnalampi A. Kokko R. Kaukonen L. Oksa et al. Single cell characterization of B-lymphoid differentiation and leukemic cell states during chemotherapy in ETV6-RUNX1-positive pediatric leukemia identifies drug-targetable transcription factor activities Genome Med 12 1:CAS:528:DC%2BB3cXis12isb7F 33218352 7679990 10.1186/s13073-020-00799-2 99
Mehtonen J. ETV6‑RUNX1_scRNAseq_Manuscript_2020_Analysis: code for single‑cell RNA‑seq analyses in ETV6‑RUNX1+ pediatric leukemia (2020). GitHub. https://github.com/systemsgenomics/ETV6-RUNX1_scRNAseq_Manuscript_2020_Analysis. Accessed 06 Oct 2022.
Y. Benjamini Y. Hochberg Controlling the false discovery rate: a practical and powerful approach to multiple testing J R Stat Soc Series B Stat Methodol 57 289 300 10.1111/j.2517-6161.1995.tb02031.x
Y. Baran A. Bercovich A. Sebe-Pedros Y. Lubling A. Giladi E. Chomsky et al. Metacell: analysis of single-cell RNA-seq data using K-nn graph partitions Genome Biol 20 31604482 6790056 10.1186/s13059-019-1812-2 206
Tanay A. metacell: meta cell analysis for single‑cell RNA‑seq data (R package version 0.3.7). GitHub. 2021. https://github.com/tanaylab/metacell. Accessed 07 Mar 2023.
M.D. Robinson D.J. McCarthy G.K. Smyth edgeR: a bioconductor package for differential expression analysis of digital gene expression data Bioinformatics 26 139 140 1:CAS:528:DC%2BD1MXhs1WlurvO 19910308 10.1093/bioinformatics/btp616
M.E. Ritchie B. Phipson D. Wu Y. Hu C.W. Law W. Shi et al. Limma powers differential expression analyses for RNA-sequencing and microarray studies Nucleic Acids Res 43 25605792 4402510 10.1093/nar/gkv007 e47
A. Ravindran L. Holappa H. Niskanen I. Skovorodkin S. Kaisto M. Beter et al. Translatome profiling reveals Itih4 as a novel smooth muscle cell–specific gene in atherosclerosis Cardiovasc Res 120 869 82 1:CAS:528:DC%2BB2cXislOmtb3P 38289873 11218691 10.1093/cvr/cvae028
V. Licursi F. Conte G. Fiscon P. Paci Mienturnet: an interactive web tool for microrna-target enrichment and network-based analysis BMC Bioinformatics 20 31684860 6829817 10.1186/s12859-019-3105-x 545
V. Agarwal G.W. Bell J.W. Nam D.P. Bartel Predicting effective microRNA target sites in mammalian mRNAs Elife. 12 4 e05005 10.7554/eLife.05005
M. Coolen D. Thieffry Ø. Drivenes T.S. Becker L. Bally-Cuif Mir-9 controls the timing of neurogenesis through the direct inhibition of antagonistic factors Dev Cell 22 1052 1064 1:CAS:528:DC%2BC38Xntlaqs74%3D 22595676 10.1016/j.devcel.2012.03.003
I. Martinez D. Cazalla L.L. Almstead J.A. Steitz D. DiMaio Mir-29 and mir-30 regulate B-Myb expression during cellular senescence Proc Natl Acad Sci U S A 108 522 527 1:CAS:528:DC%2BC3MXptFKntQ%3D%3D 21187425 10.1073/pnas.1017346108
V. Wagner F. Kern O. Hahn N. Schaum N. Ludwig T. Fehlmann et al. Characterizing expression changes in noncoding RNAs during aging and heterochronic parabiosis across mouse tissues Nat Biotechnol 42 109 18 1:CAS:528:DC%2BB3sXovVGkurs%3D 37106037 10.1038/s41587-023-01751-6
