[en] Frailty is a geriatric condition with multidimensional consequences that strongly affect older adults' quality of life. The lack of a universal standard to describe, diagnose, and treat frailty further complicates this situation. Nowadays, multitudinous frailty assessment tools are applied depending on the regional and clinical context, adding complexity by increasing heterogeneity in the definition and characterization of frailty. Better insights into the causes and pathophysiology of frailty and its early stages are required to establish strong and accurately tailored treatment rationales for frail patients. We analysed participants aged 60 and above using cross-sectional biochemical and survey data from the Berlin Aging Study II (BASE-II, N=1512, pre-frail=470, frail=14), applying machine-learning techniques to investigate determinants of physical frailty measured by Fried et al.'s 5-item frailty phenotype. Our findings highlight new prognostic sex-specific biomarkers of pre-frailty (the early stage of frailty) with possible clinical applications, enriching the current sex-agnostic diagnostic scores with easy monitorable physical and physiological characteristics. Low appendicular lean mass and high fat composition in men, or vitamin D deficiency and high white blood cell counts in women, emerged as strong indicators of the respective pre-frailty profiles. Because the number of fully frail individuals was extremely small (n = 14, <1%), our findings should be interpreted as reflecting predictors of pre-frailty, not of frailty itself. We conclude that understanding the development of frailty remains a complex challenge, and that sex-specific differences must be considered by clinical geriatricians and researchers.
Disciplines :
Geriatrics
Author, co-author :
DIDIER, Jeff ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Life Sciences and Medicine (DLSM)
Landtsheer, Sébastien De; Systems Biology & Epigenetics Group, Department of Life Sciences and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg. Electronic address: sebastien.delandtsheer@uni.lu
Pacheco, Maria Pires ; Systems Biology & Epigenetics Group, Department of Life Sciences and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg. Electronic address: maria.pacheco@uni.lu
KISHK, Ali ; University of Luxembourg > Faculty of Science, Technology and Medicine > Department of Life Sciences and Medicine > Team Thomas SAUTER
SCHNEIDER, Jochen ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Medical Translational Research
Goldeck, David ; Department of Internal Medicine 2, University of Tübingen, Tübingen, Germany. Electronic address: dgoldeck@yahoo.de
Pawelec, Graham ; Department of Immunology, University of Tübingen, Tübingen, Germany. Electronic address: graham.pawelec@uni-tuebingen.de
Spira, Dominik ; Division of Lipid Metabolism, Department of Endocrinology and Metabolic Diseases, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany. Electronic address: dominik.spira@charite.de
Demuth, Ilja ; Division of Lipid Metabolism, Department of Endocrinology and Metabolic Diseases, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BCRT-Berlin Institute of Health Center for Regenerative Therapies, Berlin, Germany. Electronic address: ilja.demuth@charite.de
SAUTER, Thomas ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Life Sciences and Medicine (DLSM)
External co-authors :
yes
Language :
English
Title :
Clinical Data-Driven Classification of Pre-Frailty Reveals Sex-Specific Patterns - Data from the Berlin Aging Study II (BASE-II).
National Research Fund Federal Ministry of Education and Research Bonn Office Université du Luxembourg
Funding text :
The Doctoral Training Unit Data-driven computational modelling and applications (DRIVEN) is funded by the Luxembourg National Research Fund under the PRIDE program ( PRIDE17/12252781 ). This article uses data from the Berlin Aging Study II (BASE-II) which was supported by the German Federal Ministry of Education and Research under grant numbers #01UW0808 ; #16SV5536K , #16SV5537 , #16SV5538 , #16SV5837 , #01GL1716A and #01GL1716B .The experiments presented in this paper were carried out using the High-Performance Computing (HPC) facilities of the University of Luxembourg (see https://hpc.uni.lu/, and reference (Varrette et al. 2022)). The authors would like to thank the steering committee of BASE-II and the BASE-II participants. The Doctoral Training Unit Data-driven computational modelling and applications (DRIVEN) is funded by the Luxembourg National Research Fund under the PRIDE program (PRIDE17/12252781). This article uses data from the Berlin Aging Study II (BASE-II) which was supported by the German Federal Ministry of Education and Research under grant numbers #01UW0808; #16SV5536K, #16SV5537, #16SV5538, #16SV5837, #01GL1716A and #01GL1716B.
