Anti ferroelectrics; Intermediate structures; Non-polar phase; Optical-; Optical-bandgap; Paraelectric transitions; Phase Change; Polar phasis; Property; Structural phase transition; Atomic and Molecular Physics, and Optics; Condensed Matter Physics; Physics and Astronomy (miscellaneous); Physics and Astronomy (all)
Abstract :
[en] The substitution of bismuth by samarium in BiFeO 3 is known to induce a structural phase transition from the polar phase to a non-polar phase, with a possible antiferroelectric intermediate structure. In this paper, we investigate the impact of this phase change on the optical properties. The optical bandgap was measured by diffuse reflectance as a function of temperature for several samarium concentrations across the structural phase transition. We found that the optical bandgap for each of the pure phases varies linearly with temperature and that the phase transitions are revealed by smooth transitions between those linear regimes. This allows us to quantify the contribution of the structural change in the optical absorption. We find that a difference in optical bandgap of about ≈ 130 meV can be attributed to the phase change. We anticipate that the same change could be obtained by applying an electric field in an antiferroelectric composition.
Disciplines :
Physics
Author, co-author :
HILL, Christina ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Physics and Materials Science (DPHYMS) ; Luxembourg Institute of Science and Technology, Belvaux, Luxembourg ; Inter-institutional Research Group Uni.lu—LIST on Ferroic Materials, Belvaux, Luxembourg
MELCHIORRE, Michele ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Physics and Materials Science (DPHYMS)
MILESI-BRAULT, Cosme ; University of Luxembourg > Faculty of Science, Technology and Medicine > Department of Physics and Materials Science > Team Mael GUENNOU ; Université Paris-Saclay, CNRS, CentraleSupélec, Laboratoire SPMS, Gif-sur-Yvette, France
Gemeiner, Pascale; Université Paris-Saclay, CNRS, CentraleSupélec, Laboratoire SPMS, Gif-sur-Yvette, France
Karolak, Fabienne; Université Paris-Saclay, CNRS, CentraleSupélec, Laboratoire SPMS, Gif-sur-Yvette, France
Bogicevic, Christine; Université Paris-Saclay, CNRS, CentraleSupélec, Laboratoire SPMS, Gif-sur-Yvette, France
DKHIL, Brahim ; University of Luxembourg ; Université Paris-Saclay, CNRS, CentraleSupélec, Laboratoire SPMS, Gif-sur-Yvette, France
Cañero-Infante, Ingrid ; Université de Lyon, Institut des Nanotechnologies de Lyon, CNRS UMR 5270 ECL INSA UCBL CPE, Villeurbanne, France
GUENNOU, Mael ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Physics and Materials Science (DPHYMS) ; Inter-institutional Research Group Uni.lu—LIST on Ferroic Materials, Belvaux, Luxembourg
External co-authors :
yes
Language :
English
Title :
Quantifying the change in optical absorption caused by the ferro- to paraelectric transition in Sm-substituted BiFeO3 powders
Fonds National de la Recherche Luxembourg Fonds National de la Recherche Luxembourg Fonds National de la Recherche Luxembourg Agence Nationale de la Recherche Agence Nationale de la Recherche Agence Nationale de la Recherche
Funding text :
C.H. acknowledges funding from the Fond National de la Recherche under Project No. PRIDE/15/10935404. C.M.-B. acknowledges funding from the Fond National de la Recherche under Project BIAFET C16/MS/1134912/Guennou. B.D. acknowledges funding from the Fond National de la Recherche under Project INTER/MOBILITY/19/13992074 and the French National Research Agency (ANR) through Nos. CERACOOL ANR-23-CE05-0012, SOFIANE ANR-23-CE09-0007, and PHOTOTRICS ANR-24-CE08-0954-03.
