AI/ML; cloud computing/edge computing; digital twin; non-terrestrial networks; ORAN; Cloud computing/edge computing; Cloud-computing; Edge computing; Network design; Non-terrestrial network; Radio access networks; Terrestrial networks; Transport networks; Computer Networks and Communications
Abstract :
[en] With the rapid development of technology, the number of smart mobile users is increasing, accompanied by growing demands from applications such as virtual/augmented reality (VR/XR), remote surgery, autonomous vehicles, and real-time holographic communications, all of which require high transmission rates and ultra-low latency in 6G and beyond networks (6G+). This poses enormous challenges for the efficient deployment of large-scale networks, including network design, planning, troubleshooting, optimization, and maintenance, without affecting the user experience. Network Digital Twin (NDT) has emerged as a potential solution, enabling the creation of a virtual model that reflects the actual network and supports the simulation of various network designs, the application of diverse operating policies, and the reproduction complex fault scenarios under real-world conditions. This motivates us to conduct this study, where we provide a comprehensive survey of NDT in the context of 6G+, covering areas such as radio access networks (RAN), transport networks, 5G core networks and beyond (5GCORE+), cloud/edge computing, applications (blockchain, health system, manufacturing, security, and vehicular networks), non-terrestrial networks (NTNs), and quantum networks, from both academic and industrial perspectives. In particular, we are the first to provide an in-depth guide and usage of RAN and 5GCORE+ for NDT. Then, we provide an extensive review of foundation technologies such as transport networks, cloud/edge computing, applications, NTNs, and quantum networks in NDT. Finally, we discuss the key challenges, open issues, and future research directions for NDT in the context of 6G+.
Disciplines :
Computer science
Author, co-author :
TRAN DINH, Hieu ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom
Waheed, Nazar ; Higher Colleges of Technology, Abu Dhabi, United Arab Emirates
Saputra, Yuris Mulya ; Internet Engineering Technology, Department of Electrical Engineering and Informatics, Vocational College, Universitas Gadjah Mada, Yogyakarta, Indonesia
Lin, Xingqin ; NVIDIA, Santa Clara, United States
Nguyen, Cong T.; Ho Chi Minh City University of Technology, Ho Chi Minh City, Viet Nam
ABDU, Tedros Salih ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom
Vo, Van Nhan ; Faculty of Information Technology, Duy Tan University, Da Nang, Viet Nam ; Institute of Research and Development, Duy Tan University, Da Nang, Viet Nam
Pham, Van-Quan; Nokia Bell Labs, Murray Hill, United States
Alsenwi, Madyan ; Interdisciplinary Centre for Security, Reliability and Trust (SnT), The University of Luxembourg, Luxembourg
Adam, Abuzar Babikir Mohammad ; Interdisciplinary Centre for Security, Reliability and Trust (SnT), The University of Luxembourg, Luxembourg
CHATZINOTAS, Symeon ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom
LAGUNAS, Eva ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom
Tran, Hung; College of Technology, National Economics University, Hanoi, Viet Nam
Dac, Tu Ho ; Department of Electrical Engineering, Arctic University of Norway (UiT), Tromsø, Norway
Huynh, Nguyen Van ; Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool, United Kingdom
W. Jiang, B. Han, M. A. Habibi, and H. D. Schotten, “The road towards 6G: A comprehensive survey,” IEEE Open J. Commun. Soc., vol. 2, pp. 334–366, 2021.
D. C. Nguyen et al., “6G Internet of Things: A comprehensive survey,” IEEE Internet Things J., vol. 9, no. 1, pp. 359–383, Jan. 2022.
L. U. Khan, W. Saad, D. Niyato, Z. Han, and C. S. Hong, “Digital-twin-enabled 6G: Vision, architectural trends, and future directions,” IEEE Wireless Commun. Mag., vol. 60, no. 1, pp. 74–80, Jan. 2022.
Z. Tao, W. Xu, Y. Huang, X. Wang, and X. You, “Wireless network digital twin for 6G: Generative AI as a key Enabler,” IEEE Wireless Commun., vol. 31, no. 4, pp. 24–31, Aug. 2024.
M. Grieves and J. Vickers, “Digital twin: Mitigating unpredictable, undesirable emergent behavior in complex systems,” in Transdisciplinary perspectives on complex systems: New findings and approaches, Cham, Switzerland: Springer, 2017, pp. 85–113.
S. Mihai et al., “Digital twins: A survey on enabling technologies, challenges, trends and future prospects,” IEEE Commun. Surveys Tuts., vol. 24, no. 4, pp. 2255–2291, 4th Quart., 2022.
IBM. “What is a digital twin?” Jan. 2025. [Online]. Available: https://www.ibm.com/think/topics/what-is-a-digital-twin
H. Al-Hraishawi, M. Alsenwi, J. U. Rehman, E. Lagunas, and S. Chatzinotas, “Digital twin for enhanced resource allocation in 6G non-terrestrial networks,” IEEE Commun. Mag., vol. 63, no. 3, pp. 47–53, Mar. 2025.
Y. Wang, Z. Su, S. Guo, M. Dai, T. H. Luan, and Y. Liu, “A survey on digital twins: Architecture, enabling technologies, security and privacy, and future prospects,” IEEE Internet Things J., vol. 10, no. 17, pp. 14965–14987, Sep. 2023.
F. Tang, X. Chen, T. K. Rodrigues, M. Zhao, and N. Kato, “Survey on digital twin edge networks (DITEN) toward 6G,” IEEE Open J. Commun. Soc., vol. 3, pp. 1360–1381, 2022.
N. P. Kuruvatti, M. A. Habibi, S. Partani, B. Han, A. Fellan, and H. D. Schotten, “Empowering 6G communication systems with digital twin technology: A comprehensive survey,” IEEE Access, vol. 10, pp. 112158–112186, 2022.
X. Lin, L. Kundu, C. Dick, E. Obiodu, T. Mostak, and M. Flaxman, “6G digital twin networks: From theory to practice,” IEEE Commun. Mag., vol. 61, no. 11, pp. 72–78, Nov. 2023.