Abizanda, P., Romero, L., Sánchez-Jurado, P.M., Ruano, T.F., Ríos, S.S., Sánchez, M.F., Energetics of aging and frailty: the FRADEA study. J. Gerontol. Ser. A. 71:6 (2016), 787–796.
Abreu, W., Tolson, D., Jackson, G.A., Staines, H., Costa, N., The relationship between frailty, functional dependence, and healthcare needs among community-dwelling people with moderate to severe dementia. Health Soc. Care Commun. 27:3 (2019), 642–653.
Akbari, G., Nikkhoo, M., Wang, L., Chen, C.P.C., Han, D.S., Lin, Y.H., et al. Frailty level classification of the community elderly using microsoft Kinect-Based skeleton pose: a machine learning approach. Sensors, 21(12), 2021, 4017.
Amballa, A., Feature engineering Part-1 mean/ median imputation. Analytics Vidhya, 2020 〈https://medium.com/analytics-vidhya/feature-engineering-part-1-mean-median-imputation-761043b95379〉.
Baltes, P.B., Mayer, K.U., (eds.) The Berlin Aging Study: Aging from 70 to 100 [Internet], 1998, Cambridge University Press, Cambridge 〈https://www.cambridge.org/core/books/berlin-aging-study/B1641E71F86F59A1A20BBE8824CB2EE5〉.
Beam, A.L., Motsinger-Reif, A.A., Doyle, J., An investigation of gene-gene interactions in dose-response studies with Bayesian nonparametrics. BioData Min., 2015, 6.
Bergsma, W., A bias-correction for Cramér's V and Tschuprow's T. J. Korean Stat. Soc. 42:3 (2013), 323–328.
Bertram, L., Böckenhoff, A., Demuth, I., Düzel, S., Eckardt, R., Li, S.C., et al. Cohort profile: the Berlin aging study II (BASE-II). Int. J. Epidemiol. 43:3 (2014), 703–712.
Boser, B.E., Guyon, I.M., Vapnik, V.N., A training algorithm for optimal margin classifiers. Proceedings of the fifth annual workshop on Computational learning theory [Internet], 1992, Association for Computing Machinery, New York, NY, USA, 144–152 (COLT ’92). Available from: https://dl.acm.org/doi/10.1145/130385.130401.
Breiman, L., Random forests. Mach. Learn. 45:1 (2001), 5–32.
Broeck, J.V., den, Cunningham, S.A., Eeckels, R., Herbst, K., Data cleaning: detecting, diagnosing, and editing data abnormalities. PLOS Med., 2(10), 2005, e267.
Buchmann, N., Spira, D., König, M., Demuth, I., Steinhagen-Thiessen, E., Frailty and the metabolic syndrome — results of the Berlin aging study II (BASE-II). J Frailty Aging 8:4 (2019), 169–175.
Church, S., Rogers, E., Rockwood, K., Theou, O., A scoping review of the clinical frailty scale. BMC Geriatr., 20(1), 2020, 393.
Clegg, A., Young, J., Iliffe, S., Rikkert, M.O., Rockwood, K., Frailty in elderly people. Lancet 381:9868 (2013), 752–762.
Collard, R.M., Boter, H., Schoevers, R.A., Oude Voshaar, R.C., Prevalence of frailty in community-dwelling older persons: a systematic review. J. Am. Geriatr. Soc. 60:8 (2012), 1487–1492.
Corsello, S.M., Bittker, J.A., Liu, Z., Gould, J., McCarren, P., Hirschman, J.E., et al. The drug repurposing hub: a next-generation drug library and information resource. Nat. Med. 23:4 (2017), 405–408.
Cramér, H., Mathematical methods of statistics. 1946, Princeton University Press, 598.