T. Smith-Vikos F.J. Slack Micrornas and their roles in aging J Cell Sci 125 7 17 1:CAS:528:DC%2BC38XjslKjsrY%3D 22294612 3269020 10.1242/jcs.099200
B. Victoria J.M. Dhahbi Y.O. Nunez Lopez L. Spinel H. Atamna S.R. Spindler et al. Circulating microrna signature of genotype-by-age interactions in the long-lived Ames dwarf mouse Aging Cell 14 1055 66 1:CAS:528:DC%2BC2MXhtFKgt7rF 26176567 4693471 10.1111/acel.12373
L. Lin K. Hu Mir-147: functions and implications in inflammation and diseases Microrna 10 91 96 1:CAS:528:DC%2BB38XivF2qt7fK 34238178 8714690 10.2174/2211536610666210707113605
R. Yin D. Guo S. Zhang X. Zhang MiR-706 inhibits the oxidative stress-induced activation of PKCα/TAOK1 in liver fibrogenesis Sci Rep 6 1:CAS:528:DC%2BC28XitFSmtLjE 27876854 5120320 10.1038/srep37509 37509
L. Liao X. Yang X. Su C. Hu X. Zhu N. Yang et al. Redundant miR-3077-5p and miR-705 mediate the shift of mesenchymal stem cell lineage commitment to adipocyte in osteoporosis bone marrow Cell Death Dis 4 1:CAS:528:DC%2BC3sXhtVyrs7%2FI 23598412 3641352 10.1038/cddis.2013.130 e600
Y. Ito T. Matsuzaki F. Ayabe S. Mokuda R. Kurimoto T. Matsushima et al. Both microRNA-455-5p and -3p repress hypoxia-inducible factor-2α expression and coordinately regulate cartilage homeostasis Nat Commun 12 1:CAS:528:DC%2BB3MXhsFOnsr3I 34230481 8260725 10.1038/s41467-021-24460-7 4148
Rivetti di Val Cervo P, Lena AM, Nicoloso M, Rossi S, Mancini M, Zhou H, et al. p63–microRNA feedback in keratinocyte senescence. Proc Natl Acad Sci USA. 2012;109:1133–8.
D. Mathis Immunological goings-on in visceral adipose tissue Cell Metab 17 851 859 1:CAS:528:DC%2BC3sXptV2msL0%3D 23747244 4264591 10.1016/j.cmet.2013.05.008
D.A. Jaitin L. Adlung C.A. Thaiss A. Weiner B. Li H. Descamps et al. Lipid-associated macrophages control metabolic homeostasis in a Trem2-dependent manner Cell 178 686 698.e14 1:CAS:528:DC%2BC1MXht1Ojsr3M 31257031 7068689 10.1016/j.cell.2019.05.054
W. Spivia P.S. Magno P. Le D.A. Fraser Complement protein C1q promotes macrophage anti-inflammatory m2-like polarization during the clearance of atherogenic lipoproteins Inflamm Res 63 885 93 1:CAS:528:DC%2BC2cXht1Kks7vL 25091012 5154336 10.1007/s00011-014-0762-0
S.-H. Jung B.-H. Hwang S. Shin E.-H. Park S.-H. Park C.W. Kim et al. Spatiotemporal dynamics of macrophage heterogeneity and a potential function of Trem2hi macrophages in infarcted hearts Nat Commun 13 1 15 10.1038/s41467-022-32284-2
A.D. Hildreth F. Ma Y.Y. Wong R. Sun M. Pellegrini T.E. O’Sullivan Single-cell sequencing of human white adipose tissue identifies new cell states in health and obesity Nat Immunol 22 639 653 1:CAS:528:DC%2BB3MXps1Kgs70%3D 33907320 8102391 10.1038/s41590-021-00922-4
S.A. Dick J.A. Macklin S. Nejat A. Momen X. Clemente-Casares M.G. Althagafi et al. Self-renewing resident cardiac macrophages limit adverse remodeling following myocardial infarction Nat Immunol 20 29 39 1:CAS:528:DC%2BC1cXisVygsbnL 30538339 10.1038/s41590-018-0272-2