S. Irfan, Z. Zhuanghao, F. Li, Y.-X. Chen, G.-X. Liang, J.-T. Luo, and F. Ping, “ Critical review: Bismuth ferrite as an emerging visible light active nanostructured photocatalyst,” J. Mater. Res. Technol. 8, 6375 ( 2019). 10.1016/j.jmrt.2019.10.004
S. Supriya, “ Recent trends and morphology mechanisms of rare-earth based BiFeO 3 nano perovskites with excellent photocatalytic performances,” J. Rare Earths 41, 331 ( 2023). 10.1016/j.jre.2022.08.011
W. Amdouni, M. Fricaudet, M. Otoničar, V. Garcia, S. Fusil, J. Kreisel, H. Maghraoui-Meherzi, and B. Dkhil, “ BiFeO 3 nanoparticles: The ‘holy-grail’ of piezo-photocatalysts?” Adv. Mater. 35, 2301841 ( 2023). 10.1002/adma.202301841
T. Choi, S. Lee, Y. J. Choi, V. Kiryukhin, and S.-W. Cheong, “ Switchable ferroelectric diode and photovoltaic effect in BiFeO 3,” Science 324, 63 ( 2009). 10.1126/science.1168636
S. Y. Yang, L. W. Martin, S. J. Byrnes, T. E. Conry, S. R. Basu, D. Paran, L. Reichertz, J. Ihlefeld, C. Adamo, A. Melville, Y.-H. Chu, C.-H. Yang, J. L. Musfeldt, D. G. Schlom, J. W. Ager III, and R. Ramesh, “ Photovoltaic effects in BiFeO 3,” Appl. Phys. Lett. 95, 062909 ( 2009). 10.1063/1.3204695
G. S. Lotey and N. K. Verma, “ Gd-doped BiFeO 3 nanoparticles—A novel material for highly efficient dye-sensitized solar cells,” Chem. Phys. Lett. 574, 71 ( 2013). 10.1016/j.cplett.2013.04.046
D. Tiwari, D. J. Fermin, T. K. Chaudhuri, and A. Ray, “ Solution processed bismuth ferrite thin films for all-oxide solar photovoltaics,” J. Phys. Chem. C 119, 5872 ( 2015). 10.1021/jp512821a
L. You, F. Zheng, L. Fang, Y. Zhou, L. Z. Tan, Z. Zhang, G. Ma, D. Schmidt, A. Rusydi, L. Wang, L. Chang, A. M. Rappe, and J. Wang, “ Enhancing ferroelectric photovoltaic effect by polar order engineering,” Sci. Adv. 4, eaat3438 ( 2018). 10.1126/sciadv.aat3438
D. C. Arnold, “ Composition-driven structural phase transitions in rare-earth-doped BiFeO 3 ceramics: A review,” IEEE Trans. Ultrasonics Ferroelectrics Frequency Control 62, 62 ( 2015). 10.1109/TUFFC.2014.006668
S. Irfan, Y. Shen, S. Rizwan, H.-C. Wang, S. B. Khan, and C.-W. Nan, “ Band-gap engineering and enhanced photocatalytic activity of Sm and Mn doped BiFeO 3 nanoparticles,” J. Am. Ceram. Soc. 100, 31 ( 2017). 10.1111/jace.14487
F. Mumtaz, S. Nasir, G. Jaffari, and S. Shah, “ Chemical pressure exerted by rare earth substitution in BiFeO 3 : Effect on crystal symmetry, band structure and magnetism,” J. Alloys Compd. 876, 160178 ( 2021). 10.1016/j.jallcom.2021.160178
A. Gholizadeh and S. Hosseini, “ Effect of heavy rare-earth substitution on physical properties of BiFeO 3 thin films and their photocatalytic application,” J. Am. Ceram. Soc. 107, 4209 ( 2024). 10.1111/jace.19729
D. Kan, C.-J. Cheng, V. Nagarajan, and I. Takeuchi, “ Composition and temperature-induced structural evolution in La, Sm, and Dy substituted BiFeO 3 epitaxial thin films at morphotropic phase boundaries,” J. Appl. Phys. 110, 014106 ( 2011). 10.1063/1.3605492