Dallmeier, D., Braisch, U., Rapp, K., Klenk, J., Rothenbacher, D., Denkinger, M., et al. Frailty index and sex-specific 6-year mortality in community-dwelling older people: the ActiFE study. J. Gerontol. A Biol. Sci. Med Sci. 75:2 (2020), 366–373.
Demuth, I., Banszerus, V., Drewelies, J., Düzel, S., Seeland, U., Spira, D., et al. Cohort profile: follow-up of a Berlin aging study II (BASE-II) subsample as part of the GendAge study. BMJ Open, 11(6), 2021, e045576.
Di Sabatino, A., Lenti, M.V., Cammalleri, L., Corazza, G.R., Pilotto, A., Frailty and the gut. Dig. Liver Dis. 50:6 (2018), 533–541.
Dibello, V., Zupo, R., Sardone, R., Lozupone, M., Castellana, F., Dibello, A., et al. Oral frailty and its determinants in older age: a systematic review. Lancet Healthy Longev. 2:8 (2021), e507–e520.
Eekhout, I., de Boer, R.M., Twisk, J.W.R., de Vet, H.C.W., Heymans, M.W., Missing data: a systematic review of how they are reported and handled. Epidemiology, 23(5), 2012, 729.
Espinoza, S.E., Quiben, M., Hazuda, H.P., Distinguishing comorbidity, disability, and frailty. Curr. Geriatr. Rep. 7:4 (2018), 201–209.
Fedarko, N.S., The biology of aging and frailty. Clin. Geriatr. Med. 27:1 (2011), 27–37.
Fhon, J.R.S., Rodrigues, R.A.P., Santos, J.L.F., Diniz, M.A., dos Santos, E.B., Almeida, V.C., et al. Factors associated with frailty in older adults: a longitudinal study. Rev. Saúde Pública, 52, 2018, 74.
Fried, L.P., Tangen, C.M., Walston, J., Newman, A.B., Hirsch, C., Gottdiener, J., et al. Frailty in older adults: evidence for a phenotype. J. Gerontol. Ser. A 56:3 (2001), M146–M157.
Fried, L.P., Cohen, A.A., Xue, Q.L., Walston, J., Bandeen-Roche, K., Varadhan, R., The physical frailty syndrome as a transition from homeostatic symphony to cacophony. Nat. Aging 1:1 (2021), 36–46.
Fulop, T., Larbi, A., Witkowski, J.M., McElhaney, J., Loeb, M., Mitnitski, A., et al. Aging, frailty and age-related diseases. Biogerontology 11:5 (2010), 547–563.
Glass, G.V., Hopkins, K.D., Statistical methods in education and psychology [Internet]. 1996, Allyn and Bacon, Boston, 698 〈http://archive.org/details/statisticalmetho00glas〉 (Available from).
Gomez-Cabrero, D., Walter, S., Abugessaisa, I., Miñambres-Herraiz, R., Palomares, L.B., Butcher, L., et al. A robust machine learning framework to identify signatures for frailty: a nested case-control study in four aging european cohorts. GeroScience 43:3 (2021), 1317–1329.
Gordon, E.H., Peel, N.M., Samanta, M., Theou, O., Howlett, S.E., Hubbard, R.E., Sex differences in frailty: a systematic review and meta-analysis. Exp. Gerontol. 89 (2017), 30–40.
Gutiérrez-Valencia, M., Izquierdo, M., Cesari, M., Casas-Herrero, Á., Inzitari, M., Martínez-Velilla, N., The relationship between frailty and polypharmacy in older people: a systematic review. Br. J. Clin. Pharmacol. 84:7 (2018), 1432–1444.
Hernandez-Boussard, T., Bozkurt, S., Ioannidis, J.P.A., Shah, N.H., MINIMAR (MINimum Information for Medical AI Reporting): developing reporting standards for artificial intelligence in health care. J. Am. Med Inf. Assoc. 27:12 (2020), 2011–2015.
Hessey, E., Montgomery, C., Zuege, D.J., Rolfson, D., Stelfox, H.T., Fiest, K.M., et al. Sex-specific prevalence and outcomes of frailty in critically ill patients. J. Intensive Care, 8(1), 2020, 75.
