[en] Due to the potential health risks related to chemical exposure, rapidly assessing xenobiotic molecules in the environment and those already in the body is imperative. Targeted analytical methods coupling either gas or liquid chromatography with mass spectrometry (GC-MS or LC-MS) are commonly utilized in current exposure assessments. While these methods are accepted as the gold standard for exposure analyses, they often require multiple sample preparation steps and analysis times > 30 min. These limitations have resulted in an evolving interest in using ion mobility spectrometry and MS (IMS-MS), either with or without chromatography, to improve throughput and annotation confidence. To increase IMS-MS information availability for exposure studies, here we utilized drift tube IMS-MS to evaluate 4685 xenobiotic chemical standards from the Environmental Protection Agency Toxicity Forecaster (ToxCast) programme, including pesticides, industrial chemicals, pharmaceuticals, consumer products, and per- and polyfluoroalkyl substances. Collision cross section (CCS) and m/z values were detected for 2144 unique chemicals with high confidence and reproducibility (≤1% error intra-laboratory and ≤2% inter-laboratory), resulting in values for 4004 [M + H]+, [M+Na]+, [M-H]- and [M]•+ ion types. This multidimensional database therefore supports suspect screening for a wider range of environmental contaminants, faster exposure response times, and assessments of xenobiotic-disease connections.
Disciplines :
Chemistry
Author, co-author :
Teri, Devin; Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, USA
Aly, Noor A; Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, USA
Dodds, James N ; Department of Chemistry, University of North Carolina, Chapel Hill, NC, USA
Zhang, Jian; National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
Thiessen, Paul A ; National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
Bolton, Evan E; National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
Joseph, Kara M; Department of Chemistry, University of North Carolina, Chapel Hill, NC, USA
Williams, Antony J ; Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
U.S. Department of Health & Human Services | NIH | National Institute of Environmental Health Sciences U.S. Environmental Protection Agency
Funding text :
This work was funded by grants from the National Institute of Environmental Health Sciences (P42 ES027704\u00A0and T32 ES026568) and a cooperative agreement with the Environmental Protection Agency (STAR RD 84003201). Opinions expressed in this manuscript are those of the authors and not their employers or funding agencies. The funding agencies did not review the content of this manuscript, and the funding does not constitute endorsement of any products or services mentioned herein. ELS acknowledges funding support from the Luxembourg National Research Fund (FNR) for project A18/BM/12341006. JZ, PAT, and EEB were supported by the National Center for Biotechnology Information of the National Library of Medicine (NLM), National Institutes of Health.This work was funded by grants from the National Institute of Environmental Health Sciences (P42 ES027704 and T32 ES026568) and a cooperative agreement with the Environmental Protection Agency (STAR RD 84003201). Opinions expressed in this manuscript are those of the authors and not their employers or funding agencies. The funding agencies did not review the content of this manuscript, and the funding does not constitute endorsement of any products or services mentioned herein. ELS acknowledges funding support from the Luxembourg National Research Fund (FNR) for project A18/BM/12341006. JZ, PAT, and EEB were supported by the National Center for Biotechnology Information of the National Library of Medicine (NLM), National Institutes of Health.
