In press • In RuleML+RR’25: Companion Proceedings of the 9th International Joint Conference on Rules and Reasoning, September 22–24, 2025, Istanbul, Turkiye
[en] Automated compliance checking of data (including financial data) against applicable law is only possible with a formal representation of complex legal rules. The literature in the fields of legal informatics and Requirements Engineering (RE) can count on decades of contributions to the representation of data models, rule languages, and
reasoners for legal application. There is however a representational gap between data and legal norms, which prevents a comprehensive approach to legal knowledge representation, resulting in the lack of a standard solution for legal rules representation. This paper reports on our experience regarding the formal representation of complex financial rules, more specifically, the entirety of Article 43 of the Luxembourgish UCITS Law. We used SPARQL to specify the rules to be used for the automatic validation of a real financial dataset. We provide observations regarding (a) the complexity of the resulting SPARQL queries and how SHACL can help address some of this complexity, and (b) the alignment of the rules/queries with the knowledge expressed by the corresponding legal statements. We discuss the implications of these observations and describe the main challenges in achieving a machine-readable representation of legal norms.
Research center :
Interdisciplinary Centre for Security, Reliability and Trust (SnT) > SVV - Software Verification and Validation
Disciplines :
Computer science
Author, co-author :
CECI, Marcello ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SVV
SANNIER, Nicolas ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SVV
ABUALHAIJA, Sallam ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SVV
BIANCULLI, Domenico ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SVV
HALLING, Michael ; University of Luxembourg > Faculty of Law, Economics and Finance (FDEF) > Department of Finance (DF)
External co-authors :
no
Language :
English
Title :
When Data Stands Before the Law: an Experience Report on Representing Financial Rules in SPARQL
Publication date :
In press
Event name :
RuleML + RR Rule Challenge
Event place :
Istanbul, Turkey
Event date :
22-24.09.2025
Audience :
International
Main work title :
RuleML+RR’25: Companion Proceedings of the 9th International Joint Conference on Rules and Reasoning, September 22–24, 2025, Istanbul, Turkiye
This research was funded in whole, or in part, by the Luxembourg National Research Fund (FNR), under
grant numbers NCER22/IS/16570468/NCER-FT and C24/IS/18894115/AGLAIA.
M. Ceci, N. Sannier, S. Abualhaija, D. Shin, D. Bianculli, M. Halling, Toward automated compliance checking of fund activities using runtime verification techniques, in: FinanSE 2024, 2024.
R. Amor, J. Dimyadi, The promise of automated compliance checking, Developments in the Built Environment 5 (2021) 100039.
D. S. Chittoor, Implementing data lineage frameworks in financial institutions: A systematic analysis of compliance, efficiency, and risk management, Int. J. of Science and Research Archive 14 (2025) 353-361.
B. Bogaerts, M. Jakubowski, J. Van den Bussche, SHACL: A description logic in disguise, in: Logic Programming and Nonmonotonic Reasoning, 2022, pp. 75-88.
N. Sannier, M. Ceci, S. Abualhaija, D. Bianculli, M. Halling, A model toward formalizing and monitoring compliance of investment funds activities, in: MoDRE 2024, 2024, pp. 272-280.
L. Robaldo, S. Batsakis, R. Calegari, F. Calimeri, M. Fujita, G. Governatori, M. Morelli, G. Pisano, K. Satoh, I. Tachmazidis, Taking stock of available technologies for compliance checking on first-order knowledge, CEUR Workshop Proceedings 3204 (2022) 1-16.
Y. N. Harari, Nexus: A Brief History of Information Networks from the Stone Age to AI, Diversified Publishing, 2024.
M. Ceci, D. Bianculli, L. C. Briand, Defining a model for content requirements from the law: An experience report, in: RE 2024, 2024, pp. 18-30.
M. Ceci, F. Al Khalil, L. O’Brien, T. Butler, Requirements for an intermediate language bridging legal text and rules, in: MIREL@JURIX, 2016.
L. Robaldo, S. Batsakis, R. Calegari, F. Calimeri, M. Fujita, G. Governatori, M. Morelli, F. Pacenza, G. Pisano, K. Satoh, I. Tachmazidis, J. Zangari, Compliance checking on first-order knowledge with conflicting and compensatory norms: a comparison among currently available technologies, Artif. Int. and Law 32 (2024) 505-555.
S. Abualhaija, M. Ceci, N. Sannier, D. Bianculli, L. C. Briand, D. Zetzsche, M. Bodellini, AI-enabled regulatory change analysis of legal requirements, in: RE 2024, 2024, pp. 5-17.
A. Rotolo, G. Governatori, G. Sartor, Deontic defeasible reasoning in legal interpretation: two options for modelling interpretive arguments, in: ICAIL 2015, 2015, pp. 99-108.
C. Guitton, A. Tamò-Larrieux, S. Mayer, G. van Dijck, The challenge of open-texture in law, Artificial Intelligence and Law (2024) 1-31.
P. Leith, Logic, formal models and legal reasoning, Jurimetrics J. 24 (1983) 334.
CSSF, FAQ concerning the Law of 17 December 2010 relating to UCITS, https://www.cssf.lu/wp-content/uploads/FAQ_Law_17_December_2010.pdf, 2025. Accessed: 2025-08-20.
E. Francesconi, G. Governatori, Patterns for legal compliance checking in a decidable framework of linked open data, Artificial Intelligence and Law 31 (2022) 1-20.
