Algae-microbial fuel cell; Algal strains; Bioelectrochemical system; Heterotrophic cultivation; Life cycle assessment; Power density; Technoeconomic assessment
Abstract :
[en] Bioelectrochemical systems (BESs) are sustainable biotechnologies that have garnered global interest in recent decades. Since their inception, these systems have evolved through various configurations and modifications to enhance performance, prominently featuring microbial fuel cells (MFCs). Researchers are addressing the scaling challenges of MFCs with studies on algae-assisted MFCs (algae-MFCs), which simultaneously generate bioelectricity and treat wastewater cost-effectively. Algae-MFCs are carbon-neutral and photosynthesize to sequester CO2 while producing oxygen (O2) and biomass. O2 serves as an effective electron acceptor, and biomass is a biofuel feedstock, making the process economical and eco-friendly. This review highlights recent advances in algae-based MFCs, focusing on bioelectricity generation (up to 26,680 mW/m2) and biofuel outputs (200 mL/L/h of biohydrogen, 286 mL/g/VS of biomethane, 3.37 g/L of biobutanol, 73 g/L of bioethanol, and 121,104 kg/ha∙year of biodiesel), along with innovations in biokerosene (bio-jet) technology. The impacts of reactor components and configurations on algae-MFC performance, scaling strategies, real-time applications, and computational studies of algae-based BESs are also examined. Furthermore, this review assesses the technoeconomic viability, challenges, and future prospects of this technology. Overall, the findings suggest that algae-MFCs effectively remove contaminants from wastewater and increase power generation while also outlining directions for future advancements.
Precision for document type :
Review article
Disciplines :
Civil engineering
Author, co-author :
Apollon, Wilgince; Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada (CICATA), Instituto Politécnico Nacional (IPN), Carretera Tampico-Puerto Industrial Altamira km 14.5, C. Manzano, Industrial Altamira, Altamira 89600, Mexico, Department of Agricultural and Food Engineering, Faculty of Agronomy, Autonomous University of Nuevo León, Francisco Villa S/N, Ex-Hacienda El Canadá, General Escobedo, Nuevo León 66050, Mexico. Electronic address: wilgince.apollon@uanl.edu.mx
Verma, Manisha; Indian Institute of Technology BHU, Varanasi, India
Kuleshova, Tatiana; Agrophysical Research Institute, Saint-Petersburg 195220, Russia
Mishra, Vishal; Indian Institute of Technology BHU, Varanasi, India
Gwenzi, Willis; Leibniz-Institut für Agrartechnik und Bioökonomie e.V. (ATB), Max-Eyth-Allee 100, 14469 Potsdam, Germany, Grassland Science and Renewable Plant Resources, Faculty of Organic Agricultural Sciences, Universität Kassel, Steinstraße 19, D-37213 Witzenhausen, Germany
MITTAL, Yamini ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Engineering (DoE)
Jadhav, Dipak A; Department of Environmental Engineering, College of Ocean Science and Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea
Kadier, Abudukeremu; Xinjiang Key Laboratory of Separation Material and Technology, The Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China, Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
Ghosh, Soumya; Natural and Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman, University of the Free State, Bloemfontein 9301, South Africa
Malloum, Alhadji; Department of Physics, Faculty of Science, University of Maroua, PO BOX 46, Maroua, Cameroon, Department of Chemistry, University of the Free State, PO BOX 339, Bloemfontein 9300, South Africa
Luna-Maldonado, Alejandro Isabel; Department of Agricultural and Food Engineering, Faculty of Agronomy, Autonomous University of Nuevo León, Francisco Villa S/N, Ex-Hacienda El Canadá, General Escobedo, Nuevo León 66050, Mexico
Sato, Chikashi; Department of Civil and Environmental Engineering, Idaho State University, 921 S. 8th Ave., Stop 8060, Pocatello, ID 83209, USA. Electronic address: chikashisato@isu.edu
Kamaraj, Sathish Kumar; Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada (CICATA), Instituto Politécnico Nacional (IPN), Carretera Tampico-Puerto Industrial Altamira km 14.5, C. Manzano, Industrial Altamira, Altamira 89600, Mexico. Electronic address: skamaraj@ipn.mx
Adamczyk, M., Sajdak, M., Pyrolysis behaviors of microalgae Nannochloropsis gaditana. Waste Biomass Valoriz. 9 (2018), 2221–2235, 10.1007/s12649-017-9996-8.
Ahirwar, A., Das, S., Das, S., Yang, Y.H., Bhatia, S.K., Vinayak, V., Ghangrekar, M.M., Photosynthetic microbial fuel cell for bioenergy and valuable production: A review of circular bioeconomy approach. Algal Res., 102973, 2023, 10.1016/j.algal.2023.102973.
Ahmed, S.F., Rafa, N., Mofijur, M., Badruddin, I.A., Inayat, A., Ali, M.S., Yunus Khan, T.M., Biohydrogen production from biomass sources: metabolic pathways and economic analysis. Front. Energy Res., 9, 2021, 753878, 10.3389/fenrg.2021.753878.
Alkhadra, M.A., Su, X., Suss, M.E., Tian, H., Guyes, E.N., Shocron, A.N., Bazant, M.Z., Electrochemical methods for water purification, ion separations, and energy conversion. Chem. Rev. 122:16 (2022), 13547–13635, 10.1021/acs.chemrev.1c00396.
Altın, N., Uyar, B., Increasing power generation and energy efficiency with modified anodes in algae-supported microbial fuel cells. Biomass Convers. Biorefinery, 1-13, 2025, 10.1007/s13399-025-06536-2.
Alvarado-Flores, J.J., Alcaraz-Vera, J.V., Ávalos-Rodríguez, M.L., Guzmán-Mejía, E., Rutiaga-Quiñones, J.G., Pintor-Ibarra, L.F., Guevara-Martínez, S.J., Thermochemical production of hydrogen from biomass: pyrolysis and gasification. Energies, 17(2), 2024, 537.
Amaral, E.T., Rizzetti, T.M., de Souza, M.P., Ribeiro, V.R., Benitez, L.B., de Farias Neves, F., de Souza Schneider, R.D.C., Opportunities and challenges in algal biofuel. Algae Aquatic Macrophytes Cities, 187-202, 2022, 10.1016/B978-0-12-824270-4.00003-1.
Apollon, W., Rusyn, I., González-Gamboa, N., Kuleshova, T., Luna-Maldonado, A.I., Vidales-Contreras, J.A., Kamaraj, S.K., Improvement of zero waste sustainable recovery using microbial energy generation systems: A comprehensive review. Sci. Total Environ., 817, 2022, 153055, 10.1016/j.scitotenv.2022.153055.
Apollon, W., Luna-Maldonado, A.I., Kamaraj, S.K., Vidales-Contreras, J.A., Rodríguez-Fuentes, H., Gómez-Leyva, J.F., Ortiz-Medina, R.A., Self-sustainable nutrient recovery associated with power generation from livestock's urine using plant-based biobatteries. Fuel, 332, 2023, 126252, 10.1016/j.fuel.2022.126252.
Arun, J., Gopinath, K.P., SundarRajan, P., Felix, V., Joselyn Monica, M., Malolan, R., A conceptual review on microalgae biorefinery through thermochemical and biological pathways: biocircular approach on carbon capture and wastewater treatment. Bioresource Technol. Rep., 11, 2020, 100477.
Arun, S., Sinharoy, A., Pakshirajan, K., Lens, P.N.L., Algae based microbial fuel cells for wastewater treatment and recovery of value-added products. Renew. Sust. Energ. Rev., 132, 2020, 110041.
Asensio, Y., Mansilla, E., Fernandez-Marchante, C.M., Lobato, J.U.S.T.O., Cañizares, P., Rodrigo, M.A., Toward the scale-up of bioelectrogenic technology: stacking microbial fuel cells to produce larger amounts of electricity. J. Appl. Electrochem. 47 (2017), 1115–1125.
Aslam, A., Bahadar, A., Liaquat, R., Muddasar, M., Recent advances in biological hydrogen production from algal biomass: A comprehensive review. Fuel, 350, 2023, 128816, 10.1016/j.fuel.2023.128816.
Astolfi, A.L., Rempel, A., Cavanhi, V.A.F., Alves, M., Deamici, K.M., Colla, L.M., Costa, J.A.V., Simultaneous saccharification and fermentation of Spirulina sp. and corn starch for the production of bioethanol and obtaining biopeptides with high antioxidant activity. Bioresour. Technol., 301, 2020, 122698, 10.1016/j.biortech.2019.122698.
Baicha, Z., Salar-García, M.J., Ortiz-Martínez, V.M., Hernández-Fernández, F.J., De los Ríos, A.P., Labjar, N., Elmahi, M., A critical review on microalgae as an alternative source for bioenergy production: A promising low cost substrate for microbial fuel cells. Fuel Process. Technol. 154 (2016), 104–116, 10.1016/j.fuproc.2016.08.017.
Banerjee, A., Calay, R.K., Eregno, F.E., Role and important properties of a membrane with its recent advancement in a microbial fuel cell. Energies (Basel)., 2022, 10.3390/en15020444.
Banerjee, S., Ghosh, D., Pandit, C., Saha, S., Mohapatra, A., Pandit, S., Prasad, R., Microalgal pandora for potent bioenergy production: A way forward?. Fuel, 333, 2023, 126253, 10.1016/j.fuel.2022.126253.
Bardarov, I., Mitov, M., Ivanova, D., Hubenova, Y., Light-dependent processes on the cathode enhance the electrical outputs of sediment microbial fuel cells. Bioelectrochemistry 122 (2018), 1–10, 10.1016/j.bioelechem.2018.02.009.