“Future technology trends of terrestrial IMT systems towards 2030 and beyond,” ITU, Geneva, Switzerland, Rep. ITU-R M.2516-0, 2022.
“Digital twin network—Requirements and architecture,” ITU, Geneva, Switzerland, ITU Recommendation ITU-T Y.3090, 2022.
J. Hoydis, F. A’́ıt Aoudia, S. Cammerer, F. Euchner, M. Nimier-David, S. Ten Brink, and A. Keller, “Learning radio environments by differentiable ray tracing,” IEEE Transactions on Machine Learning in Communications and Networking, vol. 2, pp. 1527–1539, 2024.
C. Ruah, O. Simeone, J. Hoydis, and B. Al-Hashimi, “Calibrating wireless ray tracing for digital twinning using local phase error estimates,” IEEE Transactions on Machine Learning in Communications and Networking, vol. 2, pp. 1193–1215, 2024.
Y. Ren, S. Guo, B. Cao, and X. Qiu, “End-to-end network SLA quality assurance for C-RAN: A closed-loop management method based on digital twin network,” IEEE Trans. Mobile Comput., vol. 23, no. 5, pp. 4405–4422, 2023.
3GPP, “Study on management aspect of network digital twin,” TR 28.915, 2025.
3GPP, “Management and orchestration; management aspects of network digital twins,” TS 28.561, 2025.
B. Akgun, A. Jolly, B. Sachdev, D. Ravichandran, R. Amiri, V. Jain, M. Jayabalan, Y. Chen, H. Pathak, V. Chande et al., “Advancing next generation wireless networks with digital twin: Construction, validation, and real-world applications on an indoor over-the-air testbed,” IEEE Access, vol. 12, pp. 166 298–166 319, 2024.
Y. Thomas, S. Toumpis, and N. Smyrnioudis, “Digital twin approach to estimating and utilizing the capacity region of wireless ad hoc networks,” Comput. Netw., vol. 241, p. 110213, 2024.
H. Gao, P. Kyösti, X. Zhang, and W. Fan, “Digital twin enabled 6G radio testing: Concepts, challenges and solutions,” IEEE Communications Magazine, vol. 61, no. 11, pp. 88–94, 2023.
R. Wiesmayr, S. Cammerer, F. A. Aoudia, J. Hoydis, J. Zakrzewski, and A. Keller, “Design of a standard-compliant real-time neural receiver for 5G NR,” in IEEE Int. Conf. Machine Learning for Communication and Networking, 2025, pp. 1–6.
B. Salehi, U. Demir, D. Roy, S. Pradhan, J. Dy, S. Ioannidis, and K. Chowdhury, “Multiverse at the edge: Interacting real world and digital twins for wireless beamforming,” IEEE/ACM Trans. Netw., vol. 32, no. 4, pp. 3092–3110, 2024.
O-RAN nGRG, “Research report on digital twin RAN use cases,” Report ID: RR-2024-07, 2024.
M. Groshev, C. Guimaraes, J. Martín-Pérez, and A. de la Oliva, “Toward intelligent cyber-physical systems: Digital twin meets artificial intelligence,” IEEE Commun. Mag., vol. 59, no. 8, pp. 14–20, Aug. 2021.
A. Kak, V.-Q. Pham, H.-T. Thieu, and N. Choi, “Ransight: Programmable telemetry for next-generation open radio access networks,” in Proc. IEEE Global Commun. Conf. (GLOBECOM), 2023, pp. 5391–5396.
L. Li, H. Sun, Z. Wang, W. Wang, and W. Fan, “Digital twins of electromagnetic propagation environments for live 5G networks—Part I: Channel acquisition, EM simulation and verification,” IEEE Trans. Antennas Propag., vol. 73, no. 4, pp. 2053–2064, Apr. 2025.
L. Li, S. Lin, Y. Zhong, Z. Wang, and W. Wang, “Digital twins of electromagnetic propagation environments for live 5G networks—Part II: High-fidelity emulation in the MPAC setup,” IEEE Trans. Antennas Propag., vol. 73, no. 4, pp. 2065–2073, Jun. 2025.
R. Pegurri, F. Linsalata, E. Moro, J. Hoydis, and U. Spagnolini, “Toward digital network twins: Integrating Sionna RT in NS3 for 6G multi-RAT networks simulations,” 2024, arXiv:2501.00372.
H. X. Nguyen, R. Trestian, D. To, and M. Tatipamula, “Digital twin for 5G and beyond,” IEEE Commun. Mag., vol. 59, no. 2, pp. 10–15, Feb. 2021.
Y. Chen, X. Lin, T. Khan, M. Afshang, and M. Mozaffari, “5G air-to-ground network design and optimization: A deep learning approach,” in Proc. IEEE 93rd Veh. Technol. Conf. (VTC-Spring), 2021, pp. 1–6.
H. Zhang, X. Ma, X. Liu, L. Li, and K. Sun, “GNN-based power allocation and user association in digital twin network for the terahertz band,” IEEE J. Sel. Areas Commun., vol. 41, no. 10, pp. 3111–3121, Oct. 2023.
H. Liu, T. Li, F. Jiang, W. Su, and Z. Wang, “Coverage optimization for large-scale mobile networks with digital twin and multi-agent reinforcement learning,” IEEE Trans. Wireless Commun., vol. 23, no. 12, pp. 18316–18330, Dec. 2024.
X. Huang, H. Yang, C. Zhou, M. He, X. Shen, and W. Zhuang, “When digital twin meets generative AI: Intelligent closed-loop network management,” IEEE Netw., early access, Dec. 30, 2024, doi: 10.1109/MNET.2024.3524474.
D. Villa et al., “Colosseum as a digital twin: Bridging real-world experimentation and wireless network emulation,” IEEE Trans. Mobile Comput., vol. 23, no. 10, pp. 9150–9166, Oct. 2024.
