high-resolution mass spectrometry (HRMS); identification confidence; ion mobility spectrometry (IMS); nontargeted analysis (NTA); per- and polyfluoroalkyl substances (PFAS); Fluorocarbons; Humans; Environmental Monitoring; Ion Mobility Spectrometry; Confidence levels; High resolution mass spectrometry; High-resolution mass spectrometry; Non-targeted; Nontargeted analyze; Per- and polyfluoroalkyl substance; Polyfluoroalkyl substances; Chemistry (all); Environmental Chemistry
Abstract :
[en] Over the past decade, global contamination from per- and polyfluoroalkyl substances (PFAS) has become apparent due to their detection in countless matrices worldwide, from consumer products to human blood to drinking water. As researchers implement nontargeted analyses (NTA) to more fully understand the PFAS present in the environment and human bodies, clear guidance is needed for consistent and objective reporting of the identified molecules. Confidence levels for small molecules analyzed and identified with high-resolution mass spectrometry (HRMS) have existed since 2014; however, unification of currently used levels and improved guidance for their application is needed due to inconsistencies in reporting and continuing innovations in analytical methods. Here, we (i) investigate current practices for confidence level reporting of PFAS identified with liquid chromatography (LC), gas chromatography (GC), and/or ion mobility spectrometry (IMS) coupled with HRMS and (ii) propose a simple, unified confidence level guidance that incorporates both PFAS-specific attributes and IMS collision cross section (CCS) values.
Disciplines :
Environmental sciences & ecology
Author, co-author :
Boatman, Anna K ; Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514, United States
Chappel, Jessie R ; Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514, United States ; The Institute for Environmental Health Solutions, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514, United States ; Curriculum in Toxicology and Environmental Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514, United States
Kirkwood-Donelson, Kaylie I ; Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, Durham, North Carolina 27709, United States
Fleming, Jonathon F; Predictive Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Durham, North Carolina 27713, United States
Reif, David M; Predictive Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Durham, North Carolina 27713, United States
Rager, Julia E; Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514, United States ; The Institute for Environmental Health Solutions, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514, United States ; Curriculum in Toxicology and Environmental Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514, United States
Baker, Erin S ; Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514, United States
External co-authors :
yes
Language :
English
Title :
Updated Guidance for Communicating PFAS Identification Confidence with Ion Mobility Spectrometry.
National Institute of Environmental Health Sciences Gillings School of Public Health Fonds National de la Recherche Luxembourg U.S. Environmental Protection Agency
Funding text :
Funding for this work was made possible through grants from the NIH National Institute of Environmental Health Sciences (P42 ES027704, P42 ES031007, and T32 ES007126), a cooperative agreement with the Environmental Protection Agency (STAR RD 84003201), and support was additionally provided through the Institute for Environmental Health Solutions at the University of North Carolina Gillings School of Global Public Health. E.L.S. acknowledges funding support from the Luxembourg National Research Fund (FNR) for project A18/BM/12341006.
Perera, D.; Scott, W.; Smolinski, R.; Mukhopadhyay, L.; McDonough, C. A. Techniques to characterize PFAS burden in biological samples: Recent insights and remaining challenges. Trends in Environmental Analytical Chemistry 2024, 41, e00224 10.1016/j.teac.2023.e00224
Strynar, M.; McCord, J.; Newton, S.; Washington, J.; Barzen-Hanson, K.; Trier, X.; Liu, Y.; Dimzon, I. K.; Bugsel, B.; Zwiener, C.; Munoz, G. Practical application guide for the discovery of novel PFAS in environmental samples using high resolution mass spectrometry. Journal of Exposure Science & Environmental Epidemiology 2023, 33 (4), 575–588, 10.1038/s41370-023-00578-2
Charbonnet, J. A.; McDonough, C. A.; Xiao, F.; Schwichtenberg, T.; Cao, D.; Kaserzon, S.; Thomas, K. V.; Dewapriya, P.; Place, B. J.; Schymanski, E. L.; Field, J. A.; Helbling, D. E.; Higgins, C. P. Communicating Confidence of Per- and Polyfluoroalkyl Substance Identification via High-Resolution Mass Spectrometry. Environmental Science & Technology Letters 2022, 9 (6), 473–481, 10.1021/acs.estlett.2c00206
PFAS Suspect List. National Institute of Standards and Technology Public Data Repository. 2023. https://data.nist.gov/od/id/mds2-2387 (accessed 2024-10-22).