Baskar, S., Jayaprabakar, J., Rajan, T.S., Kumar, J.A., Sambandam, P., PK, J., Ruban, M., Possible bio cathode materials for usage in microbial fuel cells toward energy generation and wastewater treatment to sustain environment: A review. Results Eng., 104161, 2025, 10.1016/j.rineng.2025.104161.
Bazdar, E., Roshandel, R., Yaghmaei, S., Mardanpour, M.M., The effect of different light intensities and light/dark regimes on the performance of photosynthetic microalgae microbial fuel cell. Bioresour. Technol. 261 (2018), 350–360.
Becker, E.W., Microalgae as a source of protein. Biotechnol. Adv. 25:2 (2007), 207–210, 10.1016/j.biotechadv.2006.11.002.
Bej, S., Swain, S., Bishoyi, A.K., Mandhata, C.P., Sahoo, C.R., Padhy, R.N., Recent advancements on antibiotic bioremediation in wastewaters with a focus on algae: An overview. Environ. Technol., 1-16, 2023, 10.1080/09593330.2023.2245166.
Biffinger, J.C., Pietron, J., Bretschger, O., Nadeau, L.J., Johnson, G.R., Williams, C.C., Ringeisen, B.R., The influence of acidity on microbial fuel cells containing Shewanella oneidensis. Biosensors and Bioelectronics 24:4 (2008), 900–905.
Bito, T., Okumura, E., Fujishima, M., Watanabe, F., Potential of Chlorella as a dietary supplement to promote human health. Nutrients, 12(9), 2020, 2524, 10.3390/nu12092524.
Bolognesi, S., Cecconet, D., Callegari, A., Capodaglio, A.G., Combined microalgal photobioreactor/microbial fuel cell system: performance analysis under different process conditions. Environ. Res., 192, 2021, 110263.
Bora, A., Rajan, A.S.T., Kumar, P., Muthusamy, G., Alagarsamy, A., Microalgae to bioenergy production: recent advances, influencing parameters, utilization of wastewater–A critical review. Sci. Total Environ., 946, 2024, 174230, 10.1016/j.scitotenv.2024.174230.
Brennan, L., Owende, P., Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and coproducts. Renew. Sust. Energ. Rev. 14:2 (2010), 557–577, 10.1016/j.rser.2009.10.009.
Carney, L.T., Reinsch, S.S., Lane, P.D., Solberg, O.D., Jansen, L.S., Williams, K.P., Trent, J.D., Lane, T.W., Microbiome analysis of a microalgal mass culture growing in municipal wastewater in a prototype OMEGA photobioreactor. Algal Res. 4 (2014), 52–61.
Chakraborty, I., Bhowmick, G.D., Ghosh, D., Dubey, B.K., Pradhan, D., Ghangrekar, M.M., Novel low-cost activated algal biochar as a cathode catalyst for improving performance of microbial fuel cell. Sustain Energy Technol Assess, 42, 2020, 100808.
Chandra, R., Venkata Subhash, G., Venkata Mohan, S., Mixotrophic operation of photobioelectrocatalytic fuel cell under an oxygenic microenvironment enhances the light dependent bioelectrogenic activity. Bioresour. Technol. 109 (2012), 46–56, 10.1016/j.biortech.2011.12.135.
Cheng, S., Liu, H., Logan, B.E., Power densities using different cathode catalysts (Pt and CoTMPP) and polymer binders (Nafion and PTFE) in single chamber microbial fuel cells. Environ. Sci. Technol. 40:1 (2006), 364–369, 10.1021/es0512071.
Choi, C.H., Baldizzone, C., Grote, J.P., Schuppert, A.K., Jaouen, F., Mayrhofer, K.J., Stability of Fe-N-C catalysts in acidic medium studied by operando spectroscopy. Angew. Chem. Int. Ed. 54:43 (2015), 12753–12757, 10.1002/anie.201504903.
Choi, Y., Ryu, J., Lee, S.R., Influence of carbon type and carbon to nitrogen ratio on the biochemical methane potential, pH, and ammonia nitrogen in anaerobic digestion. J. Anim. Sci. Technol. 62:1 (2020), 74–83, 10.5187/jast.2020.62.1.74.
Chong, P., Erable, B., Bergel, A., Effect of pore size on the current produced by 3-dimensional porous microbial anodes: A critical review. Bioresour. Technol., 289, 2019, 121641, 10.1016/j.biortech.2019.121641.
Choudhary, M., Verma, P., Ray, S., A comprehensive review on bio-electrochemical systems for wastewater treatment: process, electricity generation and future aspect. Environ. Dev. Sustain., 1-30, 2024, 10.1007/s10668-024-05866-x.
Condor, B.E., de Luna, M.D.G., Chang, Y.H., Chen, J.H., Leong, Y.K., Chen, P.T., Chang, J.S., Bioethanol production from microalgae biomass at high-solids loadings. Bioresour. Technol., 363, 2022, 128002, 10.1016/j.biortech.2022.128002.
Corbella, C., Puigagut, J., Garfí, M., Life cycle assessment of constructed wetland systems for wastewater treatment coupled with microbial fuel cells. Sci. Total Environ. 584 (2017), 355–362.
Cui, Y., Rashid, N., Hu, N., Rehman, M.S.U., Han, J.I., Electricity generation and microalgae cultivation in microbial fuel cell using microalgae-enriched anode and biocathode. Energy Convers. Manag. 79 (2014), 674–680, 10.1016/J.ENCONMAN.2013.12.032.
Dange, P., Savla, N., Pandit, S., Bobba, R., Jung, S.P., Gupta, P.K., Prasad, R., A comprehensive review on oxygen reduction reaction in microbial fuel cells. J. Renew. Mater., 10(3), 2022, 665, 10.32604/jrm.2022.015806.
Daroch, M., Geng, S., Wang, G., Recent advances in liquid biofuel production from algal feedstocks. Appl. Energy 102 (2013), 1371–1381, 10.1016/j.apenergy.2012.07.031.
Debabov, V.G., Electricity from microorganisms. Microbiology 77 (2008), 123–131, 10.1134/S002626170802001X.
Deliismail, O., Ozdogru, B., Seker, E., Biofuel production from Nannochloropsis oculata microalgae in seawater without harvesting and dewatering over alumina-silicate supported nickel catalysts. Bioresource Technol. Rep. 3 (2018), 205–210, 10.1016/j.biteb.2018.07.016.
Dendena, B., Corsi, S., The environmental and social impact assessment: a further step toward an integrated assessment process. J. Clean. Prod. 108 (2015), 965–977.
Dewan, A., Beyenal, H., Lewandowski, Z., Scaling up microbial fuel cells. Environ. Sci. Technol. 42 (2008), 7643–7648.
Dhanapal, D., Xiao, M., Wang, S., Meng, Y., A review on sulfonated polymer composite/organic–inorganic hybrid membranes to address methanol barrier issue for methanol fuel cells. Nanomaterials, 9, 2019, 668.
Dhanda, A., Raj, R., Sathe, S.M., Dubey, B.K., Ghangrekar, M.M., Graphene and biochar-based cathode catalysts for microbial fuel cell: Performance evaluation, economic comparison, environmental and future perspectives. Environ. Res., 231, 2023, 116143.
Doi, S., Takumi, N., Kakihana, Y., Higa, M., Alkali attack on cation-exchange membranes with polyvinyl chloride backing and binder: comparison with anion-exchange membranes. Membranes, 10(9), 2020, 228, 10.3390/membranes10090228.
Don, C.D.Y.A., Babel, S., Comparing the performance of microbial fuel cell with mechanical aeration and photosynthetic aeration in the cathode chamber. Int. J. Hydrog. Energy 46:31 (2021), 16751–16761, 10.1016/j.ijhydene.2020.09.068.
D'Silva, T.C., Khan, S.A., Kumar, S., Kumar, D., Isha, A., Deb, S., Semple, K.T., Biohydrogen production through dark fermentation from waste biomass: current status and future perspectives on biorefinery development. Fuel, 350, 2023, 128842, 10.1016/j.fuel.2023.128842.
Elakkiya, E., Niju, S., Simultaneous treatment of lipid rich ghee industry wastewater and power production in algal biocathode based microbial fuel cell. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2020, 10.1080/15567036.2020.1823529.
ElMekawy, A., Hegab, H.M., Vanbroekhoven, K., Pant, D., Techno-productive potential of photosynthetic microbial fuel cells through different configurations. Renew. Sust. Energ. Rev. 39 (2014), 617–627, 10.1016/j.rser.2014.07.116.
Enamala, M.K., Dixit, R., Tangellapally, A., Singh, M., Dinakarrao, S.M.P., Chavali, M., Pamanji, S.R., Ashokkumar, V., Kadier, A., Chandrasekhar, K., Photosynthetic microorganisms (algae) mediated bioelectricity generation in microbial fuel cell: concise review. Environ. Technol. Innov., 19, 2020, 100959.
Fu, C.C., Hung, T.C., Wu, W.T., Wen, T.C., Su, C.H., Current and voltage responses in instant photosynthetic microbial cells with Spirulina platensis. Biochem. Eng. J. 52 (2010), 175–180, 10.1016/J.BEJ.2010.08.004.
Gaffney, E.M., Grattieri, M., Rhodes, Z., Minteer, S.D., Review-exploration of computational approaches for understanding microbial electrochemical systems: opportunities and future directions. J. Electrochem. Soc., 167(6), 2020.
Gaurav, K., Neeti, K., Singh, R., Microalgae-based biodiesel production and its challenges and future opportunities: A review. Green Technol. Sustain., 2(1), 2024, 100060, 10.1016/j.grets.2023.100060.