J. A. Mundy, B. F. Grosso, C. A. Heikes, D. Ferenc Segedin, Z. Wang, Y.-T. Shao, C. Dai, B. H. Goodge, Q. N. Meier, C. T. Nelson, B. Prasad, F. Xue, S. Ganschow, D. A. Muller, L. F. Kourkoutis, L.-Q. Chen, W. D. Ratcliff, N. A. Spaldin, R. Ramesh, and D. G. Schlom, “ Liberating a hidden antiferroelectric phase with interfacial electrostatic engineering,” Sci. Adv. 8, eabg5860 ( 2022). 10.1126/sciadv.abg5860
A. Pakalniškis, R. Skaudžius, D. V. Zhaludkevich, A. L. Zhaludkevich, D. O. Alikin, A. S. Abramov, T. Murauskas, V. Y. Shur, A. A. Dronov, M. V. Silibin, A. Selskis, R. Ramanauskas, A. Lukowiak, W. Strek, D. V. Karpinsky, and A. Kareiva, “ Morphotropic phase boundary in Sm-substituted BiFeO 3 ceramics: Local vs microscopic approaches,” J. Alloys Compd. 875, 159994 ( 2021). 10.1016/j.jallcom.2021.159994
A. Pakalniškis, R. Skaudžius, D. V. Zhaludkevich, S. I. Latushka, V. Sikolenko, A. V. Sysa, M. Silibin, K. Mažeika, D. Baltrūnas, G. Niaura, M. Talaikis, D. V. Karpinsky, and A. Kareiva, “ Pressure induced phase transitions in Sm-doped BiFeO 3 in the morphotropic phase boundary,” Mater. Chem. Phys. 277, 125458 ( 2022). 10.1016/j.matchemphys.2021.125458
X. X. Shi, X. Q. Liu, and X. M. Chen, “ Structure evolution and piezoelectric properties across the morphotropic phase boundary of Sm-substituted BiFeO 3 ceramics,” J. Appl. Phys. 119, 064104 ( 2016). 10.1063/1.4941820
C. Yu, G. Viola, D. Zhang, K. Zhou, V. Koval, A. Mahajan, R. M. Wilson, N. V. Tarakina, I. Abrahams, and H. Yan, “ Phase evolution and electrical behaviour of samarium-substituted bismuth ferrite ceramics,” J. Eur. Ceram. Soc. 38, 1374 ( 2018). 10.1016/j.jeurceramsoc.2017.12.016
C.-J. Cheng, D. Kan, S.-H. Lim, W. R. McKenzie, P. R. Munroe, L. G. Salamanca-Riba, R. L. Withers, I. Takeuchi, and V. Nagarajan, “ Structural transitions and complex domain structures across a ferroelectric-to-antiferroelectric phase boundary in epitaxial Sm-doped BiFeO 3 thin films,” Phys. Rev. B 80, 014109 ( 2009). 10.1103/PhysRevB.80.014109
M. Arora and M. Kumar, “ Electron spin resonance probed enhanced magnetization and optical properties of Sm doped BiFeO 3 nanoparticles,” Mater. Lett. 137, 285 ( 2014). 10.1016/j.matlet.2014.08.140
C. Anthonyraj, M. Muneeswaran, S. Gokul Raj, N. V. Giridharan, V. Sivakumar, and G. Senguttuvan, “ Effect of samarium doping on the structural, optical and magnetic properties of sol-gel processed BiFeO 3 thin films,” J. Mater. Sci.: Mater. Electron. 26, 49 ( 2015). 10.1007/s10854-014-2361-9
Z. Hu, D. Chen, S. Wang, N. Zhang, L. Qin, and Y. Huang, “ Facile synthesis of Sm-doped BiFeO 3 nanoparticles for enhanced visible light photocatalytic performance,” Mater. Sci. Eng. B 220, 1 ( 2017). 10.1016/j.mseb.2017.03.005
M. T. Kebede, V. Dillu, S. Devi, and S. Chauhan, “ Phase transition and optical properties of samarium-doped BiFeO 3 nanoparticles,” J. Mater. Sci.: Mater. Electron. 31, 19950 ( 2020). 10.1007/s10854-020-04518-w
Y. Gu, Y. Zhou, W. Zhang, C. Guo, X. Zhang, J. Zhao, Y. Zhang, and H. Zheng, “ Optical and magnetic properties of Sm-doped BiFeO 3 nanoparticles around the morphotropic phase boundary region,” AIP Adv. 11, 045223 ( 2021). 10.1063/5.0042485