Schymanski, E. L.; Zhang, J.; Thiessen, P. A.; Chirsir, P.; Kondic, T.; Bolton, E. E. Per- and Polyfluoroalkyl Substances (PFAS) in PubChem: 7 Million and Growing. Environ. Sci. Technol. 2023, 57 (44), 16918–16928, 10.1021/acs.est.3c04855
Díaz-Galiano, F. J.; Murcia-Morales, M.; Monteau, F.; Le Bizec, B.; Dervilly, G. Collision cross-section as a universal molecular descriptor in the analysis of PFAS and use of ion mobility spectrum filtering for improved analytical sensitivities. Anal. Chim. Acta 2023, 1251, 341026 10.1016/j.aca.2023.341026
Dodds, J. N.; Hopkins, Z. R.; Knappe, D. R. U.; Baker, E. S. Rapid Characterization of Per- and Polyfluoroalkyl Substances (PFAS) by Ion Mobility Spectrometry–Mass Spectrometry (IMS-MS). Anal. Chem. 2020, 92 (6), 4427–4435, 10.1021/acs.analchem.9b05364
Schymanski, E. L.; Jeon, J.; Gulde, R.; Fenner, K.; Ruff, M.; Singer, H. P.; Hollender, J. Identifying Small Molecules via High Resolution Mass Spectrometry: Communicating Confidence. Environ. Sci. Technol. 2014, 48 (4), 2097–2098, 10.1021/es5002105
Peter, K. T.; Phillips, A. L.; Knolhoff, A. M.; Gardinali, P. R.; Manzano, C. A.; Miller, K. E.; Pristner, M.; Sabourin, L.; Sumarah, M. W.; Warth, B.; Sobus, J. R. Nontargeted Analysis Study Reporting Tool: A Framework to Improve Research Transparency and Reproducibility. Anal. Chem. 2021, 93 (41), 13870–13879, 10.1021/acs.analchem.1c02621
Schrimpe-Rutledge, A. C.; Codreanu, S. G.; Sherrod, S. D.; McLean, J. A. Untargeted Metabolomics Strategies─Challenges and Emerging Directions. J. Am. Soc. Mass Spectrom. 2016, 27 (12), 1897–1905, 10.1007/s13361-016-1469-y
Phillips, A. L.; Williams, A. J.; Sobus, J. R.; Ulrich, E. M.; Gundersen, J.; Langlois-Miller, C.; Newton, S. R. A framework for utilizing high-resolution mass spectrometry and nontargeted analysis in rapid response and emergency situations. Environmental toxicology and chemistry 2022, 41 (5), 1117–1130, 10.1002/etc.5196
Celma, A.; Sancho, J. V.; Schymanski, E. L.; Fabregat-Safont, D.; Ibáñez, M.; Goshawk, J.; Barknowitz, G.; Hernández, F.; Bijlsma, L. Improving Target and Suspect Screening High-Resolution Mass Spectrometry Workflows in Environmental Analysis by Ion Mobility Separation. Environ. Sci. Technol. 2020, 54 (23), 15120–15131, 10.1021/acs.est.0c05713
Schulze, B.; Jeon, Y.; Kaserzon, S.; Heffernan, A. L.; Dewapriya, P.; O’Brien, J.; Gomez Ramos, M. J.; Ghorbani Gorji, S.; Mueller, J. F.; Thomas, K. V.; Samanipour, S. An assessment of quality assurance/quality control efforts in high resolution mass spectrometry non-target workflows for analysis of environmental samples. TrAC Trends in Analytical Chemistry 2020, 133, 116063 10.1016/j.trac.2020.116063
Fisher, C. M.; Peter, K. T.; Newton, S. R.; Schaub, A. J.; Sobus, J. R. Approaches for assessing performance of high-resolution mass spectrometry–based non-targeted analysis methods. Anal. Bioanal. Chem. 2022, 414 (22), 6455–6471, 10.1007/s00216-022-04203-3
Kirkwood-Donelson, K. I.; Dodds, J. N.; Schnetzer, A.; Hall, N.; Baker, E. S. Uncovering per- and polyfluoroalkyl substances (PFAS) with nontargeted ion mobility spectrometry–mass spectrometry analyses. Science Advances 2023, 9 (43), eadj7048 10.1126/sciadv.adj7048