Ge, S., Madill, M., Champagne, P., Use of freshwater macroalgae Spirogyra sp. for the treatment of municipal wastewaters and biomass production for biofuel applications. Biomass Bioenergy 111 (2018), 213–223, 10.1016/j.biombioe.2017.03.014.
Ge, S., Foong, S.Y., Ma, N.L., Liew, R.K., Mahari, W.A.W., Xia, C., Lam, S.S., Vacuum pyrolysis incorporating microwave heating and base mixture modification: an integrated approach to transform biowaste into eco-friendly bioenergy products. Renew. Sust. Energ. Rev., 127, 2020, 109871, 10.1016/j.rser.2020.109871.
Ghadge, A.N., Ghangrekar, M.M., Development of lowcost ceramic separator using mineral cation exchanger to enhance performance of microbial fuel cells. Electrochim. Acta 166 (2015), 320–328, 10.1016/j.electacta.2015.03.105.
Gil, G.C., Chang, I.S., Kim, B.H., Kim, M., Jang, J.K., Park, H.S., Kim, H.J., et al. Operational parameters affecting the performance of a mediatorless microbial fuel cell. Biosens. Bioelectron. 18:4 (2003), 327–334, 10.1016/S0956-5663(02)00110-0.
Giwa, A., Adeyemi, I., Dindi, A., Lopez, C.G.B., Lopresto, C.G., Curcio, S., Chakraborty, S., Techno-economic assessment of the sustainability of an integrated biorefinery from microalgae and Jatropha: a review and case study. Renew. Sust. Energ. Rev. 88 (2018), 239–257.
Gómez, I.J., Vázquez Sulleiro, M., Mantione, D., Alegret, N., Carbon nanomaterials embedded in conductive polymers: A state of the art. Polymers, 13(5), 2021, 745, 10.3390/polym13050745.
Goria, K., Singh, H.M., Singh, A., Kothari, R., Tyagi, V.V., Insights into biohydrogen production from algal biomass: challenges, recent advancements and future directions. Int. J. Hydrog. Energy 52 (2024), 127–151, 10.1016/j.ijhydene.2023.03.174.
Gouveia, L., Neves, C., Sebastião, D., Nobre, B.P., Matos, C.T., Effect of light on the production of bioelectricity and added-value microalgae biomass in a photosynthetic alga microbial fuel cell. Bioresour. Technol. 154 (2014), 171–177, 10.1016/j.biortech.2013.12.049.
Graf, M.M., Zhixiong, L., Bren, U., Haltrich, D., van Gunsteren, W.F., Oostenbrink, C., Pyranose dehydrogenase ligand promiscuity: a generalized approach to simulate monosaccharide solvation, binding, and product formation. PLoS Comput. Biol., 10(12), 2014, e1003995.
Greenman, J., Ieropoulos, I.A., Allometric scaling of microbial fuel cells and stacks: the lifeform case for scale-up. J. Power Sources 356 (2017), 365–370.
Gupta, K., Biofertilizers industry profiles in market. Biofertilizers: Study and Impact, 2021, 541–559.
Gülyurt, M.Ö., Özçimen, D., İnan, B., Biodiesel production from Chlorella protothecoides oil by microwave-assisted transesterification. Int. J. Mol. Sci., 17(4), 2016, 579, 10.3390/ijms17040579.
Hamed, S.R., Mahamoud, M.G., Abo-el-khair, B., Complementary production of biofuels by the green alga Chlorella vulgaris. Int. J. Renew. Energy Res. 5:3 (2015), 936–943.
Hanson, E., Nwakile, C., Hammed, V.O., Carbon capture, utilization, and storage (CCUS) technologies: evaluating the effectiveness of advanced CCUS solutions for reducing CO2 emissions. Results Surf. Interf., 100381, 2024, 10.1016/j.rsurfi.2024.100381.
Harun, R., Davidson, M., Doyle, M., et al. Technoeconomic analysis of an integrated microalgae photobioreactor, biodiesel and biogas production facility. Biomass Bioenergy 35 (2011), 741–747, 10.1016/j.biombioe.2010.10.007.
He, Y.R., Yan, F.F., Yu, H.Q., Yuan, S.J., Tong, Z.H., Sheng, G.P., Hydrogen production in a light-driven photoelectrochemical cell. Appl. Energy 113 (2014), 164–168, 10.1016/j.apenergy.2013.07.020.
Higgins, B.T., VanderGheynst, J.S., Effects of Escherichia coli on mixotrophic growth of Chlorella minutissima and production of biofuel precursors. PLoS One, 9(5), 2014, e96807, 10.1111/jam.14095.
Ho, S.H., Chen, C.Y., Chang, J.S., Effect of light intensity and nitrogen starvation on CO2 fixation and lipid/carbohydrate production of an indigenous microalga Scenedesmus obliquus CNW-N. Bioresour. Technol. 113 (2012), 244–252, 10.1016/j.biortech.2011.11.133.
Hosny, S., Elshobary, M.E., El-Sheekh, M.M., Unleashing the power of microalgae: a pioneering path to sustainability and achieving the sustainable development goals. Environ. Sci. Pollut. Res., 1-31, 2025, 10.1007/s11356-025-35885-8.
Hossain, N., Zaini, J.H., Mahlia, T.M.I., A review of bioethanol production from plant-based waste biomass by yeast fermentation. Int. J. Technol. 1 (2017), 5–18.
Hou, Q., Nie, C., Pei, H., Hu, W., Jiang, L., Yang, Z., The effect of algal species on the bioelectricity and biodiesel generation through open-air cathode microbial fuel cell with kitchen waste anaerobically digested effluent as substrate. Bioresour. Technol. 218 (2016), 902–908.
Hou, Q., Yang, Z., Chen, S., Pei, H., Using an anaerobic digestion tank as the anodic chamber of an algae-assisted microbial fuel cell to improve energy production from food waste. Water Res., 170, 2020, 115305, 10.1016/j.watres.2019.115305.
Hu, J., Chen, X., Yang, X., Li, R., Wu, L., Coprocessing of gas oil and bio-oil derived from algae and straw: techno-economic analysis. Fuel, 340, 2023, 127583, 10.1016/j.fuel.2023.127583.
Hwang, J.H., Church, J., Lee, S.J., Park, J., Lee, W.H., Use of microalgae for advanced wastewater treatment and sustainable bioenergy generation. Environ. Eng. Sci. 33:11 (2016), 882–897, 10.1089/ees.2016.0132.
Idris, A.R., Ahmad, A., Karim, A., Dali, S., Liong, S., Fauziah, S., Baharuddin, M., Red algae (Eucheuma cottonii) extract as a substrate in microbial fuel cell technology to generate electricity. AIP Conference Proceedings, 2022, 2638.
Ieropoulos, I., Greenman, J., Melhuish, C., Microbial fuel cells based on carbon veil electrodes: stack configuration and scalability. Int. J. Energy Res. 2008:32 (2008), 1228–1240.
Jadhav, D.A., Jain, S.C., Ghangrekar, M.M., Simultaneous wastewater treatment, algal biomass production and electricity generation in clayware microbial carbon capture cells. Appl. Biochem. Biotechnol. 183 (2017), 1076–1092.
Jadhav, D.A., Ray, S.G., Ghangrekar, M.M., Third generation in bioelectrochemical system research–A systematic review on mechanisms for recovery of valuable byproducts from wastewater. Renew. Sust. Energ. Rev. 76 (2017), 1022–1031.
Jadhav, D.A., Neethu, B., Ghangrekar, M.M., Microbial carbon capture cell: advanced bioelectrochemical system for wastewater treatment, electricity generation and algal biomass production. Application of Microalgae in Wastewater Treatment: Volume 2: Biorefinery Approaches of Wastewater Treatment, 2019, 317–338.
Jadhav, D.A., Chendake, A.D., Schievano, A., Pant, D., Suppressing methanogens and enriching electrogens in bioelectrochemical systems. Bioresour. Technol. 277 (2019), 148–156.
Jadhav, D.A., Mungray, A.K., Arkatkar, A., Kumar, S.S., Recent advancement in scaling-up applications of microbial fuel cells: from reality to practicability. Sustain Energy Technol Assess, 45, 2021, 101226.
Jadhav, D.A., Pandit, S., Sonawane, J.M., Gupta, P.K., Prasad, R., Chendake, A.D., Effect of membrane biofouling on the performance of microbial electrochemical cells and mitigation strategies. Bioresource Technol. Rep., 15, 2021, 100822, 10.1016/j.biteb.2021.100822.
Jadhav, D.A., Park, S.G., Pandit, S., Yang, E., Abdelkareem, M.A., Jang, J.K., Chae, K.J., Scalability of microbial electrochemical technologies: applications and challenges. Bioresour. Technol., 345, 2022, 126498.
Jaiswal, K.K., Kumar, V., Vlaskin, M.S., Sharma, N., Rautela, I., Nanda, M., Arora, N., Singh, A., Chauhan, P.K., Microalgae fuel cell for wastewater treatment: recent advances and challenges. J Water Process Eng, 38, 2020, 101549.
Jalili, P., Ala, A., Nazari, P., Jalili, B., Ganji, D.D., A comprehensive review of microbial fuel cells considering materials, methods, structures, and microorganisms. Heliyon, 10(3), 2024, e25439, 10.1016/j.heliyon.2024.e25439.
Jha, S., Singh, R., Pandey, B.K., Tiwari, A.K., Shukla, S., Dikshit, A., Bhardwaj, A.K., Recent aspects of algal biomass for sustainable fuel production: a review. Discov. Sustain., 5(1), 2024, 300, 10.1007/s43621-024-00472-3.
