[en] Vibrational spectroscopy is an indispensable analytical tool that provides structural fingerprints for molecules, solids, and interfaces thereof. This study introduces THeSeuSS (THz Spectra Simulations Software)—an automated computational platform that efficiently simulates IR and Raman spectra for both periodic and non-periodic systems. Using DFT, DFTB and machine-learning force field, THeSeuSS offers robust capabilities for detailed vibrational spectra simulations. Our extensive evaluations and benchmarks demonstrate that THeSeuSS accurately reproduces both previously calculated and experimental spectra, enabling precise comparisons and interpretations of vibrational characteristics in various test cases, including H2O and glycine molecules in the gas phase, as well as solid ammonia and solid ibuprofen. Designed with a user-friendly interface and seamless integration with existing computational chemistry tools, THeSeuSS enhances the accessibility and applicability of advanced spectroscopic simulations, supporting research and development in chemical, pharmaceutical, and material sciences.
Disciplines :
Chemistry
Author, co-author :
BOZIKI, Ariadni ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Computer Science (DCS)
Mebenga, Frédéric Ngono; Janssen Research and Development, Pharmaceutical and Material Sciences (PM&S), Janssen Pharmaceutical Companies of Johnson & Johnson, Beerse, Belgium
Fernandes, Philippe; Janssen Research and Development, Pharmaceutical and Material Sciences (PM&S), Janssen Pharmaceutical Companies of Johnson & Johnson, Beerse, Belgium
TKATCHENKO, Alexandre ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Physics and Materials Science (DPHYMS)
External co-authors :
yes
Language :
English
Title :
A Journey With THeSeuSS: Automated Python Tool for Modeling IR and Raman Vibrational Spectra of Molecules and Solids
Janssen Pharmaceutica European Research Council Fonds National de la Recherche Luxembourg
Funding text :
This work was supported by the Janssen Pharmaceutica, THESIS3, European Research Council, MACHINE\u2010DRUG, and Fonds National de la Recherche Luxembourg, BroadApp. Funding:Funding: This work was supported by the Janssen Pharmaceutica, THESIS3, European Research Council, MACHINE-DRUG, and Fonds National de la Recherche Luxembourg, BroadApp. The authors extend their gratitude to Dr. Olympia Giannou for her insightful discussions regarding coding queries. Special thanks are also due to Dr. Matteo Barborini for his valuable insights into the code and to Dr. Georgios Kafanas for his guidance on parallelization techniques using slurm. The authors are also grateful to Kyunghoon Han for his assistance with mathematical formulations. Lastly, heartfelt thanks are extended to Dr. Benjamin Hourahine and Dr. Mariana Rossi for their invaluable discussions on the intricacies of the DFTB+ and FHI-aims codes, respectively. The calculations presented in this paper were carried out using the HPC facilities of the University of Luxembourg (see hpc.uni.lu) [137], and the Luxembourg national supercomputer MeluXina. A.B. and A.T. gratefully acknowledge the HPC and LuxProvide teams for their expert support.
P. Larkin, Infrared and Raman Spectroscopy: Principles and Spectral Interpretation (Elsevier, 2017).
B. Schrader, Infrared and Raman Spectroscopy: Methods and Applications (Verlag Chemie, 1995).
L. Ho, M. Pepper, and P. Taday, “Signatures and Fingerprints,” Nature Photonics 2, no. 9 (2008): 541–543.
J. Neugebauer, M. Reiher, C. Kind, and B. A. Hess, “Quantum Chemical Calculation of Vibrational Spectra of Large Molecules-Raman and IR Spectra for Buckminsterfullerene,” Journal of Computational Chemistry 23, no. 9 (2002): 895–910.
A. Esser, S. Belsare, D. Marx, and T. Head-Gordon, “Mode Specific THz Spectra of Solvated Amino Acids Using the AMOEBA Polarizable Force Field,” Physical Chemistry Chemical Physics 19 (2017): 5579–5590.
F. Gabas, R. Conte, and M. Ceotto, “Semiclassical Vibrational Spectroscopy of Biological Molecules Using Force Fields,” Journal of Chemical Theory and Computation 16, no. 6 (2020): 3476–3485.
A. M. Reilly and A. Tkatchenko, “Role of Dispersion Interactions in the Polymorphism and Entropic Stabilization of the Aspirin Crystal,” Physical Review Letters 113 (2014): 055701.
