Neurology; Neurology (clinical); Cellular and Molecular Neuroscience
Abstract :
[en] Parkinson's disease (PD) exhibits a variety of symptoms, with approximately 25% of patients experiencing mild cognitive impairment and 45% developing dementia within ten years of diagnosis. Predicting this progression and identifying its causes remains challenging. Our study utilizes machine learning and multimodal data from the UK Biobank to explore the predictability of Parkinson's dementia (PDD) post-diagnosis, further validated by data from the Parkinson's Progression Markers Initiative (PPMI) cohort. Using Shapley Additive Explanation (SHAP) and Bayesian Network structure learning, we analyzed interactions among genetic predisposition, comorbidities, lifestyle, and environmental factors. We concluded that genetic predisposition is the dominant factor, with significant influence from comorbidities. Additionally, we employed Mendelian randomization (MR) to establish potential causal links between hypertension, type 2 diabetes, and PDD, suggesting that managing blood pressure and glucose levels in Parkinson's patients may serve as a preventive strategy. This study identifies risk factors for PDD and proposes avenues for prevention.
Disciplines :
Human health sciences: Multidisciplinary, general & others Computer science
Author, co-author :
Aborageh, Mohamed; Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), 53757, Sankt, Augustin, Germany. mohamed.aborageh@scai.fraunhofer.de
Hähnel, Tom; Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), 53757, Sankt, Augustin, Germany ; Department of Neurology, University Hospital and Faculty of Medicine Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
MARTINS CONDE, Patricia ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Digital Medicine
KLUCKEN, Jochen ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Digital Medicine ; Centre Hospitalier de Luxembourg (CHL), Luxembourg, Luxembourg
Fröhlich, Holger; Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), 53757, Sankt, Augustin, Germany. holger.froehlich@scai.fraunhofer.de ; Bonn-Aachen International Center for Information Technology (B-IT), Rheinische Friedrich-Wilhelms-Universität Bonn, 53115, Bonn, Germany. holger.froehlich@scai.fraunhofer.de
External co-authors :
yes
Language :
English
Title :
Predicting dementia in people with Parkinson's disease.
This research has been conducted using the UK Biobank resource under application 67829. Data used in the preparation of this article were obtained from the Parkinson\u2019s Progression Markers Initiative (PPMI) database www.ppmi-info.org/access-dataspecimens/download-data , RRID:SCR_006431. For up-to-date information on the study, visit www.ppmi-info.org . PPMI \u2013 a public-private partnership \u2013 is funded by the Michael J. Fox Foundation for Parkinson\u2019s Research and funding partners. A list of names of all the PPMI funding partners can be found at www.ppmi-info.org/about-ppmi/who-we-are/study-sponsors/ .
Feigin, V. L. et al. Global, regional, and national burden of neurological disorders during 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet Neurol. 16, 877–897 (2017).
Blauwendraat, C., Nalls, M. A. & Singleton, A. B. The genetic architecture of Parkinson’s disease. Lancet Neurol. 19, 170–178 (2020).
M. Tsalenchuk S.M. Gentleman S.J. Marzi Linking environmental risk factors with epigenetic mechanisms in Parkinson’s disease NPJ Parkinsons Dis. 9 123 37626097 10457362
K.S. McNaught et al. Effects of isoquinoline derivatives structurally related to 1-methyl- 4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) on mitochondrial respiration Biochem. Pharmacol. 51 1503 1511 1:CAS:528:DyaK28XjtVSmtb8%3D 8630091
C. Pouchieu et al. Pesticide use in agriculture and Parkinson’s disease in the AGRICAN cohort study Int. J. Epidemiol. 47 299 310 29136149
S. Jo et al. Association of NO 2 and Other Air Pollution Exposures With the Risk of Parkinson Disease JAMA Neurol. 78 800 33999109
K.C. Hughes et al. Intake of dairy foods and risk of Parkinson disease Neurol 89 46 52
D. Belvisi et al. Modifiable risk and protective factors in disease development, progression and clinical subtypes of Parkinson’s disease: What do prospective studies suggest? Neurobiol. Dis. 134 104671 1:CAS:528:DC%2BC1MXitFOrtrbM 31706021
D. Aarsland et al. Mild cognitive impairment in Parkinson disease Neurol 75 1062 1069 1:STN:280:DC%2BC3cfjslCktw%3D%3D
C.H. Williams-Gray et al. The CamPaIGN study of Parkinson’s disease: 10-year outlook in an incident population-based cohort J. Neurol. Neurosurg. Psychiatry 84 1258 1264 23781007
J.B. Anang et al. Predictors of dementia in Parkinson disease Neurol 83 1253 1260
Amer, H. et al. Genetic Influences on Cognition in Idiopathic Parkinson’s Disease. Neurol. Res. Int.2018, 5603571 (2018).