Juang, D.F., Lee, C.H., Hsueh, S.C., Comparison of electrogenic capabilities of microbial fuel cell with different light power on algae grown cathode. Bioresour. Technol. 123 (2012), 23–29, 10.1016/j.biortech.2012.07.041.
Kakarla, R., Min, B., Sustainable electricity generation and ammonium removal by microbial fuel cell with a microalgae assisted cathode at various environmental conditions. Bioresour. Technol. 284 (2019), 161–167.
Kamaraj, S.K., Rivera, A.E., Murugesan, S., García-Mena, J., Maya, O., Frausto-Reyes, C., Caballero-Briones, F., Electricity generation from Nopal biogas effluent using a surface modified clay cup (cantarito) microbial fuel cell. Heliyon, 5(4), 2019, 10.1016/j.heliyon.2019.e01506.
Kang, K.H., Jang, J.K., Pham, T.H., Moon, H., Chang, I.S., Kim, B.H., et al. A microbial fuel cell with improved cathode reaction as a low biochemical oxygen demand sensor. Biotechnol. Lett. 25 (2003), 1357–1361, 10.1023/A:1024984521699.
Karishma, S., Saravanan, A., Kumar, P.S., Rangasamy, G., Sustainable production of biohydrogen from algae biomass: critical review on pretreatment methods, mechanism and challenges. Bioresour. Technol., 366, 2022, 128187, 10.1016/j.biortech.2022.128187.
Kerls, M., Simultaneous Electricity, Bioethanol, and Algal Biodiesel Production Using Microbial Fuel Cell. Doctoral dissertation, 2012, Texas Tech University, USA.
Khan, M.J., Das, S., Vinayak, V., Pant, D., Ghangrekar, M.M., Live diatoms as potential biocatalyst in a microbial fuel cell for harvesting continuous diafuel, carotenoids and bioelectricity. Chemosphere, 291, 2022, 132841, 10.1016/j.chemosphere.2021.132841.
Khan, M.J., Gordon, R., Varjani, S., Vinayak, V., Employing newly developed plastic bubble wrap technique for biofuel production from diatoms cultivated in discarded plastic waste. Sci. Total Environ., 823, 2022, 153667, 10.1016/j.scitotenv.2022.153667.
Khandelwal, A., Vijay, A., Dixit, A., Chhabra, M., Microbial fuel cell powered by lipid extracted algae: a promising system for algal lipids and power generation. Bioresour. Technol. 247 (2018), 520–527.
Khandelwal, A., Chhabra, M., Yadav, P., Performance evaluation of algae assisted microbial fuel cell under outdoor conditions. Bioresour. Technol., 310, 2020, 123418.
Khandelwal, A., Chhabra, M., Lens, P.N., Integration of third generation biofuels with bioelectrochemical systems: current status and future perspective. Front. Plant Sci., 14, 2023, 1081108, 10.3389/fpls.2023.1081108.
Khandelwal, A., Swaminathan, J., Mangal, A., Ghoroi, C., Lens, P.N., Comparing efficacy of anodic and cathodic chambers in a low-cost algae-assisted microbial fuel cell for textile wastewater remediation. Process. Saf. Environ. Prot. 187 (2024), 1259–1268, 10.1016/j.psep.2024.05.030.
Khoo, K.S., Ahmad, I., Chew, K.W., Iwamoto, K., Bhatnagar, A., Show, P.L., Enhanced microalgal lipid production for biofuel using different strategies including genetic modification of microalgae: A review. Prog. Energy Combust. Sci., 96, 2023, 101071, 10.1016/j.pecs.2023.101071.
Kim, J.R., Boghani, H.C., Amini, N., Aguey-Zinsou, K.F., Michie, I., Dinsdale, R.M., Guwy, A.J., Guo, Z.X., Premier, G.C., Porous anodes with helical flow pathways in bioelectrochemical systems: the effects of fluid dynamics and operating regimes. J. Power Sources 213 (2012), 382–390.
Kombe, G.G., An overview of algae for biodiesel production using bibliometric indicators. Int. J. Energy Res., 2023(1), 2023, 9596398, 10.1155/2023/9596398.
Kondaveeti, S., Mohanakrishna, G., Kumar, A., Lai, C., Lee, J.-K., Kalia, V.C., Exploitation of citrus peel extract as a feedstock for power generation in microbial fuel cell (MFC). Indian J. Microbiol. 59 (2019), 476–481.
Kumar, A., Sharma, K., Pandit, S., Mathuriya, A.S., Prasad, R., Evaluation of the algal-derived biochar as an anode modifier in microbial fuel cells. Bioresource Technol. Rep., 22, 2023, 101414.
Kumar, B., Agrawal, K., Bhardwaj, N., Chaturvedi, V., Verma, P., Techno-economic assessment of microbe-assisted wastewater treatment strategies for energy and value-added product recovery. Microbial Technol. Welfare Soc., 147-181, 2019, 10.1007/978-981-13-8844-6_7.
Kumar, R., Strezov, V., Lovell, E., Kan, T., Weldekidan, H., He, J., Scott, J., Bio-oil upgrading with catalytic pyrolysis of biomass using copper/zeolite-nickel/zeolite and copper-nickel/zeolite catalysts. Bioresour. Technol. 279 (2019), 404–409, 10.1016/j.biortech.2019.01.067.
Kumar, S.P.J., Kumar, G.V., Dash, A., Scholz, P., Banerjee, R., Sustainable green solvents and techniques for lipid extraction from microalgae: A review. Algal Res. 21 (2017), 138–147.
Kumar, T., Jujjavarapu, S.E., Carbon dioxide sequestration and wastewater treatment via an innovative self-sustaining algal microbial fuel cell. J. Clean. Prod., 415, 2023, 137836, 10.1016/j.jclepro.2023.137836.
Lakaniemi, A.M., Hulatt, C.J., Thomas, D.N., Tuovinen, O.H., Puhakka, J.A., Biogenic hydrogen and methane production from Chlorella vulgaris and Dunaliella tertiolecta biomass. Biotechnol. Biofuels 4 (2011), 1–12.
Lakaniemi, A.M., Tuovinen, O.H., Puhakka, J.A., Production of electricity and butanol from microalgal biomass in microbial fuel cells. Bioenergy Res. 5 (2012), 481–491, 10.1007/S12155-012-9186-2.
Lal, R., Sequestration of atmospheric CO2 in global carbon pools. Energy Environ. Sci. 1:1 (2008), 86–100, 10.1039/B809492F.
Lam, M.K., Lee, K.T., Renewable and sustainable bioenergies production from palm oil mill effluent (POME): win–win strategies toward better environmental protection. Biotechnol. Adv. 29:1 (2011), 124–141, 10.1016/j.biotechadv.2010.10.001.
Leflay, H., Okurowska, K., Pandhal, J., Brown, S., Pathways to economic viability: a pilot scale and techno-economic assessment for algal bioremediation of challenging waste streams. Environ. Sci.: Water Res. Technol. 6:12 (2020), 3400–3414.
Li, D., Feng, Y., Li, F., Tang, J., Hua, T., Carbon fibers for bioelectrochemical: precursors, bioelectrochemical system, and biosensors. Adv. Fiber Mater. 5:3 (2023), 699–730, 10.1007/s42765-023-00256-w.
Li, M., Zhou, M., Luo, J., Tan, C., Tian, X., Su, P., Gu, T., Carbon dioxide sequestration accompanied by bioenergy generation using a bubbling-type photosynthetic algae microbial fuel cell. Bioresour. Technol. 280 (2019), 95–103.
Li, S., Qu, W., Chang, H., Li, J., Ho, S.H., Microalgae-driven swine wastewater biotreatment: nutrient recovery, key microbial community and current challenges. J. Hazard. Mater., 440, 2022, 129785, 10.1016/j.jhazmat.2022.129785.
Li, S., Li, X., Ho, S.-H., Microalgae as a solution of third world energy crisis for biofuels production from wastewater toward carbon neutrality: an updated review. Chemosphere, 291, 2022, 132863, 10.1016/j.chemosphere.2021.132863.
Li, S.L., Liao, E.C., Lin, Y.J., Lu, Y.J., Zhang, Y.S., Tseng, Y.T., Jiang, Y.J., Chiang, T.H., Gao, Z.X., Li, P.X., Chang, J.S., Toward sustainable H2 evolution by using an algal-electrophotosynthetic process: the mediator selection alternates the electron sources for Chlorella sorokiniana SU-1. Int. J. Hydrog. Energy 48:46 (2023), 17409–17419.
Lin, C.C., Wei, C.H., Chen, C.I., Shieh, C.J., Liu, Y.C., Characteristics of the photosynthesis microbial fuel cell with a Spirulina platensis biofilm. Bioresour. Technol. 135 (2013), 640–643, 10.1016/J.BIORTECH.2012.09.138.
Ling, J., Xu, Y., Lu, C., Lai, W., Xie, G., Zheng, L., Talawar, M.P., Du, Q., Li, G., Enhancing stability of microalgae biocathode by a partially submerged carbon cloth electrode for bioenergy production from wastewater. Energies (Basel)., 2019, 10.3390/en12173229.
Liu, C., Xiao, J., Li, H., Chen, Q., Sun, D., Cheng, X., Li, P., Dang, Y., Smith, J.A., Holmes, D.E., High efficiency in situ biogas upgrading in a bioelectrochemical system with low energy input. Water Res., 197, 2021, 117055.