Holliday, R., Understanding ageing [Internet]. Developmental and Cell Biology Series, 1995, Cambridge University Press, Cambridge 〈https://www.cambridge.org/core/books/understanding-ageing/7C795DA1F52124A30E0F6A6278A4C8E8〉.
Howlett, S.E., Rutenberg, A.D., Rockwood, K., The degree of frailty as a translational measure of health in aging. Nat. Aging 1:8 (2021), 651–665.
Idris S., Badruddin N. Classification of Cognitive Frailty in Elderly People from Blood Samples using Machine Learning. In: 2021 IEEE EMBS International Conference on Biomedical and Health Informatics (BHI). 2021. p. 1–4.
Karanth, S.D., Sex-specific association of physical frailty and cognitive function in a population-based cross-sectional study of American older adults. Alzheimers Dement, 19(S6), 2023, e068336.
Koenig M., Malsch C., Marino J., Vetter V.M., Komleva Y., Demuth I., et al. Nocturia as a Risk Factor for Developing Frailty in Older Adults: Results of the Berlin Aging Study II [Internet]. medRxiv; 2024 [cited 2024 Sep 24]. p. 2024.09.20.24313292. Available from: 〈https://www.medrxiv.org/content/10.1101/2024.09.20.24313292v1〉.
König, M., Spira, D., Demuth, I., Steinhagen-Thiessen, E., Norman, K., Polypharmacy as a risk factor for clinically relevant sarcopenia: results from the Berlin aging study II. J. Gerontol. Ser. A 73:1 (2018), 117–122.
Lachmann, R., Stelmach-Mardas, M., Bergmann, M.M., Bernigau, W., Weber, D., Pischon, T., et al. The accumulation of deficits approach to describe frailty. PLOS ONE, 14(10), 2019, e0223449.
Lally, F., Crome, P., Understanding frailty. Post. Med. J. 83:975 (2007), 16–20.
Laur, C.V., McNicholl, T., Valaitis, R., Keller, H.H., Malnutrition or frailty? Overlap and evidence gaps in the diagnosis and treatment of frailty and malnutrition. Appl. Physiol. Nutr. Metab. 42:5 (2017), 449–458.
Leah Plumb, A., Drugs.com: drug information online 2004. Ref. Rev., 18(6), 2004 41–41.
Leme, D.E., da, C., de Oliveira, C., Machine learning models to predict future frailty in community-dwelling middle-aged and older adults: the ELSA cohort study. J. Gerontol. A Biol. Sci. Med. Sci. 78:11 (2023), 2176–2184.
Linn, N., Goetzinger, C., Regnaux, J.P., Schmitz, S., Dessenne, C., Fagherazzi, G., et al. Digital health interventions among people living with frailty: a scoping review. J. Am. Med. Dir. Assoc. 22:9 (2021), 1802–1812 e21.
Liu, L.K., Guo, C.Y., Lee, W.J., Chen, L.Y., Hwang, A.C., Lin, M.H., et al. Subtypes of physical frailty: latent class analysis and associations with clinical characteristics and outcomes. Sci. Rep., 7(1), 2017, 46417.
Mitchell, E., Spencer Chapman, M., Williams, N., Dawson, K.J., Mende, N., Calderbank, E.F., et al. Clonal dynamics of haematopoiesis across the human lifespan. Nature 606:7913 (2022), 343–350.
Morley, J.E., Vellas, B., van Kan, G.A., Anker, S.D., Bauer, J.M., Bernabei, R., et al. Frailty consensus: a call to action. J. Am. Med. Dir. Assoc. 14:6 (2013), 392–397.
Murad, M.H., Elamin, K.B., Abu Elnour, N.O., Elamin, M.B., Alkatib, A.A., Fatourechi, M.M., et al. The effect of vitamin d on falls: a systematic review and meta-analysis. J. Clin. Endocrinol. Metab. 96:10 (2011), 2997–3006.
Nwadiugwu, M.C., Frailty and the risk of polypharmacy in the older person: enabling and preventative approaches. J. Aging Res., 2020, 2020, e6759521.