E. Ditler and S. Luber, “Vibrational Spectroscopy by Means of First-Principles Molecular Dynamics Simulations,” Wiley Interdisciplinary Reviews: Computational Molecular Science 12, no. 5 (2022): e1605.
F. Billes, I. Ziegler, and H. Mikosch, “Application of Quantum Chemistry for the Interpretation of Vibrational Spectra,” Structural Chemistry 26 (2015): 1703–1714.
J. M. L. Martin and P. R. Taylor, “Structure and Vibrations of Small Carbon Clusters From Coupled-Cluster Calculations,” Journal of Physical Chemistry 100, no. 15 (1996): 6047–6056.
J. V. da Silva Jr, L. N. Vidal, P. A. M. Vazquez, and R. E. Bruns, “Coupled Cluster and Configuration Interaction Quantum Calculations of Infrared Fundamental Intensities,” International Journal of Quantum Chemistry 110, no. 11 (2010): 2029–2036.
M. A. Palafox, “DFT Computations on Vibrational Spectra: Scaling Procedures to Improve the Wavenumbers,” Physical Sciences Reviews 3, no. 6 (2018): 20170184.
M. D. King, W. D. Buchanan, and T. M. Korter, “Identification and Quantification of Polymorphism in the Pharmaceutical Compound Diclofenac Acid by Terahertz Spectroscopy and Solid-State Density Functional Theory,” Analytical Chemistry 83, no. 10 (2011): 3786–3792.
M. T. Ruggiero, J. Sibik, J. A. Zeitler, and T. M. Korter, “Examination of l-Glutamic Acid Polymorphs by Solid-State Density Functional Theory and Terahertz Spectroscopy,” Journal of Physical Chemistry A 120, no. 38 (2016): 7490–7495.
M. P. Davis and T. M. Korter, “Low-Frequency Vibrational Spectroscopy and Quantum Mechanical Simulations of the Crystalline Polymorphs of the Antiviral Drug Ribavirin,” Molecular Pharmaceutics 19, no. 9 (2022): 3385–3393.
K. C. Oppenheim, T. M. Korter, J. S. Melinger, and D. Grischkowsky, “Solid-State Density Functional Theory Investigation of the Terahertz Spectra of the Structural Isomers 1,2-Dicyanobenzene and 1,3-Dicyanobenzene,” Journal of Physical Chemistry A 114, no. 47 (2010): 12513–12521.
I. M. Alecu, J. Zheng, Y. Zhao, and D. G. Truhlar, “Computational Thermochemistry: Scale Factor Databases and Scale Factors for Vibrational Frequencies Obtained From Electronic Model Chemistries,” Journal of Chemical Theory and Computation 6, no. 9 (2010): 2872–2887.
T. M. Kolev, E. A. Velcheva, B. A. Stamboliyska, and M. Spiteller, “DFT and Experimental Studies of the Structure and Vibrational Spectra of Curcumin,” International Journal of Quantum Chemistry 102, no. 6 (2005): 1069–1079.
H. A. Witek, K. Morokuma, and A. Stradomska, “Modeling Vibrational Spectra Using the Self-Consistent Charge Density-Functional Tight-Binding Method. I. Raman Spectra,” Journal of Chemical Physics 121, no. 11 (2004): 5171–5178.
C. Feng, R. Q. Zhang, S. L. Dong, T. A. Niehaus, and T. Frauenheim, “Signatures in Vibrational Spectra of Ice Nanotubes Revealed by a Density Functional Tight Binding Method,” Journal of Physical Chemistry C 111, no. 38 (2007): 14131–14138.
H. A. Witek, K. Morokuma, and A. Stradomska, “Modeling Vibrational Spectra Using the Self-Consistent Charge Density-Functional Tight-Binding Method II: Infrared Spectra,” Journal of Theoretical and Computational Chemistry 04, no. spec01 (2005): 639–655.
H. Yu and Q. Cui, “The Vibrational Spectra of Protonated Water Clusters: A Benchmark for Self-Consistent-Charge Density-Functional Tight Binding,” Journal of Chemical Physics 127, no. 23 (2007): 234504.
E. Małolepsza, H. A. Witek, and K. Morokuma, “Accurate Vibrational Frequencies Using the Self-Consistent-Charge Density-Functional Tight-Binding Method,” Chemical Physics Letters 412, no. 4 (2005): 237–243.