Z. Chen, W. Yi, A. Nallanathan, and J. A. Chambers, “Distributed digital twin migration in multi-tier computing systems,” IEEE J. Sel. Topics Signal Process., vol. 18, no. 1, pp. 109–123, Jan. 2024.
D.-H. Tran, V.-D. Nguyen, S. Chatzinotas, T. X. Vu, and B. Ottersten, “UAV relay-assisted emergency communications in IoT networks: Resource allocation and trajectory optimization,” IEEE Trans. Wireless Commun., vol. 21, no. 3, pp. 1621–1637, Mar. 2022.
P. X. Nguyen et al., “Backscatter-assisted data offloading in OFDMAbased wireless-powered mobile edge computing for IoT networks,” IEEE Internet Things J., vol. 8, no. 11, pp. 9233–9243, Jun. 2021.
D.-H. Tran, T. X. Vu, S. Chatzinotas, S. ShahbazPanahi, and B. Ottersten, “Coarse trajectory design for energy minimization in UAV-enabled,” IEEE Trans. Veh. Technol., vol. 69, no. 9, pp. 9483–9496, Sep. 2020.
O-RAN Empowering Vertical Industry: Scenarios, Solutions and Best Practice, O-RAN Alliance, Alfter, Germany, Dec. 2023.
O-RAN.WG1.Slicing-Architecture-R003-v09.00, O-RAN Alliance, Alfter, Germany, Mar. 2023.
P. Ohlen, C. Johnston, H. Olofsson, S. Terrill, and F. Chernogorov, “Network digital twins—Outlook and opportunities,” Ericsson Technol. Rev., vol. 2022, no. 12, pp. 2–11, 2022.
P. Almasan et al., “Network digital twin: Context, enabling technologies, and opportunities,” IEEE Commun. Mag., vol. 60, no. 11, pp. 22–27, Jun. 2022.
Network Digital Twin: Concepts and Reference Architecture, Huawei, Shenzhen, China, Mar. 2024.
J. Mirzaei, I. Abualhaol, and G. Poitau, “Network digital twin for open RAN: The key enablers, standardization, and use cases,” 2023, arXiv:2308.02644.
V.-Q. Pham, H.-T. Thieu, A. Kak, and N. Choi, “Hexric: Building a better near-real time network controller for the open ran ecosystem,” in Proc. 24th Int. Workshop Mobile Comput. Syst. Appl. (HotMobile), 2023, pp. 15–21. [Online]. Available: https://doi.org/10.1145/3572864.3580329
R. Kumar et al., “Secure data dissemination scheme for digital twin empowered vehicular networks in open RAN,” IEEE Trans. Veh. Technol., vol. 73, no. 7, pp. 9234–9246, Jul. 2024.
J. Akram, A. Anaissi, R. S. Rathore, R. H. Jhaveri, and A. Akram, “Digital twin-driven trust management in open RAN-based spatial crowdsourcing drone services,” IEEE Trans. Green Commun. Netw., vol. 8, no. 3, pp. 1061–1075, Sep. 2024.
Y. Rumesh, D. Attanayaka, P. Porambage, J. Pinola, J. Groen, and K. Chowdhury, “Federated learning for anomaly detection in open RAN: Security architecture within a digital twin,” in Proc. EuCNC/6G Summit, 2024, pp. 1–8.
P. Li, A. Aijaz, T. Farnham, S. Gufran, and S. Chintalapati, “DEMO: A digital twin of the 5G radio access network for anomaly detection functionality,” in Proc. IEEE 31st Int. Conf. Netw. Protocols (ICNP), 2023, pp. 1–2.
M. Polese et al., “Colosseum: The open RAN digital twin,” 2024, arXiv:2404.17317.
A. Ndikumana, K. K. Nguyen, and M. Cheriet, “Digital twin assisted closed-loops for energy-efficient open RAN-based fixed wireless access provisioning in rural areas,” in Proc. IEEE Global Commun. Conf. (GLOBECOM), 2023, pp. 6285–6290.
P. T. Tin et al., “Performance analysis of user pairing for active RIS-enabled cooperative NOMA in 6G cognitive radio networks,” IEEE Internet Things J., vol. 11, no. 23, pp. 37675–37692, Dec. 2024.
N. Q. Long et al., “Deep learning-driven throughput maximization in covert communication for UAV-RIS cognitive systems,” IEEE Open J. Commun. Soc., vol. 6, pp. 4140–4155, 2025.
G. Oliveri, M. Salucci, and A. Massa, “Towards efficient reflectarray digital twins—An em-driven machine learning perspective,” IEEE Trans. Antennas Propag., vol. 70, no. 7, pp. 5078–5093, Jun. 2022.
Y. Cui, T. Lv, W. Ni, and A. Jamalipour, “Digital twin-aided learning for managing reconfigurable intelligent surface-assisted, uplink, user-centric cell-free systems,” IEEE J. Sel. Areas Commun., vol. 41, no. 10, pp. 3175–3190, Oct. 2023.
D. Wang et al., “The role of digital twin in optical communication: Fault management, hardware configuration, and transmission simulation,” IEEE Commun. Mag., vol. 59, no. 1, pp. 133–139, Jan. 2021.
D. Sequeira, M. Ruiz, N. Costa, A. Napoli, J. Pedro, and L. Velasco, “OCATA: A deep-learning-based digital twin for the optical time domain,” J. Opt. Commun. Netw., vol. 15, no. 2, pp. 87–97, 2023.
M. Devigili et al., “Applications of the OCATA time domain digital twin: From QoT estimation to failure management,” J. Opt. Commun. Netw., vol. 16, no. 2, pp. 221–232, 2024.
R. Vilalta et al., “Applying digital twins to optical networks with cloud-native sdn controllers,” IEEE Commun. Mag., vol. 61, no. 12, pp. 128–134, Dec. 2023.
Y. Zhang et al., “Building a digital twin for large-scale and dynamic C+L-band optical networks,” J. Opt. Commun. Netw., vol. 15, no. 12, pp. 985–998, 2023.
Y. Liu et al., “Building a digital twin of an EDFA for optical networks: A gray-box modeling approach,” J. Opt. Commun. Netw., vol. 15, no. 11, pp. 830–838, 2023.