Liu, F., Ye, X.S., Wu, T., Wang, C.T., Shen, J.W., Kang, Y., Conformational mobility of GOx coenzyme complex on single-wall carbon nanotubes. Sensors 8:12 (2008), 8453–8462.
Liu, S.H., Chang, C.M., Lin, C.W., Modifying proton exchange membrane in a microbial fuel cell by adding clay mineral to improve electricity generation without reducing removal of toluene. Biochem. Eng. J. 134 (2018), 101–107, 10.1016/j.bej.2018.03.013.
Liu, X.W., Chen, J.J., Huang, Y.X., Sun, X.F., Sheng, G.P., Li, D.B., Xiong, L., Zhang, Y.Y., Zhao, F., Yu, H.Q., Experimental and theoretical demonstrations for the mechanism behind enhanced microbial electron transfer by CNT network. Sci. Rep., 4(1), 2014, 3732.
Liu, Y., Pang, S., Liang, T., Ren, R., Lv, Y., Degradation of high concentration starch and biocathode autotrophic denitrification using photo microbial fuel cell. Chemosphere, 280, 2021, 130776.
Logan, B.E., Hamelers, B., Rozendal, R., Schröder, U., Keller, J., Freguia, S., Aelterman, P., Verstraete, W., Rabaey, K., Microbial fuel cells: methodology and technology. Environ. Sci. Technol. 40 (2006), 5181–5192, 10.1021/es0605016.
Logroño, W., Pérez, M., Urquizo, G., Kadier, A., Echeverría, M., Recalde, C., Rákhely, G., Single chamber microbial fuel cell (SCMFC) with a cathodic microalgal biofilm: A preliminary assessment of the generation of bioelectricity and biodegradation of real dye textile wastewater. Chemosphere 176 (2017), 378–388, 10.1016/j.chemosphere.2017.02.099.
Lugo, A., Xu, X., Abeysiriwardana-Arachchige, I.S.A., Bandara, G.C.L., Nirmalakhandan, N., Xu, P., Techno-economic assessment of a novel algal-membrane system versus conventional wastewater treatment and advanced potable reuse processes: part II. J. Environ. Manag., 331, 2023, 117189.
Luimstra, V.M., Kennedy, S.J., Güttler, J., Wood, S.A., Williams, D.E., Packer, M.A., A cost-effective microbial fuel cell to detect and select for photosynthetic electrogenic activity in algae and cyanobacteria. J. Appl. Phycol. 26 (2014), 15–23, 10.1007/s10811-013-0051-2.
Luo, S., Wang, Z.W., He, Z., Mathematical modeling of the dynamic behavior of an integrated photobioelectrochemical system for simultaneous wastewater treatment and bioenergy recovery. Energy 124 (2017), 227–237.
Ma, J., Wang, Z., Zhang, J., Waite, T.D., Wu, Z., Cost-effective Chlorella biomass production from dilute wastewater using a novel photosynthetic microbial fuel cell (PMFC). Water Res. 108 (2017), 356–364.
Ma, J., Li, L., Zhao, Q., Yu, L., Frear, C., Biomethane production from whole and extracted algae biomass: Long-term performance evaluation and microbial community dynamics. Renew. Energy 170 (2021), 38–48, 10.1016/j.renene.2021.01.113.
Madiraju, K.S., Lyew, D., Kok, R., Raghavan, V., Carbon neutral electricity production by Synechocystis sp. PCC6803 in a microbial fuel cell. Bioresour. Technol. 110 (2012), 214–218, 10.1016/J.BIORTECH.2012.01.065.
Maeda, Y., Yoshino, T., Matsunaga, T., Matsumoto, M., Tanaka, T., Marine microalgae for production of biofuels and chemicals. Energy Biotechnol. Environ. Biotechnol. 50 (2018), 111–120, 10.1016/j.copbio.2017.11.018.
Mahapatra, D.M., Varma, V.S., Muthusamy, S., Rajendran, K., Wastewater algae to value-added products. Waste to Wealth, 365-393, 2018, 10.1007/978-981-10-7431-8_16.
Mahmoud, R.H., Abdo, S.M., Samhan, F.A., Ibrahim, M.K., Ali, G.H., Hassan, R.Y.A., Biosensing of algal-photosynthetic productivity using nanostructured bioelectrochemical systems. J. Chem. Technol. Biotechnol. 95 (2020), 1028–1037.
Majidian, P., Tabatabaei, M., Zeinolabedini, M., Naghshbandi, M.P., Chisti, Y., Metabolic engineering of microorganisms for biofuel production. Renew. Sust. Energ. Rev. 82 (2018), 3863–3885, 10.1016/j.rser.2017.10.085.
Mansoor, B., Ashraf, S., Rehman, U., Ullah, Z., Sheikh, Z., Integration of microalgae-microbial fuel cell with microbial electrolysis cell for wastewater treatment and energy production. Environ. Sci. Proc., 25(1), 2023, 72.
Mao, L., Verwoerd, W.S., Computational comparison of mediated current generation capacity of Chlamydomonas reinhardtii in photosynthetic and respiratory growth modes. J. Biosci. Bioeng. 118:5 (2014), 565–574, 10.1016/j.jbiosc.2014.04.0.
Marcus, R.A., Norman, Sutin, Electron transfers in chemistry and biology. Biochim. Biophys. Acta (BBA) - Rev. Bioenerg. 811:3 (1985), 265–322.
Marella, T.K., Datta, A., Patil, M.D., Dixit, S., Tiwari, A., Biodiesel production through algal cultivation in urban wastewater using algal floway. Bioresour. Technol. 280 (2019), 222–228, 10.1016/j.biortech.2019.02.031.
Marone, A., Ayala-Campos, O.R., Trably, E., Carmona-Martínez, A.A., Moscoviz, R., Latrille, E., Bernet, N., Coupling dark fermentation and microbial electrolysis to enhance biohydrogen production from agro-industrial wastewaters and byproducts in a biorefinery framework. Int. J. Hydrog. Energy 42:3 (2017), 1609–1621, 10.1016/j.ijhydene.2016.09.166.
Mateo, S., Cañizares, P., Fernandez-Morales, F.J., Rodrigo, M.A., A critical view of microbial fuel cells: what is the next stage?. Chemsuschem 11 (2018), 4183–4192.
Mathuriya, A.S., Ibrahim, M.G., Hosny, S., Suman, Sonawane J.M., Pandit, S., Singh, A., Life cycle assessment and cost–benefit analysis of internal-stack trickling bioelectrochemical reactor: an evaluation for commercial viability. Environ. Technol. 44:1 (2023), 1–11.
Matuštík, J., Kočí, V., What is a footprint? A conceptual analysis of environmental footprint indicators. J. Cleaner Product., 285, 2021, 124833.
McCormick, A.J., Bombelli, P., Bradley, R.W., Thorne, R., Wenzel, T., Howe, C.J., Biophotovoltaics: oxygenic photosynthetic organisms in the world of bioelectrochemical systems. Energy Environ. Sci. 8:4 (2015), 1092–1109, 10.1039/C4EE03875D.
Mehrotra, S., Kumar, V.K., Gajalakshmi, S., Pathak, B., Bioelectrogenesis from ceramic membrane-based algal-microbial fuel cells treating dairy industry wastewater. Sustain Energy Technol Assess, 48, 2021, 101653.
Mekuto, L., Olowolafe, A.V., Huberts, R., Dyantyi, N., Pandit, S., Nomngongo, P., Microalgae as a biocathode and feedstock in anode chamber for a selfsustainable microbial fuel cell technology: a review. South African J. Chem. Eng. 31:1 (2020), 7–16, 10.1016/j.sajce.2019.10.002.
Miao, X., Wu, Q., Biodiesel production from heterotrophic microalgal oil. Bioresour. Technol. 97:6 (2006), 841–846, 10.1016/j.biortech.2005.04.008.
Mirfarsi, S.H., Kumar, A., Jeong, J., Adamski, M., McDermid, S., Britton, B., Kjeang, E., High-temperature stability of hydrocarbon-based Pemion® proton exchange membranes: a thermomechanical stability study. Int. J. Hydrog. Energy 50 (2024), 1507–1522, 10.1016/j.ijhydene.2023.07.236.
Mohamed, S.N., Hiraman, P.A., Muthukumar, K., Jayabalan, T., Bioelectricity production from kitchen wastewater using microbial fuel cell with photosynthetic algal cathode. Bioresour. Technol., 295, 2020, 122226.
Monasterio, S., Mascia, M., Di Lorenzo, M., Electrochemical removal of microalgae with an integrated electrolysis-microbial fuel cell closed-loop system. Sep. Purif. Technol. 183 (2017), 373–381.
Montoya-Vallejo, C., Quintero Díaz, J.C., Yepes, Y.A., Fernández-Morales, F.J., Microalgal microbial fuel cells: A comprehensive review of mechanisms and electrochemical performance. Appl. Sci., 15(6), 2025, 3335, 10.3390/app15063335.
Mourya, M., Khan, M.J., Ahirwar, A., Schoefs, B., Marchand, J., Rai, A., Vinayak, V., Latest trends and developments in microalgae as potential source for biofuels: the case of diatoms. Fuel, 314, 2022, 122738, 10.1016/j.fuel.2021.122738.
Mouselly, M., Alawadhi, H., Senthilkumar, S.T., Current status of ferro−/ferricyanide for redox flow batteries. Curr. Opin. Electrochem., 48, 2024, 101581, 10.1016/j.coelec.2024.101581.
Muñoz-Páez, K.M., Alvarado-Michi, E.L., Buitrón, G., Valdez-Vazquez, I., Distinct effects of furfural, hydroxymethylfurfural and its mixtures on dark fermentation hydrogen production and microbial structure of a mixed culture. Int. J. Hydrog. Energy 44:4 (2019), 2289–2297, 10.1016/j.ijhydene.2018.04.139.