Planas-Ballve, A. & Vilas, D. Cognitive Impairment in Genetic Parkinson’s Disease. Parkinsons Dis. 2021, 8610285 (2021).
Ba¨ckstro¨ M., D. et al. Prediction and early biomarkers of cognitive decline in Parkinson disease and atypical parkinsonism: a population-based study. Brain Commun 4, fcac040 (2022).
Svenningsson, P., Westman, E., Ballard, C. & Aarsland, D. Cognitive impairment in patients with Parkinson’s disease: diagnosis, biomarkers, and treatment. Lancet Neurol.11, 697–707 (2012).
P.A. Kempster S.S. O’Sullivan J.L. Holton T. Revesz A.J. Lees Relationships between age and late progression of Parkinson’s disease: a clinico-pathological study Brain 133 1755 1762 20371510
M. Ramezani et al. Investigating the relationship between the SNCA gene and cognitive abilities in idiopathic Parkinson’s disease using machine learning Sci. Rep. 11 1:CAS:528:DC%2BB3MXlslSju70%3D 33649398 7921412 4917
A. Kapasi et al. A novel SNCA E83Q mutation in a case of dementia with Lewy bodies and atypical frontotemporal lobar degeneration Neuropathology 40 620 626 1:CAS:528:DC%2BB3MXhvFajtL4%3D 32786148 7787029
A.A. Szwedo et al. ¡span Style=”font-variant:small-caps;”¿ GBA ¡/span¿ and ¡span Style=”font-variant:small-caps;”¿ APOE ¡/span¿ Impact Cognitive Decline in Parkinson’s Disease: A 10-Year Population-Based Study Mov. Disord. 37 1016 1027 1:CAS:528:DC%2BB38Xjs12jtL4%3D 35106798 9362732
X. Huang P. Chen D.I. Kaufer A.I. Tro¨ster C. Poole Apolipoprotein E and Dementia in Parkinson Disease: A Meta-analysis Arch. Neurol. 63 189 16476806
C.H. Williams-Gray et al. The distinct cognitive syndromes of Parkinson’s disease: 5 year follow-up of the CamPaIGN cohort Brain 132 2958 2969 19812213
Seto´-Salvia, N. et al. Dementia Risk in Parkinson Disease. Arch. Neurol. 68, 359–364 (2011).
D. Aarsland et al. Parkinson disease-associated cognitive impairment Nat. Rev. Dis. Prim. 7 47 34210995
J. Neumann et al. Glucocerebrosidase mutations in clinical and pathologically proven Parkinson’s disease Brain 132 1783 1794 19286695 2702833
N. Seto´-Salvia et al. Glucocerebrosidase mutations confer a greater risk of dementia during Parkinson’s disease course Mov. Disord. 27 393 399 22173904
T. Phongpreecha et al. Multivariate prediction of dementia in Parkinson’s disease NPJ Parkinsons Dis. 6 20 32885039 7447766
Harvey, J. et al. Machine learning-based prediction of cognitive outcomes in de novo Parkinson’s disease. NPJ Parkinsons Dis.8, 150 (2022).
Wooten, G. F. Are men at greater risk for Parkinson’s disease than women? J. Neurol. Neurosurg. Psychiatry75, 637–639 (2004).
Taylor, K. S. M., Cook, J. A. & Counsell, C. E. Heterogeneity in male to female risk for Parkinson’s disease. J. Neurol. Neurosurg Psychiatry78, 905–906 (2007).
T. Ha¨hnel et al. Progression subtypes in Parkinson’s disease identified by a data-driven multicohort analysis NPJ Parkinsons Dis. 10 95 38698004
R. Ohta Y. Tanigawa Y. Suzuki M. Kellis S. Morishita A polygenic score method boosted by non-additive models Nat. Commun. 15 1:CAS:528:DC%2BB2cXht1Cktb%2FM 38811555 11522481 4433
R. Van der Kant L.S.B. Goldstein R. Ossenkoppele Amyloid-β-independent regulators of tau pathology in Alzheimer disease Nat. Rev. Neurosci. 21 21 35 31780819
Davis, A. A. et al. APOE genotype regulates pathology and disease progression in synucleinopathy. Sci. Transl. Med.12, eaay3069 (2020).