X. Liu et al., “Digital twin modeling and controlling of optical power evolution enabling autonomous-driving optical networks: A Bayesian approach,” Adv. Photon., vol. 6, no. 2, 2024, Art. no. 26006. [Online]. Available: https://doi.org/10.1117/1.AP.6.2.026006
R. Wang et al., “Digital-twin-assisted meta learning for soft-failure localization in roadm-based optical networks,” J. Opt. Commun. Netw., vol. 16, no. 7, pp. C11–C19, 2024.
Y. Qu, L. Gao, Y. Xiang, S. Shen, and S. Yu, “FedTwin: Blockchain-enabled adaptive asynchronous federated learning for digital twin networks,” IEEE Netw., vol. 36, no. 6, pp. 183–190, Nov./Dec. 2022.
M. Aloqaily, I. A. Ridhawi, and S. Kanhere, “Reinforcing industry 4.0 with digital twins and blockchain-assisted federated learning,” IEEE J. Sel. Areas Commun., vol. 41, no. 11, pp. 3504–3516, Nov. 2023.
Z. Lv, C. Cheng, and H. Lv, “Blockchain-based decentralized learning for security in digital twins,” IEEE Internet Things J., vol. 10, no. 24, pp. 21479–21488, Dec. 2023.
S. B. Prathiba et al., “Fortifying federated learning in IIoT: Leveraging blockchain and digital twin innovations for enhanced security and resilience,” IEEE Access, vol. 12, pp. 68968–68980, 2024.
J. Mu, W. Ouyang, T. Hong, W. Yuan, Y. Cui, and Z. Jing, “Digital twins-enabled federated learning in mobile networks: From the perspective of communication-assisted sensing,” IEEE J. Sel. Areas Commun., vol. 41, no. 10, pp. 3230–3241, Oct. 2023.
D.-H. Tran, N. Van Huynh, S. Kaada, V. N. Vo, E. Lagunas, and S. Chatzinotas, “Network energy saving for 6G and beyond: A deep reinforcement learning approach,” in Proc. IEEE Wireless Commun. Netw. Conf. (WCNC), 2025, pp. 1–6.
S. Kaada, D.-H. Tran, N. Van Huynh, M.-L. A. Morel, S. Jelassi, and G. Rubino, “Multi-agent deep reinforcement learning for resilience optimization in 5G RAN,” 2024, arXiv:2407.18066.
5G System Principles, Nokia, Espoo, Finland, 2019.
G. Gaurav and G. Kevin. “The 5G core network demystified.” 2023. [Online]. Available: https://infohub.delltechnologies.com/en-us/p/the5g-core-network-demystified/
ETSI. “System architecture for the 5G system (3GPP TS 23.501 version 15.3.0 release 15).” 2023. [Online]. Available: https://www.etsi.org/deliver/etsi_ts/123500_123599/123501/15.03.00_60/ts_123501v150300p.pdf
Y. Zheng, C. Lin, S. Huang, W. Li, K. Wang, and J. Lou, “Research and application of configuration system in core network based on digital twin,” in Proc. IEEE 5th Adv. Inf. Manag. Commun. Electron. Autom. Control Conf. (IMCEC), vol. 5, 2022, pp. 293–297.
S. Rani, H. Babbar, M. Krichen, K. Yu, and F. H. Memon, “Network slicing for zero-touch networks: A top-notch technology,” IEEE Netw., vol. 37, no. 5, pp. 16–24, Sep. 2023.
M. S. Rodrigo, D. Rivera, J. I. Moreno, M. Alvarez-Campana, and D. R. Lopez, “Digital twins for 5G networks: A modeling and deployment methodology,” IEEE Access, vol. 11, pp. 38112–38126, 2023.
Z. Tao, Y. Guo, G. He, Y. Huang, and X. You, “Deep learning-based modeling of 5G core control plane for 5G network digital twin,” IEEE Trans. Cogn. Commun. Netw., vol. 10, no. 1, pp. 238–251, Jun. 2024.
J. Wang, J. Li, and J. Liu, “Digital twin-assisted flexible slice admission control for 5G core network: A deep reinforcement learning approach,” Future Gener. Comput. Syst., vol. 153, pp. 467–476, Apr. 2024.
S. GeiBler, F. Wamser, W. Bauer, S. Gebert, S. Kounev, and T. HoBfeld, “MVNOCoreSim: A digital twin for virtualized IoTcentric mobile core networks,” IEEE Internet Things J., vol. 10, no. 15, pp. 13974–13987, Aug. 2023.
T. Bilen, E. Ak, B. Bal, and B. Canberk, “A proof of concept on digital twin-controlled WiFi core network selection for in-flight connectivity,” IEEE Commun. Stand. Mag., vol. 6, no. 3, pp. 60–68, Sep. 2022.
Y. Yigit, B. Bal, A. Karameseoglu, T. Q. Duong, and B. Canberk, “Digital twin-enabled intelligent DDoS detection mechanism for autonomous core networks,” IEEE Commun. Stand. Mag., vol. 6, no. 3, pp. 38–44, Jul. 2022.
N. Mohamed, J. Al-Jaroodi, I. Jawhar, and N. Kesserwan, “Leveraging digital twins for healthcare systems engineering,” IEEE Access, early access, Jul. 14, 2023, doi: 10.1109/ACCESS.2023.3292119.
Y. Liu et al., “A novel cloud-based framework for the elderly healthcare services using digital twin,” IEEE Access, vol. 7, pp. 49088–49101, 2019.
Y. Zheng, R. Lu, Y. Guan, S. Zhang, and J. Shao, “Towards private similarity query based healthcare monitoring over digital twin cloud platform,” in Proc. IEEE/ACM 29th Int. Symp. Qual. Service (IWQOS), 2021, pp. 1–10.
J. Han et al., “Cloud-edge hosted digital twins for coordinated control of distributed energy resources,” IEEE Trans. Cloud Comput., vol. 11, no. 2, pp. 1242–1256, Apr./Jun. 2023.