Naha, A., Debroy, R., Sharma, D., Shah, M.P., Nath, S., Microbial fuel cell: A state-of-the-art and revolutionizing technology for efficient energy recovery. Cleaner Circ. Bioecon., 5, 2023, 100050, 10.1016/j.clcb.2023.100050.
Naina Mohamed, S., Jayabalan, T., Muthukumar, K., Simultaneous bioenergy generation and carbon dioxide sequestration from food wastewater using algae microbial fuel cell. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2019, 1–9.
Nandy, A., Farkas, D., Pepió-Tárrega, B., Martinez-Crespiera, S., Borràs, E., Avignone-Rossa, C., Di Lorenzo, M., Influence of carbon-based cathodes on biofilm composition and electrochemical performance in soil microbial fuel cells. Environ. Sci. Ecotechnol., 16, 2023, 100276, 10.1016/j.ese.2023.100276.
Neveux, N., Magnusson, M., Mata, L., Whelan, A., de Nys, R., Paul, N.A., The treatment of municipal wastewater by the macroalga Oedogonium sp. and its potential for the production of biocrude. Algal Res. 13 (2016), 284–292, 10.1016/j.algal.2015.12.010.
Nguyen, H.T., Kakarla, R., Min, B., Algae cathode microbial fuel cells for electricity generation and nutrient removal from landfill leachate wastewater. Int. J. Hydrog. Energy 42:49 (2017), 29433–29442, 10.1016/j.ijhydene.2017.10.011.
Nguyen, H.T.H., Min, B., Leachate treatment and electricity generation using an algae-cathode microbial fuel cell with continuous flow through the chambers in series. Sci. Total Environ., 723, 2020, 138054.
Niju, S., Priyadharshini, K., Elakkiya, E., Photosynthetic microbial fuel cells: advances, challenges and applications. Sustain. Bioprocess. Clean Green Environ., 2021, 67–92.
Nishio, K., Hashimoto, K., Watanabe, K., Light/electricity conversion by defined cocultures of Chlamydomonas reinhardtii and Geobacter sulferreducens. J. Biosci. Bioeng. 115 (2013), 412–417, 10.1016/j.jbiosc.2012.10.015.
Ong, B.H., Walmsley, T.G., Atkins, M.J., Walmsley, M.R., A Kraft mill-integrated hydrothermal liquefaction process for liquid fuel coproduction. Processes, 8(10), 2020, 1216, 10.3390/pr8101216.
Pandey, S., Narayanan, I., Selvaraj, R., Varadavenkatesan, T., Vinayagam, R., Biodiesel production from microalgae: a comprehensive review on influential factors, transesterification processes, and challenges. Fuel, 367, 2024, 131547, 10.1016/j.fuel.2024.131547.
Pant, D., Van Bogaert, G., Diels, L., Vanbroekhoven, K., A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production. Bioresour. Technol. 101 (2010), 1533–1543, 10.1016/j.biortech.2009.10.017.
Pant, D., Singh, A., Van Bogaert, G., Gallego, Y.A., Diels, L., Vanbroekhoven, K., An introduction to the life cycle assessment (LCA) of bioelectrochemical systems (BES) for sustainable energy and product generation: relevance and key aspects. Renew. Sust. Energ. Rev. 15:2 (2011), 1305–1313.
Park, E.J., Komini Babu, S., Kim, Y.S., Gas permeability test protocol for ion-exchange membranes. Front. Energy Res., 10, 2022, 945654, 10.3389/fenrg.2022.945654.
Parsons, S., Abeln, F., McManus, M.C., Chuck, C.J., Techno‐economic analysis (TEA) of microbial oil production from waste resources as part of a biorefinery concept: assessment at multiple scales under uncertainty. J. Chem. Technol. Biotechnol. 94:3 (2019), 701–711.
Paucar, N.E., Sato, C., Coupling microbial fuel cell and hydroponic system for electricity generation, organic removal, and nutrient recovery via plant production from wastewater. Energies, 15(23), 2022, 9211, 10.3390/en15239211.
Penteado, E.D., Fernandez-Marchante, C.M., Zaiat, M., Gonzalez, E.R., Rodrigo, M.A., On the effects of Ferricyanide as cathodic mediator on the performance of microbial fuel cells. Electrocatalysis 8 (2017), 59–66, 10.1007/S12678-016-0334-X.
Powell, E.E., Hill, G.A., Economic assessment of an integrated bioethanol–biodiesel–microbial fuel cell facility utilizing yeast and photosynthetic algae. Chem. Eng. Res. Des. 87:9 (2009), 1340–1348.
Pradhan, N., d'Ippolito, G., Dipasquale, L., Esposito, G., Panico, A., Lens, P.N., Fontana, A., Simultaneous synthesis of lactic acid and hydrogen from sugars via capnophilic lactic fermentation by Thermotoga neapolitana cf capnolactica. Biomass Bioenergy 125 (2019), 17–22, 10.1016/j.biombioe.2019.04.007.
Pragya, N., Pandey, K.K., Sahoo, P.K., A review on harvesting, oil extraction and biofuels production technologies from microalgae. Renew. Sust. Energ. Rev. 24 (2013), 159–171, 10.1016/j.rser.2013.03.034.
Prussi, M., Weindorf, W., Buffi, M., López, J.S., Scarlat, N., Are Algae Ready to Take off? GHG emission savings of algae-to-kerosene production. Applied Energy, 2021, 10.1016/j.apenergy.2021.117817.
Rajesh, P.P., Jadhav, D.A., Ghangrekar, M.M., Improving performance of microbial fuel cell while controlling methanogenesis by Chaetoceros pretreatment of anodic inoculum. Bioresour. Technol. 180 (2015), 66–71.
Rajesh, P.P., Christine, P., Ghangrekar, M.M., Optimum dose of Chaetoceros for controlling methanogenesis to improve power production of microbial fuel cell. Water Sci. Technol. 85:1 (2022), 257–264.
Ramirez-Nava, J., Martínez-Castrejón, M., García-Mesino, R.L., López-Díaz, J.A., Talavera-Mendoza, O., Sarmiento-Villagrana, A., Rojano, F., Hernández-Flores, G., The implications of membranes used as separators in microbial fuel cells. Membranes (Basel), 2021, 10.3390/membranes11100738.
Rashid, N., Cui, Y.F., Rehman, M.S.U., Han, J.I., Enhanced electricity generation by using algae biomass and activated sludge in microbial fuel cell. Sci. Total Environ. 456 (2013), 91–94.
Ravi, J., Sridhar, K., Ponnusami, A.B., Kumar, P.S., Rangasamy, G., A recent development of low-cost membranes for microbial fuel cell applications. Desalin. Water Treat., 100698, 2024, 10.1016/j.dwt.2024.100698.
Reddy, C.N., Nguyen, H.T.H., Noori, M.T., Min, B., Potential applications of algae in the cathode of microbial fuel cells for enhanced electricity generation with simultaneous nutrient removal and algae biorefinery: current status and future perspectives. Bioresour. Technol., 292, 2019, 122010.
Reuters, Portugal's Galp plans to start producing biofuels in 2026. Available online: https://www.reuters.com/business/energy/portugals-galp-plans-start-producing-biofuels-2026-2024-12-19/?utm_source=chatgpt.com, 2024 (accessed on 23 March 2025).
Rismani-Yazdi, H., Carver, S.M., Christy, A.D., Tuovinen, O.H., Cathodic limitations in microbial fuel cells: an overview. J. Power Sources 180:2 (2008), 683–694.
Rocha, J., Oliveira, S., Viana, C.M., Ribeiro, A.I., Climate change and its impacts on health, environment and economy. One Health, 2022, Academic Press, 253–279, 10.1016/B978-0-12-822794-7.00009-5.
Rosenbaum, M., Schröder, U., Scholz, F., In situ electrooxidation of photobiological hydrogen in a photobioelectrochemical fuel cell based on Rhodobacter sphaeroides. Environ. Sci. Technol. 39:16 (2005), 6328–6333, 10.1021/es0505447.
Rosenberg, J.N., Mathias, A., Korth, K., Betenbaugh, M.J., Oyler, G.A., Microalgal biomass production and carbon dioxide sequestration from an integrated ethanol biorefinery in Iowa: A technical appraisal and economic feasibility evaluation. Biomass and Bioenergy 35:9 (2011), 3865–3876.
Rossi, R., Evans, P.J., Logan, B.E., Impact of flow recirculation and anode dimensions on performance of a large scale microbial fuel cell. J. Power Sources 412 (2019), 294–300.
Ruiz-Marin, A., Mendoza-Espinosa, L.G., Stephenson, T., Growth and nutrient removal in free and immobilized green algae in batch and semicontinuous cultures treating real wastewater. Bioresour. Technol. 101:1 (2010), 58–64, 10.1016/j.biortech.2009.02.076.
Rusanowska, P., Dębowski, M., Zieliński, M., Microalgae-assisted microbial fuel cell for treatment of difficult waste streams. Energies, 18(4), 2025, 963.
Rusyn, I., Gómora-Hernández, J.C., Constructed wetland microbial fuel cell as enhancing pollutants treatment technology to produce green energy. Biotechnol. Adv., 77, 2024, 108648, 10.1016/j.biotechadv.2024.108468.
Santoro, C., Guilizzoni, M., Baena, J.C., Pasaogullari, U., Casalegno, A., Li, B., Atanassov, P., The effects of carbon electrode surface properties on bacteria attachment and start up time of microbial fuel cells. Carbon 67 (2014), 128–139, 10.1016/j.carbon.2013.09.071.