R. Han, R. Ketkaew, and S. Luber, “A Concise Review on Recent Developments of Machine Learning for the Prediction of Vibrational Spectra,” Journal of Physical Chemistry A 126, no. 6 (2022): 801–812.
S. Ye, K. Zhong, J. Zhang, et al., “A Machine Learning Protocol for Predicting Protein Infrared Spectra,” Journal of the American Chemical Society 142, no. 45 (2020): 19071–19077.
B. Nebgen, N. Lubbers, J. S. Smith, et al., “Transferable Dynamic Molecular Charge Assignment Using Deep Neural Networks,” Journal of Chemical Theory and Computation 14, no. 9 (2018): 4687–4698.
M. Gastegger, J. Behler, and P. Marquetand, “Machine Learning Molecular Dynamics for the Simulation of Infrared Spectra,” Chemical Science 8 (2017): 6924–6935.
N. Raimbault, A. Grisafi, M. Ceriotti, and M. Rossi, “Using Gaussian Process Regression to Simulate the Vibrational Raman Spectra of Molecular Crystals,” New Journal of Physics 21, no. 10 (2019): 105001.
S. Lifson and A. Warshel, “Consistent Force Field for Calculations of Conformations, Vibrational Spectra, and Enthalpies of Cycloalkane and n-Alkane Molecules,” Journal of Chemical Physics 49, no. 11 (1968): 5116–5129.
E. Małolepsza and J. E. Straub, “Empirical Maps for the Calculation of Amide I Vibrational Spectra of Proteins From Classical Molecular Dynamics Simulations,” Journal of Physical Chemistry B 118, no. 28 (2014): 7848–7855.
A. Togo, “First-Principles Phonon Calculations With Phonopy and phono3py,” Journal of the Physical Society of Japan 92, no. 1 (2023): 012001.
A. Togo, L. Chaput, T. Tadano, and I. Tanaka, “Implementation Strategies in Phonopy and phono3py,” Journal of Physics: Condensed Matter 35, no. 35 (2023): 353001.
V. Blum, R. Gehrke, F. Hanke, et al., “Ab Initio Molecular Simulations With Numeric Atom-Centered Orbitals,” Computer Physics Communications 180, no. 11 (2009): 2175–2196.
V. Havu, V. Blum, P. Havu, and M. Scheffler, “Efficient O(N) Integration for All-Electron Electronic Structure Calculation Using Numeric Basis Functions,” Journal of Computational Physics 228, no. 22 (2009): 8367–8379.
A. Marek, V. Blum, R. Johanni, et al., “The ELPA Library: Scalable Parallel Eigenvalue Solutions for Electronic Structure Theory and Computational Science,” Journal of Physics: Condensed Matter 26, no. 21 (2014): 213201.
V. W. Yu, F. Corsetti, A. García, et al., “ELSI: A Unified Software Interface for Kohn–Sham Electronic Structure Solvers,” Computer Physics Communications 222 (2018): 267–285.
V. W. Yu, C. Campos, W. Dawson, et al., “ELSI—An Open Infrastructure for Electronic Structure Solvers,” Computer Physics Communications 256 (2020): 107459.
P. Giannozzi, S. Baroni, N. Bonini, et al., “QUANTUM ESPRESSO: A Modular and Open-Source Software Project for Quantum Simulations of Materials,” Journal of Physics: Condensed Matter 21, no. 39 (2009): 395502.
P. Giannozzi, O. Andreussi, T. Brumme, et al., “Advanced Capabilities for Materials Modelling With Quantum ESPRESSO,” Journal of Physics: Condensed Matter 29, no. 46 (2017): 465901.
M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., Gaussian 16 Revision C.01 (Gaussian Inc, 2016).
G. M. J. Barca, C. Bertoni, L. Carrington, et al., “Recent Developments in the General Atomic and Molecular Electronic Structure System,” Journal of Chemical Physics 152, no. 15 (2020): 154102.
F. Neese, F. Wennmohs, U. Becker, and C. Riplinger, “The ORCA Quantum Chemistry Program Package,” Journal of Chemical Physics 152, no. 22 (2020): 224108.