Boatman, A. K.; Chappel, J. R.; Polera, M. E.; Dodds, J. N.; Belcher, S. M.; Baker, E. S. Assessing Per- and Polyfluoroalkyl Substances in Fish Fillet Using Non-Targeted Analyses. Environ. Sci. Technol. 2024, 58 (32), 14486–14495, 10.1021/acs.est.4c04299
Dodds, J. N.; Baker, E. S. Ion mobility spectrometry: fundamental concepts, instrumentation, applications, and the road ahead. J. Am. Soc. Mass Spectrom. 2019, 30 (11), 2185–2195, 10.1007/s13361-019-02288-2
Zheng, X.; Aly, N. A.; Zhou, Y.; Dupuis, K. T.; Bilbao, A.; Paurus, V. L.; Orton, D. J.; Wilson, R.; Payne, S. H.; Smith, R. D. et al. A structural examination and collision cross section database for over 500 metabolites and xenobiotics using drift tube ion mobility spectrometry. Chemical science 2017, 8 (11), 7724–7736, 10.1039/C7SC03464D
Picache, J. A.; Rose, B. S.; Balinski, A.; Leaptrot, K. L.; Sherrod, S. D.; May, J. C.; McLean, J. A. Collision cross section compendium to annotate and predict multi-omic compound identities. Chemical Science 2019, 10 (4), 983–993, 10.1039/C8SC04396E
Izquierdo-Sandoval, D.; Fabregat-Safont, D.; Lacalle-Bergeron, L.; Sancho, J. V.; Hernández, F.; Portoles, T. Benefits of Ion Mobility Separation in GC-APCI-HRMS Screening: From the Construction of a CCS Library to the Application to Real-World Samples. Anal. Chem. 2022, 94 (25), 9040–9047, 10.1021/acs.analchem.2c01118
Celma, A.; Alygizakis, N.; Belova, L.; Bijlsma, L.; Fabregat-Safont, D.; Menger, F.; Gil-Solsona, R. Ion mobility separation coupled to high-resolution mass spectrometry in environmental analysis – Current state and future potential. Trends in Environmental Analytical Chemistry 2024, 43, e00239 10.1016/j.teac.2024.e00239
Phillips, A. L.; Peter, K. T.; Sobus, J. R.; Fisher, C. M.; Manzano, C. A.; McEachran, A. D.; Williams, A. J.; Knolhoff, A. M.; Ulrich, E. M. Standardizing non-targeted analysis reporting to advance exposure science and environmental epidemiology. Journal of Exposure Science & Environmental Epidemiology 2023, 33 (4), 501–504, 10.1038/s41370-022-00490-1
Dodds, J. N.; Kirkwood-Donelson, K. I.; Boatman, A. K.; Knappe, D. R.; Hall, N. S.; Schnetzer, A.; Baker, E. S. Evaluating Solid Phase Adsorption Toxin Tracking (SPATT) for passive monitoring of per-and polyfluoroalkyl substances (PFAS) with Ion Mobility Spectrometry-Mass Spectrometry (IMS-MS). Science of The Total Environment 2024, 947, 174574 10.1016/j.scitotenv.2024.174574
Foster, M.; Rainey, M.; Watson, C.; Dodds, J. N.; Kirkwood, K. I.; Fernández, F. M.; Baker, E. S. Uncovering PFAS and Other Xenobiotics in the Dark Metabolome Using Ion Mobility Spectrometry, Mass Defect Analysis, and Machine Learning. Environ. Sci. Technol. 2022, 56 (12), 9133–9143, 10.1021/acs.est.2c00201
Joseph, K.; Boatman, A.; Dodds, J.; Kirkwood Donelson, K.; Ryan, J.; Zhang, J.; Thiessen, P.; Bolton, E.; Valdiviezo, A.; Sapozhnikova, Y.; Rusyn, I.; Schymanski, E.; Baker, E. Dataset for “Multidimensional library for the improved identification of per- and polyfluoroalkyl substances (PFAS)”. Zenodo. 2024. 10.5281/zenodo.14341320 (accessed 2024-12-09).