G.S. Youn J.K. Park C.Y. Lee J.H. Jang S.H. Yun H.Y. Kwon et al. Microrna-22 negatively regulates LPS-induced inflammatory responses by targeting HDAC6 in macrophages BMB Rep 53 223 8 1:CAS:528:DC%2BB3cXhtFersbjN 31964468 7196186 10.5483/BMBRep.2020.53.4.209
Y. Zhang J.-J. Han X.-Y. Liang L. Zhao F. Zhang J. Rasouli et al. Mir-23b suppresses leukocyte migration and pathogenesis of experimental autoimmune encephalomyelitis by targeting CCL7 Mol Ther 26 582 92 1:CAS:528:DC%2BC1cXisVCmtb0%3D 29275848 10.1016/j.ymthe.2017.11.013
H.-G. Moon J. Yang Y. Zheng Y. Jin MiR-15a/16 regulates macrophage phagocytosis after bacterial infection J Immunol 193 4558 4567 1:CAS:528:DC%2BC2cXhslKgu7%2FL 25261473 10.4049/jimmunol.1401372
J.J. Wong W. Ritchie D. Gao K.A. Lau M. Gonzalez A. Choudhary et al. Identification of nuclear-enriched miRNAs during mouse granulopoiesis J Hematol Oncol 7 24886830 4046156 10.1186/1756-8722-7-42 42
A. Dueck A. Eichner M. Sixt G. Meister A miR-155-dependent microRNA hierarchy in dendritic cell maturation and macrophage activation FEBS Lett 588 632 640 1:CAS:528:DC%2BC2cXhsVyht7k%3D 24444604 10.1016/j.febslet.2014.01.009
Y. Sun S. Varambally C.A. Maher Q. Cao P. Chockley T. Toubai et al. Targeting of microrna-142-3p in dendritic cells regulates endotoxin-induced mortality Blood 117 6172 83 1:CAS:528:DC%2BC3MXotVyhs7o%3D 21474672 3122940 10.1182/blood-2010-12-325647
S. Rahman J. Vandewalle P.H.P. van Hamersveld C. Verseijden O. Welting A. Jongejan et al. miR-511 deficiency protects mice from experimental colitis by reducing TLR3 and TLR4 responses via WD repeat and FYVE-domain-containing protein 1 Cells 11 58 1:CAS:528:DC%2BB38XmsFGktr0%3D 10.3390/cells11010058
D. Liu D. Wang Z. Xu J. Gao M. Liu Y. Liu et al. Dysregulated expression of miR-101b and miR-26b lead to age-associated increase in LPS-induced COX-2 expression in murine macrophage Age 37 1:CAS:528:DC%2BC1MXhvVGlsLbP 26371058 5005846 10.1007/s11357-015-9836-3 97
S.W. Choi J.Y. Lee K.-S. Kang miRNAs in stem cell aging and age-related disease Mech Ageing Dev 168 20 29 1:CAS:528:DC%2BC2sXhsVSltrvN 28847486 10.1016/j.mad.2017.08.013
S.A. Eshkoor N. Ghodsian M. Akhtari-Zavare Micrornas influence and longevity Egypt J Med Hum Genet 23 105 10.1186/s43042-022-00316-7
J. Baran-Gale T. Chandra K. Kirschner Experimental design for single-cell RNA sequencing Brief Funct Genomics 17 233 239 1:CAS:528:DC%2BC1MXhslaiu7zI 29126257 10.1093/bfgp/elx035
T.E. Bakken R.D. Hodge J.A. Miller Z. Yao T.N. Nguyen B. Aevermann et al. Single-nucleus and single-cell transcriptomes compared in matched cortical cell types PLoS One 13 30586455 6306246 10.1371/journal.pone.0209648 e0209648
A.E. Elias T.A. Nuñez B. Kun J.A. Kreiling primiReference: a reference for analysis of primary-microRNA expression in single-nucleus sequencing data J Genet Genomics 50 108 121 1:CAS:528:DC%2BB2cXhs1CnsL7F 36371075 10.1016/j.jgg.2022.10.003
J. Ji M. Anwar E. Petretto C. Emanueli P.K. Srivastava PPMS: a framework to profile primary microRNAs from single-cell RNA-sequencing datasets Brief Bioinform 23 36209413 9677482 10.1093/bib/bbac419 bbac419