S. Zhang et al., “Practical adoption of cloud computing in power systems—Drivers, challenges, guidance, and real-world use cases,” IEEE Trans. Smart Grid, vol. 13, no. 3, pp. 2390–2411, Jun. 2022.
C. L. Stergiou and K. E. Psannis, “Digital twin intelligent system for Industrial IoT-based big data management and analysis in cloud,” Virtual Real. Intell. Hardw., vol. 4, no. 4, pp. 279–291, 2022.
A. Mikhailov, S. Tretyakov, and Y. Andreev, “A new approach to build Industrial Internet of Things (IIoT) systems based on digital twin’s technologies,” in Proc. Int. Conf. Ind. Eng. Appl. Manuf. (ICIEAM), 2022, pp. 1091–1095.
H. Huang, L. Yang, Y. Wang, X. Xu, and Y. Lu, “Digital twin-driven online anomaly detection for an automation system based on edge intelligence,” J. Manuf. Syst., vol. 59, pp. 138–150, Apr. 2021.
Y. Pan, T. Qu, N. Wu, M. Khalgui, and G. Huang, “Digital twin based real-time production logistics synchronization system in a multi-level computing architecture,” J. Manuf. Syst., vol. 58, pp. 246–260, Jan. 2021.
H. V. Dang, M. Tatipamula, and H. X. Nguyen, “Cloud-based digital twinning for structural health monitoring using deep learning,” IEEE Trans. Ind. Informat., vol. 18, no. 6, pp. 3820–3830, Jun. 2022.
Y. Dai and Y. Zhang, “Adaptive digital twin for vehicular edge computing and networks,” J. Commun. Inf. Netw., vol. 7, no. 1, pp. 48–59, 2022.
T. Q. Duong, D. Van Huynh, Y. Li, E. Garcia-Palacios, and K. Sun, “Digital twin-enabled 6G aerial edge computing with ultra-reliable and low-latency communications: (invited paper),” in Proc. 1st Int. Conf. 6G Netw. (6GNet), 2022, pp. 1–5.
S. H. Karobi, S. Ahmed, S. R. Sabuj, and A. Khokhar, “EcoEdgetwin: Enhanced 6G network via mobile edge computing and digital twin integration,” 2024, arXiv:2405.06507.
Y. Lu, S. Maharjan, and Y. Zhang, “Adaptive edge association for wireless digital twin networks in 6G,” IEEE Internet Things J., vol. 8, no. 22, pp. 16219–16230, Nov. 2021.
P. Yang, J. Hou, L. Yu, W. Chen, and Y. Wu, “Edge-coordinated energy-efficient video analytics for digital twin in 6g,” China Commun., vol. 20, no. 2, pp. 14–25, 2023.
C. Wang, Z. Cai, and Y. Li, “Human activity recognition in mobile edge computing: A low-cost and high-fidelity digital twin approach with deep reinforcement learning,” IEEE Trans. Consum. Electron., vol. 71, no. 2, pp. 6451–6459, May 2025.
H. Xiang et al., “Realizing immersive communications in human digital twin by edge computing empowered tactile Internet: Visions and case study,” IEEE Commun. Mag., vol. 39, no. 4, pp. 271–279, Jul. 2025.
R. Martinez-Velazquez, R. Gamez, and A. El Saddik, “Cardio twin: A digital twin of the human heart running on the edge,” in Proc. IEEE Int. Symp. Med. Meas. Appl. (MeMeA), 2019, pp. 1–6.
N. Ouahabi, A. Chebak, M. Zegrari, O. Kamach, and M. Berquedich, “A distributed digital twin architecture for shop floor monitoring based on edge-cloud collaboration,” in Proc. 3rd Int. Conf. Transp. Smart Technol. (TST), 2021, pp. 72–78.
M. Glatt, P. Kölsch, C. Siedler, P. Langlotz, S. Ehmsen, and J. C. Aurich, “Edge-based digital twin to trace and ensure sustainability in cross-company production networks,” Procedia CIRP, vol. 98, pp. 276–281, 2021.
L. Girletti, M. Groshev, C. Guimarães, C. J. Bernardos, and A. de la Oliva, “An intelligent edge-based digital twin for robotics,” in Proc. IEEE Globecom Workshops (GC Wkshps, 2020, pp. 1–6.
D. Van Huynh, S. R. Khosravirad, A. Masaracchia, O. A. Dobre, and T. Q. Duong, “Edge intelligence-based ultra-reliable and low-latency communications for digital twin-enabled metaverse,” IEEE Wireless Commun. Lett., vol. 11, no. 8, pp. 1733–1737, Aug. 2022.
R. Dong, C. She, W. Hardjawana, Y. Li, and B. Vucetic, “Deep learning for hybrid 5G services in mobile edge computing systems: Learn from a digital twin,” IEEE Trans. Wireless Commun., vol. 18, no. 10, pp. 4692–4707, Oct. 2019.
Z. Lv and R. Lou, “Edge-fog-cloud secure storage with deep-learning-assisted digital twins,” IEEE Internet Things Mag., vol. 5, no. 2, pp. 36–40, Jun. 2022.
L. Roda-Sanchez et al., “Building a smart campus digital twin: System, analytics, and lessons learned from a real-world project,” IEEE Internet Things J., vol. 11, no. 3, pp. 4614–4627, Aug. 2024.
Y. Lu, X. Huang, K. Zhang, S. Maharjan, and Y. Zhang, “Communication-efficient federated learning for digital twin edge networks in Industrial IoT,” IEEE Trans. Ind. Informat., vol. 17, no. 8, pp. 5709–5718, Aug. 2021.
J. Yang, W. Jiang, and L. Nie, “Hypernetworks-based hierarchical federated learning on hybrid non-IID datasets for digital twin in Industrial IoT,” IEEE Trans. Netw. Sci. Eng., vol. 11, no. 2, pp. 1413–1423, Mar./Apr. 2024.