S. Abualhaija, M. Ceci, N. Sannier, D. Bianculli, S. Lannier, M. Siclari, O. Voordeckers, S. Tosza, LLM-assisted elicitation of regulatory requirements: A case study on the GDPR, in: RE 2025 (to appear), 2025, pp. 5-17.
J. Lai, W. Gan, J. Wu, Z. Qi, P. S. Yu, Large language models in law: A survey, AI Open 5 (2024).
C. Panigutti, R. Hamon, I. Hupont, D. Fernandez Llorca, D. Fano Yela, H. Junklewitz, S. Scalzo, G. Mazzini, I. Sanchez, J. Soler Garrido, E. Gomez, The role of explainable AI in the context of the AI Act, in: FAccT 2023, 2023, p. 1139-1150.
J. Anim, L. Robaldo, A. Z. Wyner, A SHACL-based approach for enhancing automated compliance checking with RDF data, Information 15 (2024).
B. Fawei, A. Wyner, J. Z. Pan, M. J. Kollingbaum, Using legal ontologies with rules for legal textual entailment, in: AI Approaches to the Complexity of Legal Systems, 2017, pp. 317-324.
T. D. Breaux, A. I. Antón, J. Doyle, Semantic parameterization: A process for modeling domain descriptions, ACM Trans. Softw. Eng. Methodol. 18 (2008) 5:1-5:27.
F. Al Khalil, M. Ceci, K. Yapa Bandara, L. O’Brien, SBVR to OWL2 mapping in the domain of legal rules, in: RuleML 2016, 2016, pp. 258-266.
G. Antoniou, G. Baryannis, S. Batsakis, G. Governatori, M. B. Islam, Q. Liu, L. Robaldo, G. Siragusa, Large-scale legal reasoning with rules and databases, Journal of Applied Logic 8 (2021) 911-939.
A. Sleimi, N. Sannier, M. Sabetzadeh, L. C. Briand, M. Ceci, J. Dann, An automated framework for the extraction of semantic legal metadata from legal texts, Empir. Softw. Eng. 26 (2021) 43.
O. Kosenkov, M. Unterkalmsteiner, D. Méndez, D. Fucci, T. Gorschek, J. Fischbach, On developing an artifact-based approach to regulatory requirements engineering, in: MoDRE 2024, 2024.
T. Athan, G. Governatori, M. Palmirani, A. Paschke, A. Wyner, LegalRuleML: Design principles and foundations, Reasoning Web. Web Logic Rules 2015 (2015) 151-188.
D. Merigoux, N. Chataing, J. Protzenko, Catala: a programming language for the law, Proc. ACM Program. Lang. 5 (2021) 1-29.
G. Boella, L. Humphreys, R. Muthuri, P. Rossi, L. van der Torre, A critical analysis of legal requirements engineering from the perspective of legal practice, in: RELAW 2014, 2014, pp. 14-21.
S. Ghanavati, D. Amyot, A. Rifaut, Legal goal-oriented requirement language (legal GRL) for modeling regulations, in: MiSE 2014, 2014, pp. 1-6.
S. Ingolfo, A. Siena, A. Susi, A. Perini, J. Mylopoulos, Modeling laws with nomos 2, in: RELAW 2013, 2013, pp. 69-71.
L. Longo, Argumentation for knowledge representation, conflict resolution, defeasible inference and its integration with machine learning, Machine Learning for Health Informatics (2016) 183-208.
M. Billi, R. Calegari, G. Contissa, F. Lagioia, G. Pisano, G. Sartor, G. Sartor, Argumentation and defeasible reasoning in the law, J - Multidisciplinary Scientific Journal 4 (2021) 897-914.
G. Pisano, Argumentation for Legal Reasoning: Meta-models, Technology and Beyond, Ph.D. thesis, UNIBO - Università di Bologna, Italy, 2024.
C. Buil-Aranda, M. Ugarte, M. Arenas, M. Dumontier, A preliminary investigation into SPARQL query complexity and federation in bio2rdf, in: AMW 2015, 2015.
M. Arias, J. D. Fernández, M. A. Martínez-Prieto, P. de la Fuente, An empirical study of real-world SPARQL queries, CoRR abs/1103.5043 (2011).
G. Governatori, Defeasible description logics, in: Rules and Rule Markup Languages for the Semantic Web, 2004, pp. 98-112.
F. Haag, S. Lohmann, S. Siek, T. Ertl, QueryVOWL: Visual composition of SPARQL queries, in: ESWC 2015 Satellite Events, 2015, pp. 62-66.
S. McLachlan, L. C. Webley, Visualisation of law and legal process: An opportunity missed, Information Visualization 20 (2021) 192-204.
S. Bryzgalova, S. Lerner, M. Lettau, M. Pelger, Missing financial data, The Review of Financial Studies 38 (2024) 803-882.
G. Sartor, Legal concepts as inferential nodes and ontological categories, Artificial Intelligence and Law 17 (2009) 217-251.
A. Gangemi, V. Presutti, Ontology Design Patterns, Springer Berlin Heidelberg, Berlin, Heidelberg, 2009, pp. 221-243.
P. Pareti, G. Konstantinidis, A Review of SHACL: From Data Validation to Schema Reasoning for RDF Graphs, Springer International Publishing, Cham, 2022, pp. 115-144.
G. Boella, M. Janssen, J. Hulstijn, L. Humphreys, L. van der Torre, Managing legal interpretation in regulatory compliance, in: ICAIL 2013, 2013, p. 23-32.