S. Aibar C.B. González-Blas T. Moerman V.A. Huynh-Thu H. Imrichova G. Hulselmans et al. Scenic: single-cell regulatory network inference and clustering Nat Methods 14 1083 6 1:CAS:528:DC%2BC2sXhs1aitL7P 28991892 5937676 10.1038/nmeth.4463
S.M. Hücker T. Fehlmann C. Werno K. Weidele F. Lüke A. Schlenska-Lange et al. Single-cell microRNA sequencing method comparison and application to cell lines and circulating lung tumor cells Nat Commun 12 34262050 8280203 10.1038/s41467-021-24611-w 4316
Z. Shen M. Naveed J. Bao Untacking small RNA profiling and RNA fragment footprinting: approaches and challenges in library construction WIREs RNA 15 1:CAS:528:DC%2BB2cXhtFWrsrvJ 38715192 10.1002/wrna.1852 e1852
P.R. Moreau V. Tomas Bosch M. Bouvy-Liivrand K. Õunap T. Örd H.H. Pulkkinen et al. Profiling of primary and mature miRNA expression in atherosclerosis-associated cell types ATVB 41 2149 2167 1:CAS:528:DC%2BB3MXhsFaqsbnN 10.1161/ATVBAHA.121.315579
S. Pitchiaya L.A. Heinicke J.I. Park E.L. Cameron N.G. Walter Resolving subcellular miRNA trafficking and turnover at single-molecule resolution Cell Rep 19 630 642 1:CAS:528:DC%2BC2sXmtlWrsLo%3D 28423324 5482240 10.1016/j.celrep.2017.03.075
A.M. Leidal H.H. Huang T. Marsh T. Solvik D. Zhang J. Ye et al. The LC3-conjugation machinery specifies the loading of RNA-binding proteins into extracellular vesicles Nat Cell Biol 22 187 99 1:CAS:528:DC%2BB3cXotFKgsQ%3D%3D 31932738 7007875 10.1038/s41556-019-0450-y
D. Santovito V. Egea K. Bidzhekov L. Natarelli A. Mourão X. Blanchet et al. Noncanonical inhibition of caspase-3 by a nuclear microRNA confers endothelial protection by autophagy in atherosclerosis Sci Transl Med. 12 eaaz2294 1:CAS:528:DC%2BB3cXhtFSqt77P 32493793 10.1126/scitranslmed.aaz2294
G. La Rocca S.H. Olejniczak A.J. González D. Briskin J.A. Vidigal L. Spraggon et al. In vivo, Argonaute-bound microRNAs exist predominantly in a reservoir of low molecular weight complexes not associated with mRNA Proc Natl Acad Sci U S A 112 767 772 25568082 4311832 10.1073/pnas.1424217112
S.H. Olejniczak G. La Rocca J.J. Gruber C.B. Thompson Long-lived microrna–argonaute complexes in quiescent cells can be activated to regulate mitogenic responses Proc Natl Acad Sci USA 110 157 162 1:CAS:528:DC%2BC3sXnvVWmtg%3D%3D 23248281 10.1073/pnas.1219958110
Wang Y, Dong C, Han Y, Gu Z, Sun C. Immunosenescence, aging and successful aging. Front Immunol. 2022 [cited 2023 Jan 24];13. Available from: https://www.frontiersin.org/articles/10.3389/fimmu.2022.942796
E. Mensà A. Giuliani G. Matacchione F. Gurău A.R. Bonfigli F. Romagnoli et al. Circulating miR-146a in healthy aging and type 2 diabetes: age- and gender-specific trajectories Mech Ageing Dev 180 1 10 30880174 10.1016/j.mad.2019.03.001
S.L. Klein K.L. Flanagan Sex differences in immune responses Nat Rev Immunol 16 626 638 1:CAS:528:DC%2BC28XhtlChsLfE 27546235 10.1038/nri.2016.90
Olivieri F, Marchegiani F, Matacchione G, Giuliani A, Ramini D, Fazioli F, et al. Sex/gender-related differences in inflammaging. Mech Ageing Dev. 2023;211:111792.