Bowers, B. B.; Lou, Z.; Xu, J.; De Silva, A. O.; Xu, X.; Lowry, G. V.; Sullivan, R. C. Nontarget analysis and fluorine atom balances of transformation products from UV/sulfite degradation of perfluoroalkyl contaminants. Environ. Sci. Process Impacts 2023, 25 (3), 472–483, 10.1039/D2EM00425A
Carlsson, H.; Sreenivasan, A. P.; Erngren, I.; Larsson, A.; Kultima, K. Combining the targeted and untargeted screening of environmental contaminants reveals associations between PFAS exposure and vitamin D metabolism in human plasma. Environ. Sci. Process Impacts 2023, 25 (6), 1116–1130, 10.1039/D3EM00060E
Casey, J. S.; Jackson, S. R.; Ryan, J.; Newton, S. R. The use of gas chromatography - high resolution mass spectrometry for suspect screening and non-targeted analysis of per- and polyfluoroalkyl substances. J. Chromatogr A 2023, 1693, 463884 10.1016/j.chroma.2023.463884
Cheng, X.; Liu, L.; Ge, Y.; Weber, R.; Huang, J. Target and non-target analysis of per- and polyfluoroalkyl substances in representative chrome mist suppressants on the Chinese market. Chemosphere 2023, 337, 139419 10.1016/j.chemosphere.2023.139419
Chibwe, L.; De Silva, A. O.; Spencer, C.; Teixera, C. F.; Williamson, M.; Wang, X.; Muir, D. C. G. Target and Nontarget Screening of Organic Chemicals and Metals in Recycled Plastic Materials. Environ. Sci. Technol. 2023, 57 (8), 3380–3390, 10.1021/acs.est.2c07254
Dewapriya, P.; Nilsson, S.; Ghorbani Gorji, S.; O’Brien, J. W.; Braunig, J.; Gomez Ramos, M. J.; Donaldson, E.; Samanipour, S.; Martin, J. W.; Mueller, J. F.; Kaserzon, S. L.; Thomas, K. V. Novel Per- and Polyfluoroalkyl Substances Discovered in Cattle Exposed to AFFF-Impacted Groundwater. Environ. Sci. Technol. 2023, 57 (36), 13635–13645, 10.1021/acs.est.3c03852
Gobindlal, K.; Zujovic, Z.; Jaine, J.; Weber, C. C.; Sperry, J. Solvent-Free, Ambient Temperature and Pressure Destruction of Perfluorosulfonic Acids under Mechanochemical Conditions: Degradation Intermediates and Fluorine Fate. Environ. Sci. Technol. 2023, 57 (1), 277–285, 10.1021/acs.est.2c06673
Gonda, N.; Choyke, S.; Schaefer, C.; Higgins, C. P.; Voelker, B. Hydroxyl Radical Transformations of Perfluoroalkyl Acid (PFAA) Precursors in Aqueous Film Forming Foams (AFFFs). Environ. Sci. Technol. 2023, 57 (21), 8053–8064, 10.1021/acs.est.2c08689
Gutierrez-Martin, D.; Gil-Solsona, R.; Saaltink, M. W.; Rodellas, V.; Lopez-Serna, R.; Folch, A.; Carrera, J.; Gago-Ferrero, P. Chemicals of emerging concern in coastal aquifers: Assessment along the land-ocean interface. J. Hazard Mater. 2023, 448, 130876 10.1016/j.jhazmat.2023.130876
Hao, S.; Reardon, P. N.; Choi, Y. J.; Zhang, C.; Sanchez, J. M.; Higgins, C. P.; Strathmann, T. J. Hydrothermal Alkaline Treatment (HALT) of Foam Fractionation Concentrate Derived from PFAS-Contaminated Groundwater. Environ. Sci. Technol. 2023, 57 (44), 17154–17165, 10.1021/acs.est.3c05140
Hu, J.; Lyu, Y.; Chen, H.; Cai, L.; Li, J.; Cao, X.; Sun, W. Integration of target, suspect, and nontarget screening with risk modeling for per- and polyfluoroalkyl substances prioritization in surface waters. Water Res. 2023, 233, 119735 10.1016/j.watres.2023.119735
Jacob, P.; Helbling, D. E. Exploring the Evolution of Organofluorine-Containing Compounds during Simulated Photolithography Experiments. Environ. Sci. Technol. 2023, 57 (34), 12819–12828, 10.1021/acs.est.3c03410