F. Furche, R. Ahlrichs, C. Hättig, W. Klopper, M. Sierka, and F. Weigend, “Turbomole,” Wiley Interdisciplinary Reviews: Computational Molecular Science 4, no. 2 (2014): 91–100.
T. D. Kühne, M. Iannuzzi, M. Del Ben, et al., “CP2K: An Electronic Structure and Molecular Dynamics Software Package - Quickstep: Efficient and Accurate Electronic Structure Calculations,” Journal of Chemical Physics 152, no. 19 (2020): 194103.
E. Artacho, D. Sánchez-Portal, P. Ordejón, A. García, and J. M. Soler, “Linear-Scaling Ab-Initio Calculations for Large and Complex Systems,” Physica Status Solidi B 215, no. 1 (1999): 809–817.
E. Artacho, E. Anglada, O. Diéguez, et al., “The SIESTA Method; Developments and Applicability,” Journal of Physics: Condensed Matter 20, no. 6 (2008): 064208.
J. M. Soler, E. Artacho, J. D. Gale, et al., “The SIESTA Method for Ab Initio Order-N Materials Simulation,” Journal of Physics: Condensed Matter 14, no. 11 (2002): 2745–2779.
X. Gonze, F. Jollet, F. A. Araujo, et al., “Recent Developments in the ABINIT Software Package,” Computer Physics Communications 205 (2016): 106–131.
X. Gonze, J. M. Beuken, R. Caracas, et al., “First-Principles Computation of Material Properties: The ABINIT Software Project,” Computational Materials Science 25, no. 3 (2002): 478–492.
S. J. Clark, M. D. Segall, C. J. Pickard, et al., “First Principles Methods Using CASTEP,” Zeitschrift fur Kristallographie - Crystalline Materials 220, no. 5–6 (2005): 567–570.
B. Hourahine, B. Aradi, V. Blum, et al., “DFTB+, A Software Package for Efficient Approximate Density Functional Theory Based Atomistic Simulations,” Journal of Chemical Physics 152, no. 12 (2020): 124101.
A. P. Thompson, H. M. Aktulga, R. Berger, et al., “LAMMPS - a Flexible Simulation Tool for Particle-Based Materials Modeling at the Atomic, Meso, and Continuum Scales,” Computer Physics Communications 271 (2022): 108171.
M. Thomas, M. Brehm, R. Fligg, P. Vöhringer, and B. Kirchner, “Computing Vibrational Spectra From Ab Initio Molecular Dynamics,” Physical Chemistry Chemical Physics 15 (2013): 6608–6622.
M. Thomas, M. Brehm, and B. Kirchner, “Voronoi Dipole Moments for the Simulation of Bulk Phase Vibrational Spectra,” Physical Chemistry Chemical Physics 17 (2015): 3207–3213.
N. T. Hung, J. Huang, Y. Tatsumi, T. Yang, and R. Saito, “QERaman: An Open-Source Program for Calculating Resonance Raman Spectra Based on Quantum ESPRESSO,” Computer Physics Communications 295 (2024): 108967.
S. S. Khire, N. Sahu, and S. R. Gadre, “MTASpec Software for Calculating the Vibrational IR and Raman Spectra of Large Molecules at Ab Initio Level,” Computer Physics Communications 270 (2022): 108175.
L. Bastonero and N. Marzari, “Automated All-Functionals Infrared and Raman Spectra,” npj Computational Materials 10, no. 1 (2024): 55.
A. Kabylda, J. T. Frank, S. S. Dou, et al., Molecular Simulations With a Pretrained Neural Network and Universal Pairwise Force Fields (ChemRxiv, 2024).
T. Frank, O. Unke, K. R. Müller, and S. Chmiela, “A Euclidean Transformer for Fast and Stable Machine Learned Force Fields,” Nature Communications 15, no. 1 (2024): 6539.
B. H. Stuart, Infrared Spectroscopy: Fundamentals and Applications (John Wiley & Sons, 2004).
B. Stuart, Infrared Spectroscopy (John Wiley & Sons, Ltd, 2005).
E. Smith and G. Dent, Modern Raman Spectroscopy: A Practical Approach (John Wiley & Sons, 2019).
G. Keresztury, “Raman Spectroscopy: Theory,” in Handbook of Vibrational Spectroscopy (Wiley, 2006).
V. Heine and D. Weaire, Solid State Physics, vol. 24, ed. H. Ehrenreich, F. Seitz, and D. Turnbull (Academic Press, 1970), 249.