D. Garg S.M. Cohen miRNAs and aging: a genetic perspective Ageing Res Rev 17 3 8 1:CAS:528:DC%2BC2cXntl2gs7k%3D 24755363 10.1016/j.arr.2014.04.001
M. Cartwright T. Tchkonia J. Kirkland Aging in adipocytes: potential impact of inherent, depot-specific mechanisms Exp Gerontol 42 463 471 1:CAS:528:DC%2BD2sXlsF2htLY%3D 17507194 1961638 10.1016/j.exger.2007.03.003
M. Zamboni N. Nori A. Brunelli E. Zoico How does adipose tissue contribute to inflammageing? Exp Gerontol 143 1:CAS:528:DC%2BB3MXjvFGjsQ%3D%3D 33253807 10.1016/j.exger.2020.111162 111162
D. Karo-Atar M. Itan M. Pasmanik-Chor A. Munitz MicroRNA profiling reveals opposing expression patterns for miR-511 in alternatively and classically activated macrophages J Asthma 52 545 553 1:CAS:528:DC%2BC2MXhvVWntrvK 25405361 10.3109/02770903.2014.988222
J. Xue S.V. Schmidt J. Sander A. Draffehn W. Krebs I. Quester et al. Transcriptome-based network analysis reveals a spectrum model of human macrophage activation Immunity 40 274 88 1:CAS:528:DC%2BC2cXisFWjtLc%3D 24530056 3991396 10.1016/j.immuni.2014.01.006
S. Yamaguchi D. Zhang A. Katayama N. Kurooka R. Sugawara H.H.H. Albuayjan et al. Adipocyte-specific inhibition of Mir221/222 ameliorates diet-induced obesity through targeting Ddit4 Front Endocrinol 12 10.3389/fendo.2021.750261 750261
K.C. Vickers B.M. Shoucri M.G. Levin H. Wu D.S. Pearson D. Osei-Hwedieh et al. Microrna-27b is a regulatory hub in lipid metabolism and is altered in dyslipidemia Hepatology 57 533 42 1:CAS:528:DC%2BC3sXit1Wgsbg%3D 22777896 10.1002/hep.25846
L. Li X. Zhang H. Ren X. Huang T. Shen W. Tang et al. MiR-23a/b-3p promotes hepatic lipid accumulation by regulating Srebp-1c and Fas J Mol Endocrinol 68 35 49 1:CAS:528:DC%2BB38XhvFSku7nF 10.1530/JME-20-0324
R. Ng H. Wu H. Xiao X. Chen H. Willenbring C.J. Steer et al. Inhibition of microrna-24 expression in liver prevents hepatic lipid accumulation and hyperlipidemia Hepatology 60 554 64 1:CAS:528:DC%2BC2cXht1WmsLzP 24677249 10.1002/hep.27153
Y.-H. Jiang Y.-Y. Man Y. Liu C.-J. Yin J.-L. Li H.-C. Shi et al. Loss of miR-23b/27b/24-1 cluster impairs glucose tolerance via glycolysis pathway in mice Int J Mol Sci 10.3390/ijms22020550 35008871 8745139
A.M. Olsson G.A.M. Povoleri D. Somma M.L. Ridley T. Rizou S. Lalnunhlimi et al. Mir-155-overexpressing monocytes resemble HLAhighISG15+ synovial tissue macrophages from patients with rheumatoid arthritis and induce polyfunctional CD4+ T-cell activation Clin Exp Immunol 207 188 98 8982969 10.1093/cei/uxab016
J.S. Tilstra C.L. Clauson L.J. Niedernhofer P.D. Robbins NF-κB in aging and disease Aging Dis 2 449 465 22396894 3295063
W.K. Glowacka P. Alberts R. Ouchida J.-Y. Wang D. Rotin Laptm5 protein is a positive regulator of proinflammatory signaling pathways in macrophages J Biol Chem 287 27691 27702 1:CAS:528:DC%2BC38XhtFOksb7L 22733818 3431655 10.1074/jbc.M112.355917
M.A. Mori P. Raghavan T. Thomou J. Boucher S. Robida-Stubbs Y. Macotela et al. Role of microRNA processing in adipose tissue in stress defense and longevity Cell Metab 16 336 47 1:CAS:528:DC%2BC38XhtlSktbvJ 22958919 3461823 10.1016/j.cmet.2012.07.017
J.M. Wolter K. Kotagama A.C. Pierre-Bez M. Firago M. Mangone 3′LIFE: a functional assay to detect miRNA targets in high-throughput Nucleic Acids Res 42 25074381 4176154 10.1093/nar/gku626 e132
Jayasingha B. scMIRs project web interface for single cell analysis in the browser. 2024. https://kana.rahtiapp.fi.