Kim, Y.; Pike, K. A.; Gray, R.; Sprankle, J. W.; Faust, J. A.; Edmiston, P. L. Non-targeted identification and semi-quantitation of emerging per- and polyfluoroalkyl substances (PFAS) in US rainwater. Environ. Sci. Process Impacts 2023, 25 (11), 1771–1787, 10.1039/D2EM00349J
Kirkwood-Donelson, K. I.; Dodds, J. N.; Schnetzer, A.; Hall, N.; Baker, E. S. Uncovering per- and polyfluoroalkyl substances (PFAS) with nontargeted ion mobility spectrometry-mass spectrometry analyses. Sci. Adv. 2023, 9 (43), eadj7048 10.1126/sciadv.adj7048
Koelmel, J. P.; Lin, E. Z.; Parry, E.; Stelben, P.; Rennie, E. E.; Godri Pollitt, K. J. Novel perfluoroalkyl substances (PFAS) discovered in whole blood using automated non-targeted analysis of dried blood spots. Sci. Total Environ. 2023, 883, 163579 10.1016/j.scitotenv.2023.163579
Li, L.; Gao, R.; Wang, X.; Deng, Y.; Sun, H.; Sun, H.; Zhang, B.; Yu, N.; Gu, C.; Pan, B.; Yu, H.; Wei, S. SWATH-F: A Novel Nontarget Strategy Based on the SWATH-MS Deconvolution Method Assisting in Annotating PFAS Homologues in Multisample Studies. Anal. Chem. 2023, 95 (39), 14551–14557, 10.1021/acs.analchem.3c01680
Liu, J.; Zhao, Z.; Li, J.; Hua, X.; Zhang, B.; Tang, C.; An, X.; Lin, T. Emerging and legacy perfluoroalkyl and polyfluoroalkyl substances (PFAS) in surface water around three international airports in China. Chemosphere 2023, 344, 140360 10.1016/j.chemosphere.2023.140360
Liu, Y.; Lu, M. Y.; Bao, J.; Shao, L. X.; Yu, W. J.; Hu, X. M.; Zhao, X. Periodically reversing electrocoagulation technique for efficient removal of short-chain perfluoroalkyl substances from contaminated groundwater around a fluorochemical facility. Chemosphere 2023, 334, 138953 10.1016/j.chemosphere.2023.138953
Manz, K. E.; Dodson, R. E.; Liu, Y.; Scheidl, L.; Burks, S.; Dunn, F.; Gairola, R.; Lee, N. F.; Walker, E. D.; Pennell, K. D.; Braun, J. M. Effects of Corsi-Rosenthal boxes on indoor air contaminants: non-targeted analysis using high resolution mass spectrometry. J. Expo Sci. Environ. Epidemiol 2023, 33 (4), 537–547, 10.1038/s41370-023-00577-3
Mok, S.; Lee, S.; Choi, Y.; Jeon, J.; Kim, Y. H.; Moon, H. B. Target and non-target analyses of neutral per- and polyfluoroalkyl substances from fluorochemical industries using GC-MS/MS and GC-TOF: Insights on their environmental fate. Environ. Int. 2023, 182, 108311 10.1016/j.envint.2023.108311
Munoz, G.; Liu, M.; Vo Duy, S.; Liu, J.; Sauve, S. Target and nontarget screening of PFAS in drinking water for a large-scale survey of urban and rural communities in Quebec, Canada. Water Res. 2023, 233, 119750 10.1016/j.watres.2023.119750
Oro-Nolla, B.; Dulsat-Masvidal, M.; Bertolero, A.; Lopez-Antia, A.; Lacorte, S. Target and untargeted screening of perfluoroalkyl substances in biota using liquid chromatography coupled to quadrupole time of flight mass spectrometry. J. Chromatogr A 2023, 1701, 464066 10.1016/j.chroma.2023.464066
Qiao, B.; Song, D.; Fang, B.; Yu, H.; Li, X.; Zhao, L.; Yao, Y.; Zhu, L.; Chen, H.; Sun, H. Nontarget Screening and Fate of Emerging Per- and Polyfluoroalkyl Substances in Wastewater Treatment Plants in Tianjin, China. Environ. Sci. Technol. 2023, 57 (48), 20127–20137, 10.1021/acs.est.3c03997
Renyer, A.; Ravindra, K.; Wetmore, B. A.; Ford, J. L.; DeVito, M.; Hughes, M. F.; Wehmas, L. C.; MacMillan, D. K. Dose Response, Dosimetric, and Metabolic Evaluations of Replacement PFAS Perfluoro-(2,5,8-trimethyl-3,6,9-trioxadodecanoic) Acid (HFPO-TeA). Toxics 2023, 11 (12), 951, 10.3390/toxics11120951