S. Baroni, P. Giannozzi, and A. Testa, “Green's-Function Approach to Linear Response in Solids,” Physical Review Letters 58 (1987): 1861–1864.
X. Gonze and J. P. Vigneron, “Density-Functional Approach to Nonlinear-Response Coefficients of Solids,” Physical Review B 39 (1989): 13120–13128.
P. Giannozzi, S. de Gironcoli, P. Pavone, and S. Baroni, “Ab Initio Calculation of Phonon Dispersions in Semiconductors,” Physical Review B: Condensed Matter 43 (1991): 7231–7242.
S. Y. Savrasov, “Linear-Response Theory and Lattice Dynamics: A Muffin-Tin-Orbital Approach,” Physical Review B 54 (1996): 16470–16486.
X. Gonze and C. Lee, “Dynamical Matrices, Born Effective Charges, Dielectric Permittivity Tensors, and Interatomic Force Constants From Density-Functional Perturbation Theory,” Physical Review B 55 (1997): 10355–10368.
S. Baroni, S. de Gironcoli, A. Dal Corso, and P. Giannozzi, “Phonons and Related Crystal Properties From Density-Functional Perturbation Theory,” Reviews of Modern Physics 73 (2001): 515–562.
A. Ratnaparkhe and W. R. L. Lambrecht, “Calculated Phonon Modes, Infrared, and Raman Spectra in ZnGeGa2N4,” Journal of Applied Physics 128, no. 7 (2020): 075702.
A. Ratnaparkhe, S. Kumar Radha, and W. R. L. Lambrecht, “Calculated Phonon Modes, Infrared and Raman Spectra in Orthorhombic α-MoO3 and Monolayer MoO3,” Journal of Applied Physics 130, no. 10 (2021): 104302.
P. J. Larkin, “Chapter 6—IR and Raman Spectra–Structure Correlations: Characteristic Group Frequencies,” in Infrared and Raman Spectroscopy, 2nd ed., ed. P. J. Larkin (Elsevier, 2018), 85–134.
D. Porezag and M. R. Pederson, “Infrared Intensities and Raman-Scattering Activities Within Density-Functional Theory,” Physical Review B 54 (1996): 7830–7836.
R. D. King-Smith and D. Vanderbilt, “Theory of Polarization of Crystalline Solids,” Physical Review B 47 (1993): 1651–1654.
R. Resta, “Macroscopic Polarization in Crystalline Dielectrics: The Geometric Phase Approach,” Reviews of Modern Physics 66 (1994): 899–915.
N. Marzari and D. Vanderbilt, “Maximally Localized Generalized Wannier Functions for Composite Energy Bands,” Physical Review B 56 (1997): 12847–12865.
P. L. Silvestrelli and M. Parrinello, “Structural, Electronic, and Bonding Properties of Liquid Water From First Principles,” Journal of Chemical Physics 111, no. 8 (1999): 3572–3580.
P. L. Silvestrelli and M. Parrinello, “Water Molecule Dipole in the Gas and in the Liquid Phase,” Physical Review Letters 82 (1999): 3308–3311.
N. Raimbault, V. Athavale, and M. Rossi, “Anharmonic Effects in the Low-Frequency Vibrational Modes of Aspirin and Paracetamol Crystals,” Physical Review Materials 3 (2019): 053605.
X. Gonze, “First-Principles Responses of Solids to Atomic Displacements and Homogeneous Electric Fields: Implementation of a Conjugate-Gradient Algorithm,” Physical Review B 55 (1997): 10337–10354.
D. Maag, J. Böser, H. A. Witek, B. Hourahine, M. Elstner, and T. Kubař, “Mechanism of Proton-Coupled Electron Transfer Described With QM/MM Implementation of Coupled-Perturbed Density-Functional Tight-Binding,” Journal of Chemical Physics 158, no. 12 (2023): 124107.
A. Togo and I. Tanaka, “Spglib: A Software Library for Crystal Symmetry Search,” 2018 arXiv preprint arXiv: 180801590.
THeSeuSS documentation, “Welcome to THeSeuSS,” https://ariadni20.github.io/THeSeuSS/.
A. la Otero-de- Roza and E. R. Johnson, “A Benchmark for Non-Covalent Interactions in Solids,” Journal of Chemical Physics 137, no. 5 (2012): 054103.