R. Zhang, Z. Xie, D. Yu, W. Liang, and X. Cheng, “Digital twin-assisted federated learning service provisioning over mobile edge networks,” IEEE Trans. Comput., vol. 73, no. 2, pp. 586–598, Feb. 2024.
D.-H. Tran, N. Van Huynh, S. Kaada, V. N. Vo, E. Lagunas, and S. Chatzinotas, “Deep reinforcement learning for network energy saving in 6G and beyond networks,” 2024, arXiv:2408.10974.
H. Elayan, M. Aloqaily, and M. Guizani, “Digital twin for intelligent context-aware IoT healthcare systems,” IEEE Internet Things J., vol. 8, no. 23, pp. 16749–16757, Dec. 2021.
Z. Yu, K. Wang, Z. Wan, S. Xie, and Z. Lv, “FMCPNN in digital twins smart healthcare,” IEEE Consum. Electron. Mag., vol. 12, no. 4, pp. 66–73, Jul. 2023.
Y. Tai et al., “Digital-twin-enabled IoMT system for surgical simulation using rac-gan,” IEEE Internet Things J., vol. 9, no. 21, pp. 20918–20931, Nov. 2022.
S. Khan, A. Alzaabi, Z. Iqbal, T. Ratnarajah, and T. Arslan, “A novel digital twin (DT) model based on WiFi CSI, signal processing and machine learning for patient respiration monitoring and decision-support,” IEEE Access, vol. 11, pp. 103554–103568, 2023.
T. Mortlock, D. Muthirayan, S.-Y. Yu, P. P. Khargonekar, and M. Abdullah Al Faruque, “Graph learning for cognitive digital twins in manufacturing systems,” IEEE Trans. Emerg. Topics Comput., vol. 10, no. 1, pp. 34–45, Jan.–Mar. 2022.
Z. Ren, J. Wan, and P. Deng, “Machine-learning-driven digital twin for lifecycle management of complex equipment,” IEEE Trans. Emerg. Topics Comput., vol. 10, no. 1, pp. 9–22, Jan.–Mar. 2022.
G. A. R. Sampedro, M. A. P. Putra, and M. Abisado, “3D-AmplifAI: An ensemble machine learning approach to digital twin fault monitoring for additive manufacturing in smart factories,” IEEE Access, vol. 11, pp. 64128–64140, 2023.
N. Jyeniskhan, A. Keutayeva, G. Kazbek, M. H. Ali, and E. Shehab, “Integrating machine learning model and digital twin system for additive manufacturing,” IEEE Access, vol. 11, pp. 71113–71126, 2023.
D. Qiao, M. Li, S. Guo, J. Zhao, and B. Xiao, “Resources-efficient adaptive federated learning for digital twin-enabled iiot,” IEEE Trans. Netw. Sci. Eng., vol. 11, no. 4, pp. 3639–3652, Jul./Aug. 2024.
A. Castellani, S. Schmitt, and S. Squartini, “Real-world anomaly detection by using digital twin systems and weakly supervised learning,” IEEE Trans. Ind. Informat., vol. 17, no. 7, pp. 4733–4742, Jul. 2021.
Z. Li, M. Duan, B. Xiao, and S. Yang, “A novel anomaly detection method for digital twin data using deconvolution operation with attention mechanism,” IEEE Trans. Ind. Informat., vol. 19, no. 5, pp. 7278–7286, May 2023.
Z. Q. Wang and A. El Saddik, “DTITD: An intelligent insider threat detection framework based on digital twin and self-attention based deep learning models,” IEEE Access, vol. 11, pp. 114013–114030, 2023.
H. Boche, R. F. Schaefer, H. V. Poor, and F. H. P. Fitzek, “On the need of neuromorphic twins to detect denial-of-service attacks on communication networks,” IEEE/ACM Trans. Netw., vol. 32, no. 4, pp. 2875–2887, Aug. 2024.
Z. Lv, D. Chen, B. Cao, H. Song, and H. Lv, “Secure deep learning in defense in deep-learning-as-a-service computing systems in digital twins,” IEEE Trans. Comput., vol. 73, no. 3, pp. 656–668, Mar. 2024.
P. Kumar, R. Kumar, A. Kumar, A. A. Franklin, S. Garg, and S. Singh, “Blockchain and deep learning for secure communication in digital twin empowered Industrial IoT network,” IEEE Trans. Netw. Sci. Eng., vol. 10, no. 5, pp. 2802–2813, Sep./Oct. 2023.
Y. Belousov et al., “A machine learning-based digital twin for anti-counterfeiting applications with copy detection patterns,” IEEE Trans. Inf. Forensics Security, vol. 19, pp. 3395–3408, 2024.
L. Zhao, Z. Bi, A. Hawbani, K. Yu, Y. Zhang, and M. Guizani, “Elite: An intelligent digital twin-based hierarchical routing scheme for softwarized vehicular networks,” IEEE Trans. Mobile Comput., vol. 22, no. 9, pp. 5231–5247, Sep. 2023.
X. Zhou et al., “Digital twin enhanced federated reinforcement learning with lightweight knowledge distillation in mobile networks,” IEEE J. Sel. Areas Commun., vol. 41, no. 10, pp. 3191–3211, Oct. 2023.
Satellite Access Node Radio Transmission and Reception (Release 19), v19.1.0, 3GPP TS Standard 38.108, Jun. 2025.
J. Wigard et al., “Ubiquitous 6G service through non-terrestrial networks,” IEEE Wireless Commun., vol. 30, no. 6, pp. 12–18, Dec. 2023.
C. T. Nguyen et al., “Emerging technologies for 6G non-terrestrial-networks: From academia to industrial applications,” IEEE Open J. Commun. Soc., vol. 5, pp. 3852–3885, 2024.
T. N. Nguyen et al., “Security-reliability tradeoffs for satellite–terrestrial relay networks with a friendly jammer and imperfect CSI,” IEEE Trans. Aerosp. Electron. Syst., vol. 59, no. 5, pp. 7004–7019, Oct. 2023.