J.C. May J.A. McLean Ion mobility-mass spectrometry: time-dispersive instrumentation Anal. Chem. 87 1422 1436 1:CAS:528:DC%2BC2cXitFehs73P
A.B. Kanu P. Dwivedi M. Tam L. Matz H.H. Hill Jr Ion mobility-mass spectrometry J. Mass Spectrom. 43 1 22 1:CAS:528:DC%2BD1cXisFKntbk%3D
Y.M. Ibrahim et al. Development of an Ion Mobility Spectrometry-Orbitrap Mass Spectrometer Platform Anal. Chem. 88 12152 12160 1:CAS:528:DC%2BC28XhvVOhsLfL
T.O. Metz et al. Integrating ion mobility spectrometry into mass spectrometry-based exposome measurements: what can it add and how far can it go? Bioanalysis 9 81 98 1:CAS:528:DC%2BC28XhvF2msrbL
Y.S. Luo et al. Rapid characterization of emerging per- and polyfluoroalkyl substances in aqueous film-forming foams using ion mobility spectrometry-mass spectrometry Environ. Sci. Technol. 54 15024 15034 1:CAS:528:DC%2BB3cXit1ynsLjJ
M. Foster et al. Uncovering PFAS and other Xenobiotics in the dark metabolome using ion mobility spectrometry, mass defect analysis, and machine learning Environ. Sci. Technol. 56 9133 9143 1:CAS:528:DC%2BB38XhsVWmu7nE
K.I. Kirkwood-Donelson J.N. Dodds A. Schnetzer N. Hall E.S. Baker Uncovering per- and polyfluoroalkyl substances (PFAS) with nontargeted ion mobility spectrometry-mass spectrometry analyses Sci. Adv. 9 1:CAS:528:DC%2BB3sXit1KhtLrJ eadj7048
V. Hinnenkamp et al. Comparison of CCS values determined by traveling wave ion mobility mass spectrometry and drift tube ion mobility mass spectrometry Anal. Chem. 90 12042 12050 1:CAS:528:DC%2BC1cXhslaitbzN
E. Jurneczko J. Kalapothakis I.D. Campuzano M. Morris P.E. Barran Effects of drift gas on collision cross sections of a protein standard in linear drift tube and traveling wave ion mobility mass spectrometry Anal. Chem. 84 8524 8531 1:CAS:528:DC%2BC38XhtlCit7vN
M.A. Ewing M.S. Glover D.E. Clemmer Hybrid ion mobility and mass spectrometry as a separation tool J. Chromatogr. A 1439 3 25 1:CAS:528:DC%2BC2MXhslyqsr7I
V. Gabelica et al. Recommendations for reporting ion mobility Mass Spectrometry measurements Mass Spectrom. Rev. 38 291 320 1:CAS:528:DC%2BC1MXhtFKks7jM
S.M. Stow et al. An interlaboratory evaluation of drift tube ion mobility-mass spectrometry collision cross section measurements Anal. Chem. 89 9048 9055 1:CAS:528:DC%2BC2sXht1GhtbnL
J.N. Dodds Z.R. Hopkins D.R.U. Knappe E.S. Baker Rapid characterization of Per- and Polyfluoroalkyl Substances (PFAS) by Ion Mobility Spectrometry-Mass Spectrometry (IMS-MS) Anal. Chem. 92 4427 4435 1:CAS:528:DC%2BB3cXitVGgtrY%3D
K.E. Burnum-Johnson et al. Ion mobility spectrometry and the omics: distinguishing isomers, molecular classes and contaminant ions in complex samples Trends Anal. Chem. 116 292 299 1:CAS:528:DC%2BC1MXptFKhsL0%3D
Y.M. Ibrahim et al. Development of a new ion mobility (Quadrupole) time-of-flight mass spectrometer Int J. Mass Spectrom. 377 655 662 1:CAS:528:DC%2BC2cXht1CkurnE
J.N. Dodds E.S. Baker Ion mobility spectrometry: fundamental concepts, instrumentation, applications, and the road ahead J. Am. Soc. Mass Spectrom. 30 2185 2195 1:CAS:528:DC%2BC1MXhslCgtL3F
J.C. May C.B. Morris J.A. McLean Ion mobility collision cross section Compendium Anal. Chem. 89 1032 1044 1:CAS:528:DC%2BC28XitFGht7nI
A. Celma et al. Improving target and suspect screening high-resolution mass spectrometry workflows in environmental analysis by ion mobility separation Environ. Sci. Technol. 54 15120 15131 1:CAS:528:DC%2BB3cXitlGqsbbF