A. M. Reilly and A. Tkatchenko, “Understanding the Role of Vibrations, Exact Exchange, and Many-Body van der Waals Interactions in the Cohesive Properties of Molecular Crystals,” Journal of Chemical Physics 139, no. 2 (2013): 024705.
J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Physical Review Letters 77 (1996): 3865–3868.
J. Hermann and A. Tkatchenko, “Density Functional Model for van der Waals Interactions: Unifying Many-Body Atomic Approaches With Nonlocal Functionals,” Physical Review Letters 124 (2020): 146401.
A. M. Reilly, R. I. Cooper, C. S. Adjiman, et al., “Report on the Sixth Blind Test of Organic Crystal Structure Prediction Methods,” Acta Crystallographica. Section B: Structural Science, Crystal Engineering and Materials 72, no. 4 (2016): 439–459.
G. M. Day, T. G. Cooper, A. J. Cruz-Cabeza, et al., “Significant Progress in Predicting the Crystal Structures of Small Organic Molecules-a Report on the Fourth Blind Test,” Acta Crystallographica. Section B: Structural Science, Crystal Engineering and Materials 65, no. 2 (2009): 107–125.
D. A. Bardwell, C. S. Adjiman, Y. A. Arnautova, et al., “Towards Crystal Structure Prediction of Complex Organic Compounds-a Report on the Fifth Blind Test,” Acta Crystallographica. Section B: Structural Science, Crystal Engineering and Materials 67, no. 6 (2011): 535–551.
J. Hoja, H. Y. Ko, M. A. Neumann, R. Car, R. A. DiStasio, and A. Tkatchenko, “Reliable and Practical Computational Description of Molecular Crystal Polymorphs,” Science Advances 5, no. 1 (2019): eaau3338.
C. Adamo and V. Barone, “Toward Reliable Density Functional Methods Without Adjustable Parameters: The PBE0 Model,” Journal of Chemical Physics 110, no. 13 (1999): 6158–6170.
A. Tkatchenko, R. A. DiStasio, R. Car, and M. Scheffler, “Accurate and Efficient Method for Many-Body van der Waals Interactions,” Physical Review Letters 108, no. 23 (2012): 236402.
R. A. DiStasio Jr, O. A. von Lilienfeld, and A. Tkatchenko, “Collective Many-Body van der Waals Interactions in Molecular Systems,” Proceedings of the National Academy of Sciences of the United States of America 109, no. 37 (2012): 14791–14795.
A. Ambrosetti, A. M. Reilly, R. A. DiStasio, and A. Tkatchenko, “Long-Range Correlation Energy Calculated From Coupled Atomic Response Functions,” Journal of Chemical Physics 140, no. 18 (2014): 18A508.
R. A. DiStasio, V. V. Gobre, and A. Tkatchenko, “Many-Body van der Waals Interactions in Molecules and Condensed Matter,” Journal of Physics. Condensed Matter 26, no. 21 (2014): 213202.
C. Lee, W. Yang, and R. G. Parr, “Development of the Colle-Salvetti Correlation-Energy Formula Into a Functional of the Electron Density,” Physical Review B 37 (1988): 785–789.
A. D. Becke, “Density-Functional Thermochemistry. III. The Role of Exact Exchange,” Journal of Chemical Physics 98, no. 7 (1993): 5648–5652.
J. C. Howard, J. L. Gray, A. J. Hardwick, L. T. Nguyen, and G. S. Tschumper, “Getting Down to the Fundamentals of Hydrogen Bonding: Anharmonic Vibrational Frequencies of (HF)2 and (H2O)2 from Ab Initio Electronic Structure Computations,” Journal of Chemical Theory and Computation 10, no. 12 (2014): 5426–5435.
J. C. Howard and G. S. Tschumper, “Benchmark Structures and Harmonic Vibrational Frequencies Near the CCSD(T) Complete Basis Set Limit for Small Water Clusters: (H2O)n=2,3,4,5,6,” Journal of Chemical Theory and Computation 11, no. 5 (2015): 2126–2136.
J. C. Howard and G. S. Tschumper, “N-Body:Many-Body QM:QM Vibrational Frequencies: Application to Small Hydrogen-Bonded Clusters,” Journal of Chemical Physics 139, no. 18 (2013): 184113.