F. F. Orudzhev, N. M.-R. Alikhanov, S. M. Ramazanov, D. S. Sobola, R. K. Murtazali, E. H. Ismailov, R. D. Gasimov, A. S. Aliev, and Ş. Ţălu, “ Morphotropic phase boundary enhanced photocatalysis in Sm doped BiFeO 3,” Molecules 27, 7029 ( 2022). 10.3390/molecules27207029
R. Alcaraz de la Osa, I. Iparragirre, D. Ortiz, and J. M. Saiz, “ The extended Kubelka-Munk theory and its application to spectroscopy,” ChemTexts 6, 2 ( 2020). 10.1007/s40828-019-0097-0
J. D. Lindberg, “ Absolute diffuse reflectance from relative reflectance measurements,” Appl. Opt. 26, 2900 ( 1987). 10.1364/AO.26.002900
E. L. Simmons, “ Diffuse reflectance spectroscopy: A comparison of the theories,” Appl. Opt. 14, 1380 ( 1975). 10.1364/AO.14.001380
E. L. Simmons, “ Reflectance spectroscopy: Application of the Kubelka-Munk theory to the rates of photoprocesses of powders,” Appl. Opt. 15, 951 ( 1976). 10.1364/AO.15.000951
X. Bai, J. Wei, B. Tian, Y. Liu, T. Reiss, N. Guiblin, P. Gemeiner, B. Dkhil, and I. C. Infante, “ Size effect on optical and photocatalytic properties in BiFeO 3 nanoparticles,” J. Phys. Chem. C 120, 3595 ( 2016). 10.1021/acs.jpcc.5b09945
F. Meggle, M. Viret, J. Kreisel, and C. A. Kuntscher, “ Temperature-dependent photo-response in multiferroic BiFeO 3 revealed by transmission measurements,” J. Appl. Phys. 125, 114104 ( 2019). 10.1063/1.5081038
X. S. Xu, T. V. Brinzari, S. Lee, Y. H. Chu, L. W. Martin, A. Kumar, S. McGill, R. C. Rai, R. Ramesh, V. Gopalan, S. W. Cheong, and J. L. Musfeldt, “ Optical properties and magnetochromism in multiferroic BiFeO 3,” Phys. Rev. B 79, 134425 ( 2009). 10.1103/PhysRevB.79.134425
C. Hill, M. C. Weber, J. Lehmann, T. Leinen, M. Fiebig, J. Kreisel, and M. Guennou, “ Role of the ferroelastic strain in the optical absorption of BiVO 4,” APL Mater. 8, 081108 ( 2020). 10.1063/5.0011507
R. Palai, R. S. Katiyar, H. Schmid, P. Tissot, S. J. Clark, J. Robertson, S. A. T. Redfern, G. Catalan, and J. F. Scott, “ β phase and γ − β metal-insulator transition in multiferroic BiFeO 3,” Phys. Rev. B 77, 014110 ( 2008). 10.1103/PhysRevB.77.014110
M. C. Weber, M. Guennou, C. Toulouse, M. Cazayous, Y. Gillet, X. Gonze, and J. Kreisel, “ Temperature evolution of the band gap in BiFeO 3 traced by resonant Raman scattering,” Phys. Rev. B 93, 125204 ( 2016). 10.1103/PhysRevB.93.125204
D. Sando, Y. Yang, E. Bousquet, C. Carrétéro, V. Garcia, S. Fusil, D. Dolfi, A. Barthélémy, P. Ghosez, L. Bellaiche, and M. Bibes, “ Large elasto-optic effect and reversible electrochromism in multiferroic BiFeO 3,” Nat. Commun. 7, 10718 ( 2016). 10.1038/ncomms10718
V. Železný, D. Chvostová, D. Šimek, F. Máca, J. Mašek, N. Setter, and Y. Hong Huang, “ The variation of PbTiO 3 bandgap at ferroelectric phase transition,” J. Phys.: Condens. Matter 28, 025501 ( 2016). 10.1088/0953-8984/28/2/025501
CERN Data Centre & Invenio, Zenodo, (accessed 31 July 2025), https://doi.org/10.5281/zenodo.15175369