Santoro, C., Arbizzani, C., Erable, B., Ieropoulos, I., Microbial fuel cells: from fundamentals to applications. A review. J. Power Sources 356 (2017), 225–244, 10.1016/j.jpowsour.2017.03.109.
Saratale, R.G., Kuppam, C., Mudhoo, A., Saratale, G.D., Periyasamy, S., Zhen, G., Kumar, G., Bioelectrochemical systems using microalgae–A concise research update. Chemosphere 177 (2017), 35–43, 10.1016/j.chemosphere.2017.02.132.
Sarma, P.J., Mohanty, K., A novel three-chamber modular PMFC with bentonite/flyash based clay membrane and oxygen reducing biocathode for long term sustainable bioelectricity generation. Bioelectrochemistry, 144, 2022, 107996, 10.1016/j.bioelechem.2021.107996.
Sarma, P.J., Malakar, B., Mohanty, K., Self-sustaining bioelectricity generation in plant-based microbial fuel cells (PMFCs) with microalgae-assisted oxygen-reducing biocathode. Biomass Convers. Biorefinery 14:15 (2024), 16973–16986, 10.1007/s13399-023-03848-z.
Sato, C., Apollon, W., Luna-Maldonado, A.I., Paucar, N.E., Hibbert, M., Dudgeon, J., Integrating microbial fuel cell and hydroponic technologies using a ceramic membrane separator to develop an energy–water–food supply system. Membranes, 13(9), 2023, 803, 10.3390/membranes13090803.
Sevda, S., Garlapati, V.K., Sharma, S., Bhattacharya, S., Mishra, S., Sreekrishnan, T.R., Pant, D., Microalgae at niches of bioelectrochemical systems: A new platform for sustainable energy production coupled industrial effluent treatment. Bioresource Technol. Rep., 7, 2019, 100290.
Sharma, A., Đelević, L., Herkendell, K., Next-generation proton-exchange membranes in microbial fuel cells: overcoming Nafion's limitations. Energ. Technol., 12(6), 2024, 2301346, 10.1002/ente.202301346.
Sharma, M., Salama, E.S., Thakur, N., Alghamdi, H., Jeon, B.H., Li, X., Advances in the biomass valorization in bioelectrochemical systems: A sustainable approach for microbial-aided electricity and hydrogen production. Chem. Eng. J., 465, 2023, 142546.
Shemfe, M., Gadkari, S., Yu, E., Rasul, S., Scott, K., Head, I.M., Gu, S., Sadhukhan, J., Life cycle, techno-economic and dynamic simulation assessment of bioelectrochemical systems: a case of formic acid synthesis. Bioresour. Technol. 255 (2018), 39–49.
Shemfe, M.B., Gadkari, S., Sadhukhan, J., Social hotspot analysis and trade policy implications of the use of bioelectrochemical systems for resource recovery from wastewater. Sustainability, 10(9), 2018, 3193.
Shukla, M., Kumar, S., Algal growth in photosynthetic algal microbial fuel cell and its subsequent utilization for biofuels. Renew. Sust. Energ. Rev. 82 (2018), 402–414.
Siddik, A.A., Nithya, R., Ravi, G., Yuvakkumar, R., Sankar, V.R., Arun, A., Velauthapillai, D., An effective, novel and low-cost proton exchange membrane for microbial fuel cell-based bioelectricity production. Bioresource Technol. Rep., 27, 2024, 101929, 10.1016/j.biteb.2024.101929.
Singh, A., Pant, D., Olsen, S.I., Nigam, P.S., Key issues to consider in microalgae based biodiesel production. Energy Educ. Sci. Technol. Part A Energy Sci 1 (2012), 563–576.
Singh, V., Mishra, V., Exploring the effects of different combinations of predictor variables for the treatment of wastewater by microalgae and biomass production. Biochem. Eng. J., 174, 2021, 108129, 10.1016/j.bej.2021.108129.
Siwal, S.S., Sheoran, K., Saini, A.K., Vo, D.V.N., Wang, Q., Thakur, V.K., Advanced thermochemical conversion technologies used for energy generation: advancement and prospects. Fuel, 321, 2022, 124107, 10.1016/j.fuel.2022.124107.
Soleimani, H., Rahimnejad, M., Mashkour, M., Simultaneous investigation of the increase in organic load of sediment using spirulina algae powder and increase in catholyte conductivity on sediment microbial fuel cell performance. 2023 8th International Conference on Technology and Energy Management (ICTEM), 2023, 1–5.
Sołowski, G., Konkol, I., Cenian, A., Production of hydrogen and methane from lignocellulose waste by fermentation. A review of chemical pretreatment for enhancing the efficiency of the digestion process. J. Clean. Prod., 267, 2020, 121721, 10.1016/j.jclepro.2020.121721.
Song, M., Zhang, X., Chen, Y., Zhang, Q., Chen, L., Liu, J., Ma, L., Hydroprocessing of lipids: An effective production process for sustainable aviation fuel. Energy, 283, 2023, 129107, 10.1016/j.energy.2023.129107.
Stepan, E., Enascuta, C.E., Oprescu, E., Radu, E., Radu, A., Galán, A.M., Vasilievici, G., Lavric, V., Velea, S., Intermediates for synthetic paraffinic kerosene from microalgae. Fuel 172 (2016), 29–36, 10.1016/J.FUEL.2016.01.027.
Stoll, Z.A., Ma, Z., Trivedi, C.B., Spear, J.R., Xu, P., Sacrificing power for more cost-effective treatment: A techno-economic approach for engineering microbial fuel cells. Chemosphere 161 (2016), 10–18.
Strik, D.P., Timmers, R.A., Helder, M., Steinbusch, K.J., Hamelers, H.V., Buisman, C.J., Microbial solar cells: applying photosynthetic and electrochemically active organisms. Trends Biotechnol. 29:1 (2011), 41–49, 10.1016/j.tibtech.2010.10.001.
Sun, J.Z., Peter Kingori, G., Si, R.W., Zhai, D.D., Liao, Z.H., Sun, D.Z., Zheng, T., Yong, Y.C., Microbial fuel cell-based biosensors for environmental monitoring: a review. Water Sci. Technol. 71:6 (2015 Mar 1), 801–809.
Taşkan, B., Increased power generation from a new sandwich-type microbial fuel cell (ST-MFC) with a membrane-aerated cathode. Biomass Bioenergy, 142, 2020, 105781.
Taşkan, B., Taşkan, E., Sustainable bioelectricity generation using Cladophora sp. as a biocathode in membrane-less microbial fuel cell. Bioresour. Technol., 347, 2022, 126704.
Thomas, A., Ramkumar, A., Shanmugam, A., CO2 acidification and its differential responses on aquatic biota–a review. Environ. Adv., 8, 2022, 100219, 10.1016/j.envadv.2022.100219.
Thomassen, G., Egiguren Vila, U., Van Dael, M., Lemmens, B., Van Passel, S., A techno-economic assessment of an algal-based biorefinery. Clean Techn. Environ. Policy 18 (2016), 1849–1862.
Tumiwa, J.R., Mizik, T., Advancing nickel-based catalysts for enhanced hydrogen production: innovations in electrolysis and catalyst design. Int. J. Hydrog. Energy 109 (2025), 961–978, 10.1016/j.ijhydene.2025.02.020.
Vazquez-Duhalt, R., Aguila, S.A., Arrocha, A.A., Ayala, M., QM/MM molecular modeling and Marcus theory in the molecular design of electrodes for enzymatic fuel cells. ChemElectroChem 1:3 (2014), 496–513.
Velasquez-Orta, S.B., Curtis, T.P., Logan, B.E., Energy from algae using microbial fuel cells. Biotechnol. Bioeng. 103:6 (2009), 1068–1076, 10.1002/bit.22346.
Verma, M., Mishra, V., Bioelectricity generation using sweet lemon peels as Anolyte and cow urine as Catholyte in a yeast based microbial fuel cell. Waste Biomass Valoriz., 2023, 10.1007/s12649-023-02050-6.
Verma, M., Verma, M.K., Singh, Veer, Singh, J., Singh, Vishal, Mishra, V., Advancements in applicability of microbial fuel cell for energy recovery from human waste. Bioresour Technol Rep, 17, 2022, 100978, 10.1016/j.biteb.2022.100978.
Verma, M., Singh, V., Mishra, V., Moving toward the enhancement of extracellular electron transfer in electrogens. World J. Microbiol. Biotechnol., 39, 2023, 130, 10.1007/S11274-023-03582-8.
Verma, M., Singh, V., Mishra, V., Optimization of banana peel waste based microbial fuel cells by machine learning. Biomass Convers. Biorefinery, 2023, 10.1007/s13399-023-04344-0.
Vilà-Rovira, A., Puig, S., Balaguer, M.D., Colprim, J., Anode hydrodynamics in bioelectrochemical systems. RSC Adv. 5:96 (2015), 78994–79000.
Vinayak, V., Sirotiya, V., Khandelwal, P., Rai, A., Jadhav, D.A., Pugazhendhi, A., Schoefs, B., Marchand, J., Chae, K.J., Recent trends in engineering algae for biohydrogen production: state of art strategies. Fuel, 348, 2023 Sep 15, 128636.
Voloshin, R.A., Bozieva, A.M., Bruce, B.D., Allakhverdiev, S.İ.O., Photosynthetic microbial fuel cells: practical applications of electron transfer chains. Usp. Khim. 92:5 (2023), 1–17.