E. Miliordos, E. Aprà, and S. S. Xantheas, “Optimal Geometries and Harmonic Vibrational Frequencies of the Global Minima of Water Clusters (H2O)n, n = 2-6, and Several Hexamer Local Minima at the CCSD(T) Level of Theory,” Journal of Chemical Physics 139, no. 11 (2013): 114302.
Y. Wang, X. Huang, B. C. Shepler, B. J. Braams, and J. M. Bowman, “Flexible, Ab Initio Potential, and Dipole Moment Surfaces for Water. I. Tests and Applications for Clusters up to the 22-Mer,” Journal of Chemical Physics 134, no. 9 (2011): 094509.
Y. Wang, B. C. Shepler, B. J. Braams, and J. M. Bowman, “Full-Dimensional, Ab Initio Potential Energy and Dipole Moment Surfaces for Water,” Journal of Chemical Physics 131, no. 5 (2009): 054511.
A. A. Kananenka and J. L. Skinner, “Fermi Resonance in OH-Stretch Vibrational Spectroscopy of Liquid Water and the Water Hexamer,” Journal of Chemical Physics 148, no. 24 (2018): 244107.
N. F. Zobov, O. L. Polyansky, C. R. Le Sueur, and J. Tennyson, “Vibration-Rotation Levels of Water Beyond the Born-Oppenheimer Approximation,” Chemical Physics Letters 260, no. 3 (1996): 381–387.
M. Falk, “The Frequency of the H-O-H Bending Fundamental in Solids and Liquids,” Spectrochimica Acta A 40, no. 1 (1984): 43–48.
M. Gaus, Q. Cui, and M. Elstner, “Density Functional Tight Binding: Application to Organic and Biological Molecules,” Wiley Interdisciplinary Reviews: Computational Molecular Science 4, no. 1 (2014): 49–61.
T. J. Giese and D. M. York, “Charge-Dependent Model for Many-Body Polarization, Exchange, and Dispersion Interactions in Hybrid Quantum Mechanical Molecular Mechanical Calculations,” Journal of Chemical Physics 127, no. 19 (2007): 194101.
P. Goyal, H. J. Qian, S. Irle, et al., “Molecular Simulation of Water and Hydration Effects in Different Environments: Challenges and Developments for DFTB Based Models,” Journal of Physical Chemistry B 118, no. 38 (2014): 11007–11027.
M. P. Lourenço, E. C. dos Santos, L. G. M. Pettersson, and H. A. Duarte, “Accurate SCC-DFTB Parametrization for Bulk Water,” Journal of Chemical Theory and Computation 16, no. 3 (2020): 1768–1778.
S. Jahangiri, L. Cai, and G. H. Peslherbe, “Performance of Density-Functional Tight-Binding Models in Describing Hydrogen-Bonded Anionic-Water Clusters,” Journal of Computational Chemistry 35, no. 23 (2014): 1707–1715.
V. Q. Vuong and Q. Cui, “Reparameterization of the Chemical-Potential Equalization Model With DFTB3: A Practical Balance Between Accuracy and Transferability,” Journal of Chemical Physics 158, no. 6 (2023): 064111.
N. Cinq, A. Simon, F. Louisnard, and J. Cuny, “Accurate SCC-DFTB Parametrization of Liquid Water With Improved Atomic Charges and Iterative Boltzmann Inversion,” Journal of Physical Chemistry B 127, no. 35 (2023): 7590–7601.
S. G. Stepanian, I. D. Reva, E. D. Radchenko, et al., “Matrix-Isolation Infrared and Theoretical Studies of the Glycine Conformers,” Journal of Physical Chemistry. A 102, no. 6 (1998): 1041–1054.
S. Kumar, A. K. Rai, V. B. Singh, and S. B. Rai, “Vibrational Spectrum of Glycine Molecule,” Spectrochimica Acta Part A, Molecular and Biomolecular Spectroscopy 61, no. 11 (2005): 2741–2746.
Y. Grenie and C. Garrigou-Lagrange, “Infrared Spectra of Glycine Isotopic Species Isolated in an Argon or Nitrogen Matrix,” Journal of Molecular Spectroscopy 41, no. 2 (1972): 240–248.