N.A. Aly et al. Utilizing ion mobility spectrometry-mass spectrometry for the characterization and detection of persistent organic pollutants and their metabolites Anal. Bioanal. Chem. 414 1245 1258 1:CAS:528:DC%2BB3MXit1OhsbzK
X. Zheng et al. Utilizing ion mobility spectrometry and mass spectrometry for the analysis of polycyclic aromatic hydrocarbons, polychlorinated biphenyls, polybrominated diphenyl ethers and their metabolites Anal. Chim. Acta 1037 265 273 1:CAS:528:DC%2BC1cXltFWhsb8%3D
L. Belova N. Caballero-Casero A.L.N. van Nuijs A. Covaci Ion Mobility-High-Resolution Mass Spectrometry (IM-HRMS) for the analysis of Contaminants of Emerging Concern (CECs): Database compilation and application to urine samples Anal. Chem. 93 6428 6436 1:CAS:528:DC%2BB3MXosFSqu7c%3D
J.A. Picache et al. Collision cross section compendium to annotate and predict multi-omic compound identities Chem. Sci. 10 983 993 1:CAS:528:DC%2BC1cXitlSqtrbN
Y.S. Luo et al. Relationships between constituents of energy drinks and beating parameters in human induced pluripotent stem cell (iPSC)-Derived cardiomyocytes Food Chem. Toxicol. 149 1:CAS:528:DC%2BB3MXhs1Oltbs%3D 111979
A.C. Cordova et al. Application of ion mobility spectrometry-mass spectrometry for compositional characterization and fingerprinting of a library of diverse crude oil samples Environ. Toxicol. Chem. 42 2336 2349 1:CAS:528:DC%2BB3sXhslGlu7zM
A.T. Roman-Hubers et al. Temporal chemical composition changes in water below a crude oil slick irradiated with natural sunlight Mar. Pollut. Bull. 185 1:CAS:528:DC%2BB38XivFaqt7jL 114360
A.T. Roman-Hubers et al. Characterization of compositional variability in petroleum substances Fuel 317 1:CAS:528:DC%2BB38XjsVyhtLc%3D 123547
A. Valdiviezo et al. Analysis of per- and polyfluoroalkyl substances in Houston Ship Channel and Galveston Bay following a large-scale industrial fire using ion-mobility-spectrometry-mass spectrometry J. Environ. Sci. 115 350 362 1:CAS:528:DC%2BB38Xis1CltL%2FN
B.I. Escher et al. From the exposome to mechanistic understanding of chemical-induced adverse effects Environ. Int. 99 97 106 1:CAS:528:DC%2BC28XitVGmtrzE
R. Vermeulen E.L. Schymanski A.L. Barabasi G.W. Miller The exposome and health: Where chemistry meets biology Science 367 392 396 1:CAS:528:DC%2BB3cXhvValurg%3D
B.I. Escher H.M. Stapleton E.L. Schymanski Tracking complex mixtures of chemicals in our changing environment Science 367 388 392 1:CAS:528:DC%2BB3cXhvVaksLo%3D
S. Scholz et al. The eco-exposome concept: supporting an integrated assessment of mixtures of environmental chemicals Environ. Toxicol. Chem. 41 30 45 1:CAS:528:DC%2BB38XhslGhsw%3D%3D
A.J. Williams et al. The CompTox Chemistry Dashboard: a community data resource for environmental chemistry J. Cheminform 9 61
R. Barouki et al. The exposome and toxicology: a win-win collaboration Toxicol. Sci. 186 1 11 1:CAS:528:DC%2BB38XhslCmtLrO
Y. Lai et al. High-resolution mass spectrometry for human exposomics: expanding chemical space coverage Environ. Sci. Technol. 58 12784 12822 1:CAS:528:DC%2BB2cXhsFSnsrbJ
W. Brack et al. Effect-directed analysis supporting monitoring of aquatic environments-An in-depth overview Sci. Total Environ. 544 1073 1118 1:CAS:528:DC%2BC28XmtVOgtA%3D%3D
J.F. Wambaugh et al. Assessing toxicokinetic uncertainty and variability in risk prioritization Toxicol. Sci. 172 235 251 1:CAS:528:DC%2BB3cXhtleru7jN
