Article (Scientific journals)
Systolic almost-rigidity modulo 2
Alpert, Hannah; BALITSKIY, Alexey; Guth, Larry
2024In Journal of the European Mathematical Society
Peer Reviewed verified by ORBi
 

Files


Full Text
10.4171-jems-1498-online-first.pdf
Publisher postprint (236.78 kB)
Download

All documents in ORBilu are protected by a user license.

Send to



Details



Abstract :
[en] No power law systolic freedom is possible for the product of mod 2 systoles of dimension 1 and codimension 1. This means that any closed n-dimensional Riemannian manifold M of bounded local geometry obeys the following systolic inequality: the product of its mod 2 systoles of dimensions 1 and n-1 is bounded from above by c(n,\epsilon) Vol(M)^{1+\epsilon}, if finite (if H_1(M; Z/2) is non-trivial).
Disciplines :
Mathematics
Author, co-author :
Alpert, Hannah ;  Auburn University, Auburn, USA
BALITSKIY, Alexey  ;  University of Luxembourg ; Institute for Advanced Study, Princeton, USA
Guth, Larry;  Massachusetts Institute of Technology, Cambridge, USA
External co-authors :
yes
Language :
English
Title :
Systolic almost-rigidity modulo 2
Publication date :
25 June 2024
Journal title :
Journal of the European Mathematical Society
ISSN :
1435-9855
eISSN :
1435-9863
Publisher :
European Mathematical Society - EMS - Publishing House GmbH
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
Horizon Europe
NSF - National Science Foundation
Available on ORBilu :
since 15 October 2025

Statistics


Number of views
10 (2 by Unilu)
Number of downloads
4 (0 by Unilu)

OpenCitations
 
0
OpenAlex citations
 
0

Bibliography


Similar publications



Contact ORBilu