Sanchez-Resino, E.; Marques, M.; Gutierrez-Martin, D.; Restrepo-Montes, E.; Martinez, M. A.; Salas-Huetos, A.; Babio, N.; Salas-Salvado, J.; Gil-Solsona, R.; Gago-Ferrero, P. Exploring the Occurrence of Organic Contaminants in Human Semen through an Innovative LC-HRMS-Based Methodology Suitable for Target and Nontarget Analysis. Environ. Sci. Technol. 2023, 57 (48), 19236–19252, 10.1021/acs.est.3c04347
Schwartz-Narbonne, H.; Xia, C.; Shalin, A.; Whitehead, H. D.; Yang, D.; Peaslee, G. F.; Wang, Z.; Wu, Y.; Peng, H.; Blum, A.; Venier, M.; Diamond, M. L. Per- and Polyfluoroalkyl Substances in Canadian Fast Food Packaging. Environ. Sci. Technol. Lett. 2023, 10 (4), 343–349, 10.1021/acs.estlett.2c00926
Sdougkou, K.; Xie, H.; Papazian, S.; Bonnefille, B.; Bergdahl, I. A.; Martin, J. W. Phospholipid Removal for Enhanced Chemical Exposomics in Human Plasma. Environ. Sci. Technol. 2023, 57 (28), 10173–10184, 10.1021/acs.est.3c00663
Siegel, H. G.; Nason, S. L.; Warren, J. L.; Prunas, O.; Deziel, N. C.; Saiers, J. E. Investigation of Sources of Fluorinated Compounds in Private Water Supplies in an Oil and Gas-Producing Region of Northern West Virginia. Environ. Sci. Technol. 2023, 57 (45), 17452–17464, 10.1021/acs.est.3c05192
Steeves, K. L.; Bissram, M. J.; Kleywegt, S.; Stevens, D.; Dorman, F. L.; Simpson, A. J.; Simpson, M. J.; Cahill, L. S.; Jobst, K. J. Nontargeted screening reveals fluorotelomer ethoxylates in indoor dust and industrial wastewater. Environ. Int. 2023, 171, 107634 10.1016/j.envint.2022.107634
Tang, C.; Zheng, R.; Zhu, Y.; Liang, Y.; Liang, Y.; Liang, S.; Xu, J.; Zeng, Y. H.; Luo, X. J.; Lin, H.; Huang, Q.; Mai, B. X. Nontarget Analysis and Comprehensive Characterization of Iodinated Polyfluoroalkyl Acids in Wastewater and River Water by LC-HRMS with Cascade Precursor-Ion Exclusions and Algorithmic Approach. Environ. Sci. Technol. 2023, 57 (44), 17099–17109, 10.1021/acs.est.3c04239
Tang, C.; Zhu, Y.; Liang, Y.; Zeng, Y. H.; Peng, X.; Mai, B. X.; Xu, J.; Huang, Q.; Lin, H. First Discovery of Iodinated Polyfluoroalkyl Acids by Nontarget Mass-Spectrometric Analysis and Iodine-Specific Screening Algorithm. Environ. Sci. Technol. 2023, 57, 1378, 10.1021/acs.est.2c07976
Tisler, S.; Savvidou, P.; Jorgensen, M. B.; Castro, M.; Christensen, J. H. Supercritical Fluid Chromatography Coupled to High-Resolution Mass Spectrometry Reveals Persistent Mobile Organic Compounds with Unknown Toxicity in Wastewater Effluents. Environ. Sci. Technol. 2023, 57 (25), 9287–9297, 10.1021/acs.est.3c00120
van Gerwen, M.; Colicino, E.; Guan, H.; Dolios, G.; Nadkarni, G. N.; Vermeulen, R. C. H.; Wolff, M. S.; Arora, M.; Genden, E. M.; Petrick, L. M. Per- and polyfluoroalkyl substances (PFAS) exposure and thyroid cancer risk. EBioMedicine 2023, 97, 104831 10.1016/j.ebiom.2023.104831
Wang, Y.; Ji, Y.; Tishchenko, V.; Huang, Q. Removing per- and polyfluoroalkyl substances (PFAS) in water by foam fractionation. Chemosphere 2023, 311, 137004 10.1016/j.chemosphere.2022.137004
Wickersham, L. C.; Mattila, J. M.; Krug, J. D.; Jackson, S. R.; Wallace, M. A. G.; Shields, E. P.; Halliday, H.; Li, E. Y.; Liberatore, H. K.; Farrior, S. M.; Preston, W.; Ryan, J. V.; Lee, C. W.; Linak, W. P. Characterization of PFAS air emissions from thermal application of fluoropolymer dispersions on fabrics. J. Air Waste Manag Assoc 2023, 73 (7), 533–552, 10.1080/10962247.2023.2192009