S. Suzuki, T. Shimanouchi, and M. Tsuboi, “Normal Vibrations of Glycine and Deuterated Glycine Molecules,” Spectrochimica Acta 19, no. 7 (1963): 1195–1208.
J. S. Holt, D. Sadoskas, and C. J. Pursell, “Infrared Spectroscopy of the Solid Phases of Ammonia,” Journal of Chemical Physics 120, no. 15 (2004): 7153–7157.
C. L. Nye and F. D. Medina, “Temperature Dependence of the Raman Spectrum of Ammonia Solid I,” Journal of Chemical Physics 87, no. 12 (1987): 6890–6894.
W. Zheng and R. I. Kaiser, “An Infrared Spectroscopy Study of the Phase Transition in Solid Ammonia,” Chemical Physics Letters 440, no. 4 (2007): 229–234.
J. R. Ferraro, G. Sill, and U. Fink, “Infrared Intensity Measurements of Cryodeposited Thin Films of NH3, NH4HS, H2, and Assignments of Absorption Bands,” Applied Spectroscopy 34, no. 5 (1980): 525–533.
M. Gauthier, P. Pruzan, J. M. Besson, G. Hamel, and G. Syfosse, “Investigation of the Phase Diagram of Ammonia by Raman Scattering,” Physica B+C 139–140 (1986): 218–220.
O. S. Binbrek and A. Anderson, “Raman Spectra of Molecular Crystals. Ammonia and 3-Deutero-Ammonia,” Chemical Physics Letters 15, no. 3 (1972): 421–427.
L. Huang, Y. Han, J. Liu, X. He, and J. Li, “Ab Initio Prediction of the Phase Transition for Solid Ammonia at High Pressures,” Scientific Reports 10 (2020): 7546.
T. Kume, S. Sasaki, and H. Shimizu, “Raman Study of Solid Ammonia at High Pressures and Low Temperatures,” Journal of Raman Specroscopy 32, no. 5 (2001): 383–387.
S. Ramukutty and E. Ramachandran, “Growth, Spectral and Thermal Studies of Ibuprofen Crystals,” Crystal Research and Technology 47, no. 1 (2012): 31–38.
F. Knuth, C. Carbogno, V. Atalla, V. Blum, and M. Scheffler, “All-Electron Formalism for Total Energy Strain Derivatives and Stress Tensor Components for Numeric Atom-Centered Orbitals,” Computer Physics Communications 190 (2015): 33–50.
X. Ren, P. Rinke, V. Blum, et al., “Resolution-Of-Identity Approach to Hartree–Fock, Hybrid Density Functionals, RPA, MP2 and GW With Numeric Atom-Centered Orbital Basis Functions,” New Journal of Physics 14, no. 5 (2012): 053020.
A. C. Ihrig, J. Wieferink, I. Y. Zhang, et al., “Accurate Localized Resolution of Identity Approach for Linear-Scaling Hybrid Density Functionals and for Many-Body Perturbation Theory,” New Journal of Physics 17, no. 9 (2015): 093020.
H. J. Monkhorst and J. D. Pack, “Special Points for Brillouin-Zone Integrations,” Physical Review B 13, no. 12 (1976): 5188–5192.
M. Gaus, A. Goez, and M. Elstner, “Parametrization and Benchmark of DFTB3 for Organic Molecules,” Journal of Chemical Theory and Computation 9 (2013): 338–354.
M. Gaus, X. Lu, M. Elstner, and Q. Cui, “Parameterization of DFTB3/3OB for Sulfur and Phosphorus for Chemical and Biological Applications,” Journal of Chemical Theory and Computation 10 (2014): 1518–1537.
X. Lu, M. Gaus, M. Elstner, and Q. Cui, “Parametrization of DFTB3/3OB for Magnesium and Zinc for Chemical and Biological Applications,” Journal of Physical Chemistry B 119 (2015): 1062–1082.
M. Kubillus, T. Kubař, M. Gaus, J. Řezáč, and M. Elstner, “Parameterization of the DFTB3 Method for Br, Ca, Cl, F, I, K, and Na in Organic and Biological Systems,” Journal of Chemical Theory and Computation 11 (2015): 332–342.
S. Varrette, P. Bouvry, H. Cartiaux, and F. Georgatos, “Management of an Academic HPC Cluster: The UL Experience,” in 2014 International Conference on High Performance Computing & Simulation (HPCS) (IEEE, 2014), 959–967.