J.F. Wambaugh et al. Evaluating in vitro-in vivo extrapolation of toxicokinetics Toxicol. Sci. 163 152 169 1:CAS:528:DC%2BC1cXitlGlurrE
A. Valdiviezo Y.S. Luo Z. Chen W.A. Chiu I. Rusyn Quantitative in vitro-to-in vivo extrapolation for mixtures: a case study of superfund priority list pesticides Toxicol. Sci. 183 60 69 1:CAS:528:DC%2BB3MXisFGgtbzF
A.M. Richard et al. The Tox21 10K compound library: collaborative chemistry advancing toxicology Chem. Res Toxicol. 34 189 216 1:CAS:528:DC%2BB3cXit1Wlu73N
A.L. Phillips et al. A framework for utilizing high-resolution mass spectrometry and nontargeted analysis in rapid response and emergency situations Environ. Toxicol. Chem. 41 1117 1130 1:CAS:528:DC%2BB3MXisFWktr3M
A.M. Richard et al. ToxCast chemical landscape: paving the road to 21st century toxicology Chem. Res Toxicol. 29 1225 1251 1:CAS:528:DC%2BC28XhtV2it77J
Richard, A. M., Truong, H., Wolf, M. & Thillainadarajah, I. (ed National Center for Computational Toxicology (NCCT)) (U.S. Environmental Protection Agency, Office of Research & Development, Research Triangle Park, NC, 2014).
A.M. Richard et al. Analytical quality evaluation of the Tox21 compound library Chem. Res Toxicol. 38 15 41 1:CAS:528:DC%2BB2cXivVKmsL3K
E.S. Baker et al. Ion mobility spectrometry-mass spectrometry performance using electrodynamic ion funnels and elevated drift gas pressures J. Am. Soc. Mass Spectrom. 18 1176 1187 1:CAS:528:DC%2BD2sXntF2lsrc%3D
GraphPad. KNOWLEDGEBASE - ARTICLE #591: Statistics with n=2, https://www.graphpad.com/support/faqid/591/ (2024).
X. Zhang et al. SPE-IMS-MS: An automated platform for sub-sixty second surveillance of endogenous metabolites and xenobiotics in biofluids Clin. Mass Spectrom. 2 1 10
E.S. Baker et al. METLIN-CCS: an ion mobility spectrometry collision cross section database Nat. Methods 20 1836 1837 1:CAS:528:DC%2BB3sXitlWlu7%2FE
X. Zheng et al. A structural examination and collision cross section database for over 500 metabolites and xenobiotics using drift tube ion mobility spectrometry Chem. Sci. 8 7724 7736 1:CAS:528:DC%2BC2sXhsFOlu7bE
X.C. Song E. Canellas N. Dreolin J. Goshawk C. Nerin Identification of nonvolatile migrates from food contact materials using ion mobility-high-resolution mass spectrometry and in silico prediction tools J. Agric Food Chem. 70 9499 9508 1:CAS:528:DC%2BB38XhvVemtbfP
X.C. Song E. Canellas N. Dreolin J. Goshawk C. Nerin A collision cross section database for extractables and leachables from food contact materials J. Agric Food Chem. 70 4457 4466 1:CAS:528:DC%2BB38XovFWiurs%3D
X.C. Song et al. Application of ion mobility spectrometry and the derived collision cross section in the analysis of environmental organic micropollutants Environ. Sci. Technol. 57 21485 21502 1:CAS:528:DC%2BB3sXisFyns7jF
Dodds, J. N. et al. Evaluating ion mobility data acquisition, calibration, and processing for small molecules: a cross-platform assessment of drift tube and traveling wave methodologies. J. Am. Soc. Mass Spectrom., https://doi.org/10.1021/jasms.5c00056 (2025).
C.N. Lowe et al. Predicting compound amenability with liquid chromatography-mass spectrometry to improve non-targeted analysis Anal. Bioanal. Chem. 413 7495 7508 1:CAS:528:DC%2BB3MXit1Cmt7%2FP
N. Charest et al. Improving predictions of compound amenability for liquid chromatography-mass spectrometry to enhance non-targeted analysis Anal. Bioanal. Chem. 416 2565 2579 1:CAS:528:DC%2BB2cXmvFClsr0%3D