Zhao, M.; Yao, Y.; Dong, X.; Baqar, M.; Fang, B.; Chen, H.; Sun, H. Nontarget Identification of Novel Per- and Polyfluoroalkyl Substances (PFAS) in Soils from an Oil Refinery in Southwestern China: A Combined Approach with TOP Assay. Environ. Sci. Technol. 2023, 57 (48), 20194–20205, 10.1021/acs.est.3c05859
Zweigle, J.; Bugsel, B.; Rohler, K.; Haluska, A. A.; Zwiener, C. PFAS-Contaminated Soil Site in Germany: Nontarget Screening before and after Direct TOP Assay by Kendrick Mass Defect and FindPFDeltaS. Environ. Sci. Technol. 2023, 57 (16), 6647–6655, 10.1021/acs.est.2c07969
Zweigle, J.; Capitain, C.; Simon, F.; Roesch, P.; Bugsel, B.; Zwiener, C. Non-extractable PFAS in functional textiles - characterization by complementary methods: oxidation, hydrolysis, and fluorine sum parameters. Environ. Sci. Process Impacts 2023, 25 (8), 1298–1310, 10.1039/D3EM00131H
Stow, S. M.; Causon, T. J.; Zheng, X.; Kurulugama, R. T.; Mairinger, T.; May, J. C.; Rennie, E. E.; Baker, E. S.; Smith, R. D.; McLean, J. A.; Hann, S.; Fjeldsted, J. C. An Interlaboratory Evaluation of Drift Tube Ion Mobility–Mass Spectrometry Collision Cross Section Measurements. Anal. Chem. 2017, 89 (17), 9048–9055, 10.1021/acs.analchem.7b01729
Boatman, A.; Chappel, J.; Kirkwood-Donelson, K.; Fleming, J.; Reif, D.; Schymanski, E.; Rager, J.; Baker, E. LC- or GC-IMS-HRMS Confidence Level Requirement Checklist for PFAS v2. Zenodo. 2025. 10.5281/zenodo.15441451.
Hollender, J.; Schymanski, E. L.; Ahrens, L.; Alygizakis, N.; Béen, F.; Bijlsma, L.; Brunner, A. M.; Celma, A.; Fildier, A.; Fu, Q.; Gago-Ferrero, P.; Gil-Solsona, R.; Haglund, P.; Hansen, M.; Kaserzon, S.; Kruve, A.; Lamoree, M.; Margoum, C.; Meijer, J.; Merel, S.; Rauert, C.; Rostkowski, P.; Samanipour, S.; Schulze, B.; Schulze, T.; Singh, R. R.; Slobodnik, J.; Steininger-Mairinger, T.; Thomaidis, N. S.; Togola, A.; Vorkamp, K.; Vulliet, E.; Zhu, L.; Krauss, M. NORMAN guidance on suspect and non-target screening in environmental monitoring. Environmental Sciences Europe 2023, 35 (1), 75, 10.1186/s12302-023-00779-4
Oberacher, H.; Reinstadler, V.; Kreidl, M.; Stravs, M. A.; Hollender, J.; Schymanski, E. L. Annotating Nontargeted LC-HRMS/MS Data with Two Complementary Tandem Mass Spectral Libraries. Metabolites 2019, 9 (1), 3, 10.3390/metabo9010003
Oberacher, H.; Sasse, M.; Antignac, J.-P.; Guitton, Y.; Debrauwer, L.; Jamin, E. L.; Schulze, T.; Krauss, M.; Covaci, A.; Caballero-Casero, N.; Rousseau, K.; Damont, A.; Fenaille, F.; Lamoree, M.; Schymanski, E. L. A European proposal for quality control and quality assurance of tandem mass spectral libraries. Environmental Sciences Europe 2020, 32 (1), 43, 10.1186/s12302-020-00314-9
Harwood, T. V.; Treen, D. G. C.; Wang, M.; de Jong, W.; Northen, T. R.; Bowen, B. P. BLINK enables ultrafast tandem mass spectrometry cosine similarity scoring. Sci. Rep. 2023, 13 (1), 13462 10.1038/s41598-023-40496-9
Koelmel, J. P.; Paige, M. K.; Aristizabal-Henao, J. J.; Robey, N. M.; Nason, S. L.; Stelben, P. J.; Li, Y.; Kroeger, N. M.; Napolitano, M. P.; Savvaides, T.; Vasiliou, V.; Rostkowski, P.; Garrett, T. J.; Lin, E.; Deigl, C.; Jobst, K.; Townsend, T. G.; Godri Pollitt, K. J.; Bowden, J. A. Toward Comprehensive Per- and Polyfluoroalkyl Substances Annotation Using FluoroMatch Software and Intelligent High-Resolution Tandem Mass Spectrometry Acquisition. Anal. Chem. 2020, 92 (16), 11186–11194, 10.1021/acs.analchem.0c01591
Kirkwood, K. I.; Odenkirk, M. T.; Baker, E. S. Ion Mobility Spectrometry. In Mass Spectrometry for Lipidomics: Methods and Applications; Wiley-VCH GmbH, 2023.