O'Caoimh, R., Sezgin, D., O'Donovan, M.R., Molloy, D.W., Clegg, A., Rockwood, K., et al. Prevalence of frailty in 62 countries across the world: a systematic review and meta-analysis of population-level studies. Age Ageing 50:1 (2021), 96–104.
Ofori-Asenso, R., Chin, K.L., Mazidi, M., Zomer, E., Ilomaki, J., Zullo, A.R., et al. Global incidence of frailty and prefrailty among Community-dwelling older adults: a systematic review and Meta-analysis. JAMA Netw. Open, 2(8), 2019, e198398.
Panza, F., Seripa, D., Solfrizzi, V., Tortelli, R., Greco, A., Pilotto, A., et al. Targeting cognitive frailty: clinical and neurobiological roadmap for a single complex phenotype. J. Alzheimers Dis. 47:4 (2015), 793–813.
Park, C., Mishra, R., Golledge, J., Najafi, B., Digital biomarkers of physical frailty and frailty phenotypes using Sensor-based physical activity and machine learning. Sensors, 21(16), 2021, 5289.
Patel, H.P., Clift, E., Lewis, L., Cooper, C., Patel, H.P., Clift, E., et al. Epidemiology of sarcopenia and frailty. Frailty and Sarcopenia - Onset, Development and Clinical Challenges, 2017, IntechOpen 〈https://www.intechopen.com/chapters/56116〉.
Puts, M.T.E., Visser, M., Twisk, J.W.R., Deeg, D.J.H., Lips, P., Endocrine and inflammatory markers as predictors of frailty. Clin. Endocrinol. (Oxf.) 63:4 (2005), 403–411.
Reid, N., Young, A., Hanjani, L.S., Hubbard, R.E., Gordon, E.H., Sex-specific interventions to prevent and manage frailty. Maturitas 164 (2022), 23–30.
Rockwood, K., Mitnitski, A., Frailty in relation to the accumulation of deficits. J. Gerontol. Ser. A 62:7 (2007), 722–727.
Rockwood, K., Fox, R.A., Stolee, P., Robertson, D., Beattie, B.L., Frailty in elderly people: an evolving concept. CMAJ Can. Med. Assoc. J. 150:4 (1994), 489–495.
Ross, A.C., Manson, J.E., Abrams, S.A., Aloia, J.F., Brannon, P.M., Clinton, S.K., et al. The 2011 report on dietary reference intakes for calcium and vitamin d from the institute of medicine: what clinicians need to know. J. Clin. Endocrinol. Metab. 96:1 (2011), 53–58.
Shardell, M., Hicks, G.E., Miller, R.R., Kritchevsky, S., Andersen, D., Bandinelli, S., et al. Association of low vitamin D levels with the frailty syndrome in men and women. J. Gerontol. Ser. A. 64A:1 (2009), 69–75.
Spearman, C., The proof and measurement of association between two things. Am. J. Psychol. 15:1 (1904), 72–101.
Spira, D., Buchmann, N., Nikolov, J., Demuth, I., Steinhagen-Thiessen, E., Eckardt, R., et al. Association of low lean mass with frailty and physical performance: a comparison between two operational definitions of Sarcopenia—Data from the Berlin aging study II (BASE-II). J. Gerontol. Ser. A. 70:6 (2015), 779–784.
Spira, D., Buchmann, N., König, M., Rosada, A., Steinhagen-Thiessen, E., Demuth, I., et al. Sex-specific differences in the association of vitamin d with low lean mass and frailty: results from the Berlin aging study II. Nutrition 62 (2019), 1–6.
Strain, W.D., Down, S., Brown, P., Puttanna, A., Sinclair, A., Diabetes and frailty: an expert consensus statement on the management of older adults with type 2 diabetes. Diabetes Ther. 12:5 (2021), 1227–1247.
Tao, X., Liu, L., Ma, P., Hu, J., Ming, Z., Dang, K., et al. Association of circulating very long-chain saturated fatty acids with cardiovascular mortality in NHANES 2003-2004, 2011-2012. J. Clin. Endocrinol. Metab. 109:2 (2024), e633–e645.