T. N. Nguyen et al., “Security and reliability analysis of satellite-terrestrial multirelay networks with imperfect CSI,” IEEE Syst. J., vol. 17, no. 2, pp. 2824–2835, Jun. 2023.
T. N. Nguyen et al., “Outage performance of satellite terrestrial full-duplex relaying networks with co-channel interference,” IEEE Wireless Commun. Lett., vol. 11, no. 7, pp. 1478–1482, Jul. 2022.
Y. Zhou, R. Zhang, J. Liu, T. Huang, Q. Tang, and F. R. Yu, “A hierarchical digital twin network for satellite communication networks,” IEEE Wireless Commun. Mag., vol. 61, no. 11, pp. 104–110, Nov. 2023.
L. Zhao, C. Wang, K. Zhao, D. Tarchi, S. Wan, and N. Kumar, “Interlink: A digital twin-assisted storage strategy for satellite-terrestrial networks,” IEEE Trans. Aerosp. Electron. Syst., vol. 58, no. 5, pp. 3746–3759, Oct. 2022.
H. Fan, J. Long, L. Liu, and Z. Yang, “Dynamic digital twin and online scheduling for contact window resources in satellite network,” IEEE Trans. Ind. Informat., vol. 19, no. 5, pp. 7217–7227, May 2023.
X. Xu, H. Wen, H. Song, and Y. Zhao, “A DT machine learning-based satellite orbit prediction for IoT applications,” IEEE Internet Things Mag., vol. 6, no. 2, pp. 96–100, Jun. 2023.
D.-H. Tran, S. Chatzinotas, and B. Ottersten, “Throughput maximization for backscatter-and cache-assisted wireless powered UAV technology,” IEEE Trans. Veh. Technol., vol. 71, no. 5, pp. 5187–5202, May 2022.
D.-H. Tran, S. Chatzinotas, and B. Ottersten, “Satellite-and cache-assisted UAV: A joint cache placement, resource allocation, and trajectory optimization for 6G aerial networks,” IEEE Open J. Veh. Technol., vol. 3, pp. 40–54, 2022.
L. Lei, G. Shen, L. Zhang, and Z. Li, “Toward intelligent cooperation of UAV swarms: When machine learning meets digital twin,” IEEE Netw., vol. 35, no. 1, pp. 386–392, Jan./Feb. 2021.
W. Sun, N. Xu, L. Wang, H. Zhang, and Y. Zhang, “Dynamic digital twin and federated learning with incentives for air-ground networks,” IEEE Trans. Netw. Sci. Eng., vol. 9, no. 1, pp. 321–333, Jan./Feb. 2022.
W. Sun, S. Lian, H. Zhang, and Y. Zhang, “Lightweight digital twin and federated learning with distributed incentive in air-ground 6G networks,” IEEE Trans. Netw. Sci. Eng., vol. 10, no. 3, pp. 1214–1227, May/Jun. 2023.
X. Tang et al., “Digital-twin-assisted task assignment in multi-UAV systems: A deep reinforcement learning approach,” IEEE Internet Things J., vol. 10, no. 17, pp. 15362–15375, Sep. 2023.
B. Hazarika, K. Singh, A. Paul, and T. Q. Duong, “Hybrid machine learning approach for resource allocation of digital twin in UAV-aided Internet-of-Vehicles networks,” IEEE Trans. Intell. Veh., vol. 9, no. 1, pp. 2923–2939, Jan. 2024.
L. Zhao et al., “Adaptive multi-UAV trajectory planning leveraging digital twin technology for urban IIoT applications,” IEEE Trans. Netw. Sci. Eng., vol. 11, no. 6, pp. 5349–5363, Nov./Dec. 2024.
G. Shen et al., “Deep reinforcement learning for flocking motion of multi-UAV systems: Learn from a digital twin,” IEEE Internet Things J., vol. 9, no. 13, pp. 11141–11153, Jul. 2022.
M. Deng, Z. Yao, X. Li, H. Wang, A. Nallanathan, and Z. Zhang, “Dynamic multi-objective AWPSO in DT-assisted UAV cooperative task assignment,” IEEE J. Sel. Areas Commun., vol. 41, no. 11, pp. 3444–3460, Nov. 2023.
L. Zhou, S. Leng, and Q. Wang, “A federated digital twin framework for UAVs-based mobile scenarios,” IEEE Trans. Mobile Comput., vol. 23, no. 6, pp. 7377–7393, Jun. 2024.
M. Ahmadian, M. Ruiz, J. Comellas, and L. Velasco, “Darius: A digital twin to improve the performance of quantum key distribution,” J. Lightw. Technol., vol. 42, no. 5, pp. 1356–1367, Jul. 15, 2024.
H. K. Chau, C. Bridges, and P. Nisbet-Jones, “Portable frequency stabilized lasers for quantum technologies using digital techniques,” IEEE Trans. Instrum. Meas., vol. 72, pp. 1–6, 2023.
M. Amir et al., “What can we expect from Quantum (Digital) Twins?” in Proc. 17th Int. Conf. Wirtschaftsinformatik (WI), 2022, p. 12.
A. Khan, F. Shahid, C. Maple, A. Ahmad, and G. Jeon, “Toward smart manufacturing using spiral digital twin framework and twin-chain,” IEEE Trans. Ind. Informat., vol. 18, no. 2, pp. 1359–1366, Feb. 2022.
N. Van Huynh et al., “Dynamic spectrum access for ambient backscatter communication-assisted D2D systems with quantum reinforcement learning,” 2024, arXiv:2410.17971.
D. Jaschke, A. Pagano, S. Weber, and S. Montangero, “Ab-initio tree-tensor-network digital twin for quantum computer benchmarking in 2D,” 2022, arXiv:2210.03763.
M. Ahmadian et al., “Designing a digital twin for quantum key distribution,” in Proc. Eur. Conf. Opt. Commun. (ECOC), 2022, pp. 1–4.