Dodds, J. N.; Ford, L. C.; Ryan, J. P.; Solosky, A. M.; Rusyn, I.; Baker, E. S. Evaluating Ion Mobility Data Acquisition, Calibration, and Processing for Small Molecules: A Cross-Platform Assessment of Drift Tube and Traveling Wave Methodologies. J. Am. Soc. Mass Spectrom. 2025, 36, 1456, 10.1021/jasms.5c00056
Vasilopoulou, C. G.; Sulek, K.; Brunner, A.-D.; Meitei, N. S.; Schweiger-Hufnagel, U.; Meyer, S. W.; Barsch, A.; Mann, M.; Meier, F. Trapped ion mobility spectrometry and PASEF enable in-depth lipidomics from minimal sample amounts. Nat. Commun. 2020, 11 (1), 331, 10.1038/s41467-019-14044-x
George, A. C.; Schmitz, I.; Rouvière, F.; Alves, S.; Colsch, B.; Heinisch, S.; Afonso, C.; Fenaille, F.; Loutelier-Bourhis, C. Interplatform comparison between three ion mobility techniques for human plasma lipid collision cross sections. Anal. Chim. Acta 2024, 1304, 342535 10.1016/j.aca.2024.342535
Bilbao, A.; Gibbons, B. C.; Stow, S. M.; Kyle, J. E.; Bloodsworth, K. J.; Payne, S. H.; Smith, R. D.; Ibrahim, Y. M.; Baker, E. S.; Fjeldsted, J. C. A Preprocessing Tool for Enhanced Ion Mobility–Mass Spectrometry-Based Omics Workflows. J. Proteome Res. 2022, 21 (3), 798–807, 10.1021/acs.jproteome.1c00425
Butler, K. E.; Baker, E. S. A High-Throughput Ion Mobility Spectrometry–Mass Spectrometry Screening Method for Opioid Profiling. J. Am. Soc. Mass Spectrom. 2022, 33 (10), 1904–1913, 10.1021/jasms.2c00186
BP4NTA. Data Processing and Analysis. 2024. https://nontargetedanalysis.org/reference-content/methods/data-processing-and-analysis/ (accessed 2025-01-20).
Elapavalore, A.; Kondić, T.; Singh, R. R.; Shoemaker, B. A.; Thiessen, P. A.; Zhang, J.; Bolton, E. E.; Schymanski, E. L. Adding open spectral data to MassBank and PubChem using open source tools to support non-targeted exposomics of mixtures. Environmental Science: Processes & Impacts 2023, 25 (11), 1788–1801, 10.1039/D3EM00181D
Metz, T. O.; Chang, C. H.; Gautam, V.; Anjum, A.; Tian, S.; Wang, F.; Colby, S. M.; Nunez, J. R.; Blumer, M. R.; Edison, A. S.; Fiehn, O.; Jones, D. P.; Li, S.; Morgan, E. T.; Patti, G. J.; Ross, D. H.; Shapiro, M. R.; Williams, A. J.; Wishart, D. S. Introducing “Identification Probability” for Automated and Transferable Assessment of Metabolite Identification Confidence in Metabolomics and Related Studies. Anal. Chem. 2025, 97 (1), 1–11, 10.1021/acs.analchem.4c04060