Vucko, M.J., Cole, A.J., Moorhead, J.A., Pit, J., de Nys, R., The freshwater macroalga Oedogonium intermedium can meet the nutritional requirements of the herbivorous fish Ancistrus cirrhosus. Algal Res. 27 (2017), 21–31, 10.1016/j.algal.2017.08.020.
Wang, D., Pan, J., Xu, M., Liu, B., Hu, J., Hu, S., Liang, S., Surface modification of Shewanella oneidensis MR-1 with polypyrrole-dopamine coating for improvement of power generation in microbial fuel cells. J. Power Sources, 483, 2021, 229220, 10.1016/j.jpowsour.2020.229220.
Wang, J., Azam, W., Natural resource scarcity, fossil fuel energy consumption, and total greenhouse gas emissions in top emitting countries. Geosci. Front., 15(2), 2024, 101757, 10.1016/j.gsf.2023.101757.
Wang, J., Yin, Y., Fermentative hydrogen production using pretreated microalgal biomass as feedstock. Microb. Cell Factories 17:1 (2018), 1–16, 10.1186/s12934-018-0871-5.
Wang, Y., Guo, W.Q., Chang, J.S., Ren, N.Q., Butanol production using carbohydrate-enriched Chlorella vulgari s as feedstock. Adv. Mater. Res. 830 (2014), 122–125, 10.4028/www.scientific.net/AMR.830.122.
Weidema, B.P., The social footprint—a practical approach to comprehensive and consistent social LCA. Int. J. Life Cycle Assess. 23 (2018), 700–709.
Wilcox, J., Grand challenges in advanced fossil fuel technologies. Front. Energy Res., 2, 2014, 47, 10.3389/fenrg.2014.00047.
Wu, X., Sun, D., Li, M., Zhang, X., Al-Dhabi, N.A., Fang, Q., Cai, T., Nano-Fe3O4/polymerize aniline/carbon cathode based microbial fuel cell for efficient power generation and uranium separation. Chem. Eng. J., 487, 2024, 150634, 10.1016/j.cej.2024.150634.
Wu, Y.C., Wang, Z.J., Zheng, Y., Xiao, Y., Yang, Z.H., Zhao, F., Light intensity affects the performance of photo microbial fuel cells with Desmodesmus sp. A8 as cathodic microorganism. Appl. Energy 116 (2014), 86–90, 10.1016/j.apenergy.2013.11.066.
Xia, A., Cheng, J., Lin, R., Lu, H., Zhou, J., Cen, K., Comparison in dark hydrogen fermentation followed by photo hydrogen fermentation and methanogenesis between protein and carbohydrate compositions in Nannochloropsis oceanica biomass. Bioresour. Technol. 138 (2013), 204–213, 10.1016/j.biortech.2013.03.171.
Xiao, L., Young, E.B., Berges, J.A., He, Z., Integrated photobioelectrochemical system for contaminants removal and bioenergy production. Environ. Sci. Technol. 46:20 (2012), 11459–11466.
Xiao, L., Young, E.B., Grothjan, J.J., Lyon, S., Zhang, H., He, Z., Wastewater treatment and microbial communities in an integrated photobioelectrochemical system affected by different wastewater algal inocula. Algal Res. 12 (2015), 446–454.
Xu, C., Poon, K., Choi, M.M.F., Wang, R., Using live algae at the anode of a microbial fuel cell to generate electricity. Environ. Sci. Pollut. Res. 22 (2015), 15621–15635, 10.1007/s11356-015-4744-8.
Yaashikaa, P.R., Keerthana Devi, M., Senthil Kumar, P., Pandian, E., A review on biodiesel paroduction by algal biomass: outlook on lifecycle assessment and techno-economic analysis. Fuel, 324, 2022, 124774, 10.1016/j.fuel.2022.124774.
Yadav, G., Sharma, I., Ghangrekar, M., Sen, R., A live biocathode to enhance power output steered by bacteria-microalgae synergistic metabolism in microbial fuel cell. J. Power Sources, 449, 2020, 227560, 10.1016/j.jpowsour.2019.227560.
Yang, J., Cai, D., Liu, X., Zhu, L., Zhang, C., Peng, Q., Yang, M., Glucose conversion for biobutanol production from fresh Chlorella sorokiniana via direct enzymatic hydrolysis. Fermentation, 9(3), 2023, 284, 10.3390/fermentation9030284.
Yang, S., Jia, B., Liu, H., Effects of the Pt loading side and cathode-biofilm on the performance of a membrane-less and single-chamber microbial fuel cell. Bioresour. Technol. 100:3 (2009), 1197–1202, 10.1016/j.biortech.2008.08.005.
Yang, Y.W., Li, M.J., Hung, T.C., The study on coupled CO2 fixation and power generation in microalgae-microbial fuel cells embedded with oxygen-consuming biofilms. Fuel, 367, 2024, 131410, 10.1016/j.fuel.2024.131410.
Yang, Z., Pei, H., Hou, Q., Jiang, L., Zhang, L., Nie, C., Algal biofilm-assisted microbial fuel cell to enhance domestic wastewater treatment: nutrient, organics removal and bioenergy production. Chem. Eng. J. 332 (2018), 277–285, 10.1016/j.cej.2017.09.096.
Yang, Z., Zhang, L., Nie, C., Hou, Q., Zhang, S., Pei, H., Multiple anodic chambers sharing an algal raceway pond to establish a photosynthetic microbial fuel cell stack: voltage boosting accompany wastewater treatment. Water Res., 164, 2019, 114955.
Yaqoob, A.A., Ibrahim, M.N.M., Rafatullah, M., Chua, Y.S., Ahmad, A., Umar, K., Recent advances in anodes for microbial fuel cells: An overview. Materials, 2020, 10.3390/ma13092078.
Ye, X.S., Wang, P., Zhou, T., Liu, J., Liu, F., Molecular mechanism for conformation mobility of the active center of glucose oxidase adsorbed on single wall carbon nanotubes. In 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2009, September, IEEE, 2739–2743.
Zamanpour, M.K., Kariminia, H.R., Vosoughi, M., Electricity generation, desalination and pmicroalgae cultivation in a biocathode-microbial desalination cell. J. Environ. Chem. Eng. 5:1 (2017), 843–848.
Zhai, S., Zhang, D., Liu, W., Wang, B., Liang, B., Liu, C., Zeng, R., Hou, Y., Cheng, H.Y., Wang, A., Microbial electrochemical technologies assisted nitrogen recovery from different wastewater sources: performance, life cycle assessment, and challenges. Resour. Conserv. Recycl., 194, 2023, 107000.
Zhang, C., Singh, R.P., Yadav, P., Kumar, I., Kaushik, A., Roychowdhury, R., Wang, J., Recent advances in biotechnology and bioengineering for efficient microalgal biofuel production. Fuel Process. Technol., 270, 2025, 108199, 10.1016/j.fuproc.2025.108199.
Zhang, H., Yan, Q., An, Z., Wen, Z., A revolving algae biofilm based photosynthetic microbial fuel cell for simultaneous energy recovery, pollutants removal, and algae production. Front. Microbiol., 13, 2022, 990807, 10.3389/fmicb.2022.990807.
Zhang, J., Yuan, H., Abu-Reesh, I.M., He, Z., Yuan, C., Life cycle environmental impact comparison of bioelectrochemical systems for wastewater treatment. Procedia Cirp 80 (2019), 382–388.
Zhang, J., Yuan, H., Deng, Y., Abu-Reesh, I.M., He, Z., Yuan, C., Life cycle assessment of osmotic microbial fuel cells for simultaneous wastewater treatment and resource recovery. Int. J. Life Cycle Assess. 24 (2019), 1962–1975.
Zhang, S., Zhang, L., Xu, G., Li, F., Li, X., A review on biodiesel production from microalgae: influencing parameters and recent advanced technologies. Front. Microbiol., 13, 2022, 970028, 10.3389/fmicb.2022.970028.
Zhang, Y., He, Q., Xia, L., Li, Y., Song, S., Algae cathode microbial fuel cells for cadmium removal with simultaneous electricity production using nickel foam/graphene electrode. Biochem. Eng. J. 138 (2018), 179–187, 10.1016/J.BEJ.2018.07.021.
Zhang, Y., Zhao, Y., Zhou, M., A photosynthetic algal microbial fuel cell for treating swine wastewater. Environ. Sci. Pollut. Res. 26 (2019), 6182–6190.
Zhang, Y., Xiao, Z., Wei, Z., Long, L., Increased light intensity enhances photosynthesis and biochemical components of red macroalga of commercial importance, Kappaphycus alvarezii, in response to ocean acidification. Plant Physiol. Biochem., 208, 2024, 108465, 10.1016/j.plaphy.2024.108465.
Zhao, S., Yun, H., Khan, A., Salama, E.S., Redina, M.M., Liu, P., Li, X., Two-stage microbial fuel cell (MFC) and membrane bioreactor (MBR) system for enhancing wastewater treatment and resource recovery based on MFC as a biosensor. Environ. Res., 204, 2022, 112089, 10.1016/j.envres.2021.112089.
Zhu, L., Nugroho, Y.K., Shakeel, S.R., Li, Z., Martinkauppi, B., Hiltunen, E., Using microalgae to produce liquid transportation biodiesel: what is next?. Renew. Sust. Energ. Rev. 78 (2017), 391–400, 10.1016/j. rser.2017.04.089.
Žula, M., Grilc, M., Likozar, B., Hydrocracking, hydrogenation and hydrodeoxygenation of fatty acids, esters and glycerides: mechanisms, kinetics and transport phenomena. Chem. Eng. J., 444, 2022, 136564, 10.1016/j.cej.2022.136564.