Tenison, E., Henderson, E.J., Multimorbidity and frailty: tackling complexity in Parkinson's disease. J. Park Dis. 10:s1 (2020), S85–S91.
Toepfer, S., König, M., Spira, D., Drewelies, J., Kreutz, R., Bolbrinker, J., et al. Sex differences in characteristics associated with potentially inappropriate medication use and associations with functional capacity in older participants of the Berlin aging study II. Gerontology 68:6 (2021), 664–672.
Tomita, M.R., Mann, W.C., Fraas, L.F., Stanton, K.M., Predictors of the use of assistive devices that address physical impairments among community-based frail elders. J. Appl. Gerontol. 23:2 (2004), 141–155.
Uchai, S., Andersen, L.F., Hopstock, L.A., Hjartåker, A., Body mass index, waist circumference and pre-frailty/frailty: the Tromsø study 1994−2016. BMJ Open, 13(2), 2023, e065707.
Uchmanowicz, I., Łoboz-Rudnicka, M., Szeląg, P., Jankowska-Polańska, B., Łoboz-Grudzień, K., Frailty in heart failure. Curr. Heart Fail Rep. 11:3 (2014), 266–273.
Varrette, S., Cartiaux, H., Peter, S., Kieffer, E., Valette, T., Olloh, A., Management of an academic HPC & research computing facility: the ULHPC experience 2.0. Proceedings of the 2022 6th High Performance Computing and Cluster Technologies Conference [Internet], 2022, Association for Computing Machinery, New York, NY, USA, 14–24, 10.1145/3560442.3560445.
Vaz Fragoso, C.A., Enright, P.L., McAvay, G., Van Ness, P.H., Gill, T.M., FRAILTY, A.N.D., Respiratory impairment in older persons. Am. J. Med. 125:1 (2012), 79–86.
Verschoor, C.P., Theou, O., Ma, J., Montgomery, P., Mossey, S., Nangia, P., et al. Age- and sex-specific associations of frailty with mortality and healthcare utilization in community-dwelling adults from Ontario, Canada. BMC Geriatr., 24(1), 2024, 223.
Wang, C.W., Lebsack, A., Chau, S., Lai, J.C., The range and reproducibility of the liver frailty index. Liver Transpl. 25:6 (2019), 841–847.
Wang, H. yu, Zhang, M., Sun, X., Sex-specific association between socioeconomic status, lifestyle, and the risk of frailty among the elderly in China. Front. Med., 2024 〈https://www.frontiersin.org/articles/10.3389/fmed.2021.775518〉.
Welch, B.L., The generalization of ‘student's’ problem when several different population varlances are involved. Biometrika 34:1–2 (1947), 28–35.
Woo, J., Yu, R., Wong, M., Yeung, F., Wong, M., Lum, C., Frailty screening in the community using the FRAIL scale. J. Am. Med Dir. Assoc. 16:5 (2015), 412–419.
Xu, L., Zhang, J., Shen, S., Hong, X., Zeng, X., Yang, Y., et al. Association between body composition and frailty in elder inpatients. Clin. Interv. Aging 15 (2020), 313–320.
Xue, Q.L., The frailty syndrome: definition and natural history. Clin. Geriatr. Med. 27:1 (2011), 1–15.
Yarnall, A.J., Sayer, A.A., Clegg, A., Rockwood, K., Parker, S., Hindle, J.V., New horizons in multimorbidity in older adults. Age Ageing 46:6 (2017), 882–888.
Zhang, C., Bi, J., Soda, P., Feature selection and resampling in class imbalance learning: which comes first? An empirical study in the biological domain. International Conference on Bioinformatics and Biomedicine (BIBM) [Internet], 2017, IEEE, 933–938 〈https://ieeexplore.ieee.org/abstract/document/8217782〉.
Zhou, J., Huang, P., Liu, P., Hao, Q., Chen, S., Dong, B., et al. Association of vitamin d deficiency and frailty: a systematic review and meta-analysis. Maturitas 94 (2016), 70–76.