Z. Qu, Y. Li, B. Liu, D. Gupta, and P. Tiwari, “DTQFL: A digital twin-assisted quantum federated learning algorithm for intelligent diagnosis in 5G mobile network,” IEEE J. Biomed. Health Inform., early access, Aug. 8, 2023, doi: 10.1109/JBHI.2023.3303401.
Y. Wang, Y. He, F. R. Yu, B. Song, and V. C. Leung, “Efficient resource allocation for building the metaverse with uavs: A quantum collective reinforcement learning approach,” IEEE Wireless Commun., vol. 30, no. 5, pp. 152–159, Oct. 2023.
E. A. Tuli, J.-M. Lee, and D.-S. Kim, “Integration of quantum technologies into metaverse: Applications, potentials, and challenges,” IEEE Access, vol. 12, pp. 29995–30019, 2024.
S. E. Nouma and A. A. Yavuz, “Post-quantum hybrid digital signatures with hardware-support for digital twins,” 2023, arXiv:2305.12298.
S. Otgonbaatar et al. “Quantum computing for climate change detection, climate modeling, and climate digital twin.” 2023. [Online]. Available: https://www.techrxiv.org/users/693036/articles/ 691711-quantum-computing-for-climate-change-detection-climate-modeling-and-climate-digital-twin
U. Khalid, M. S. Ulum, A. Farooq, T. Q. Duong, O. A. Dobre, and H. Shin, “Quantum semantic communications for metaverse: Principles and challenges,” IEEE Wireless Commun., vol. 30, no. 4, pp. 26–36, Aug. 2023.
R. Martin, B. Lopez, I. Vidal, F. Valera, and B. Nogales, “Service for deploying digital twins of qkd networks,” Appl. Sci., vol. 14, no. 3, p. 1018, 2024.
H. Cao, S. Garg, S. Mumtaz, M. Alrashoud, L. Yang, and G. Kaddoum, “Softwarized resource allocation in digital twins-empowered networks for future quantum-enabled consumer applications,” IEEE Trans. Consum. Electron., vol. 70, no. 1, pp. 800–810, Feb. 2024.
S. E. Nouma and A. A. Yavuz, “Trustworthy and efficient digital twins in post-quantum era with hybrid hardware-assisted signatures,” ACM Trans. Multimedia Comput. Commun. Appl., vol. 20, no. 6, pp. 1–30, 2024.
B. Bera, A. K. Das, and B. Sikdar, “Quantum-resistant secure communication protocol for digital twin-enabled context-aware IoT-based healthcare applications,” IEEE Trans. Netw. Sci. Eng., vol. 12, no. 4, pp. 2722–2738, Jul./Aug. 2025.
Z. Guo et al., “QoS-aware joint massive random access control and resource allocation with colliding preamble reuse for prioritized IoT,” IEEE Trans. Veh. Technol., vol. 74, no. 7, pp. 11143–11160, Jul. 2025.
M. Vaezi, K. Noroozi, T. D. Todd, D. Zhao, and G. Karakostas, “Digital twin placement for minimum application request delay with data age targets,” IEEE Internet Things J., vol. 10, no. 13, pp. 11547–11557, Jul. 2023.
J. Zheng et al., “Data synchronization in vehicular digital twin network: A game theoretic approach,” IEEE Trans. Wireless Commun., vol. 22, no. 11, pp. 7635–7647, Nov. 2023.
A. Alkhateeb, S. Jiang, and G. Charan, “Real-time digital twins: Vision and research directions for 6G and beyond,” 2023, arXiv:2301.11283.
F. Arrano-Vargas and G. Konstantinou, “Modular design and real-time simulators toward power system digital twins implementation,” IEEE Trans. Ind. Informat., vol. 19, no. 1, pp. 52–61, Jan. 2023.
M. Picone, M. Mamei, and F. Zambonelli, “A flexible and modular architecture for edge digital twin: Implementation and evaluation,” ACM Trans. Internet Things, vol. 4, no. 1, pp. 1–32, Jan. 2023.
R. Müller, M. Zanner, M. Schielein, M. Rüfenacht, E. Jennings, and C. Gustiani, “Towards a digital twin of noisy quantum computers: Calibration-driven emulation of transmon qubits,” 2025, arXiv:2504.08313.
Y. Gong, H. Yao, X. Liu, M. Bennis, A. Nallanathan, and Z. Han, “Computation and privacy protection for satellite-ground digital twin networks,” IEEE Trans. Commun., vol. 72, no. 9, pp. 5532–5546, Sep. 2024.
J. Zuo, L. Zhou, L. Qiao, X. Ding, Q. Wu, X. He, and X. Peng, “A new general framework for response prediction of composite structures based on digital twin with three effective error correction strategies,” Appl. Composite Mater., vol. 30, no. 2, pp. 449–483, 2023.
S. Wang, M. A. Qureshi, L. Miralles-PechuÃn, T. Huynh-The, and M. Liyanage, “Explainable AI for 6G use cases: Technical aspects and research challenges,” IEEE Open J. Commun. Soc., vol. 5, pp. 1–18, 2024.
C. Alcaraz and J. Lopez, “Digital twin: A comprehensive survey of security threats,” IEEE Commun. Surveys Tuts., vol. 24, no. 3, pp. 1475–1503, 3rd Quart., 2022.
W. Liu, Y. Fu, Y. Guo, F. Wang, W. Sun, and Y. Zhang, “Two-timescale synchronization and migration for digital twin networks: A multi-agent deep reinforcement learning approach,” IEEE Trans. Wireless Commun., vol. 23, no. 11, pp. 17294–17309, Nov. 2024. doi: 10.1109/TWC.2024.3452689.
J. Chen, S. Park, P. Popovski, H. V. Poor, and O. Simeone, “Neuromorphic split computing with wake-up radios: Architecture and design via digital twinning,” IEEE Trans. Signal Process., vol. 72, pp. 4635–4650, 2024.
R. Ahmadvand, S. S. Sharif, and Y. M. Banad, “Neuromorphic digital-twin-based controller for indoor multi-UAV systems deployment,” IEEE J. Indoor Seamless Position. Navig., vol. 3, pp. 165–174, 2025.