J.B. Toledo et al. Pathological α-synuclein distribution in subjects with coincident Alzheimer’s and Lewy body pathology Acta Neuropathologica 131 393 409 1:CAS:528:DC%2BC28XjvFKhtw%3D%3D 26721587
D.J. Irwin et al. Neuropathological and genetic correlates of survival and dementia onset in synucleinopathies: a retrospective analysis Lancet Neurol. 16 55 65 27979356 5181646
A.L. Rajendrakumar K.G. Arbeev O. Bagley A.I. Yashin S. Ukraintseva The SNP rs6859 in NECTIN2 gene is associated with underlying heterogeneous trajectories of cognitive changes in older adults BMC Neurol. 24 1:CAS:528:DC%2BB2cXkslGlt7s%3D 38408961 10898142 78
A. Mouton et al. Sex ratio in dementia with Lewy bodies balanced between Alzheimer’s disease and Parkinson’s disease dementia: a cross-sectional study Alzheimers Res. Ther. 10 92 1:STN:280:DC%2BB3c3otF2hsg%3D%3D 30208961 6136211
Yoo, H. S., Chung, S. J., Lee, P. H., Sohn, Y. H. & Kang, S. Y. The Influence of Body Mass Index at Diagnosis on Cognitive Decline in Parkinson’s Disease. J. Clin. Neurol.15, 517–526 (2019).
Rahmani, J. et al. Body mass index and risk of Parkinson, Alzheimer, Dementia, and Dementia mortality: a systematic review and dose–response meta-analysis of cohort studies among 5 million participants. Nutr. Neurosci.25, 423–431 (2022).
Natale, G., Zhang, Y., Hanes, D. W. & Clouston, S. A. Obesity in Late-Life as a Protective Factor Against Dementia and Dementia-Related Mortality. Am. J. Alzheimers Dis. Other Demen38, 15333175221111658 (2023).
Schrag, A. & Taddei, R. N. in International Review of Neurobiology 623–655 (Elsevier, 2017).
Liu, H. et al. Excessive Daytime Sleepiness in Parkinson’s Disease. Nat. Sci. Sleep14, (2022).
E.R. McGrath et al. Blood pressure from mid- to late life and risk of incident dementia Neurology 89 2447 2454 29117954 5729797
M. Iwagami et al. Blood cholesterol and risk of dementia in more than 1·8 million people over two decades: a retrospective cohort study Lancet Healthy Longev. 2 e498 e506 36097999
M.I. Kamboh et al. Genome-wide association study of Alzheimer’s disease Transl. Psychiatry 2 e117 1:STN:280:DC%2BC38fmtFWntw%3D%3D 22832961 3365264
Li, C, Lin, J, Yang, T. & Shang, H. Green Tea Intake and Parkinson’s Disease Progression: A Mendelian Randomization Study. Front. Nutr. 9, 848223 (2022).
Sun, Y. et al. Extra cup of tea intake associated with increased risk of Alzheimer’s disease: Genetic insights from Mendelian randomization. Front. Nutr.10, 1052281 (2023).
De Andrade Arruda Fernandes, I. et al. The bitter side of teas: Pesticide residues and their impact on human health. Food Chem. Toxicol. 179, 113955 (2023).
I. Suttrup T. Warnecke Dysphagia in Parkinson’s Disease Dysphagia 31 24 32 26590572
M. Lauriola et al. Neurocognitive Disorders and Dehydration in Older Patients: Clinical Experience Supports the Hydromolecular Hypothesis of Dementia Nutrients 10 562 29751506 5986442
D. Aslan Kirazoglu et al. The relationship between dehydration and etiologic subtypes of major neurocognitive disorder in older patients Eur. Geriatr. Med. 15 1159 1168 38755401
S.K. Nishi et al. Water intake, hydration status and 2-year changes in cognitive performance: a prospective cohort study BMC Med. 21 1:CAS:528:DC%2BB3sXlsFSiurc%3D 36882739 9993798 82
I. Waldron Patterns and causes of gender differences in smoking Soc. Sci. Med. 32 989 1005 1:STN:280:DyaK3M3mt1KrtQ%3D%3D 2047903
C.P. McLean A. Asnaani B.T. Litz S.G. Hofmann Gender differences in anxiety disorders: Prevalence, course of illness, comorbidity and burden of illness J. Psychiatr. Res. 45 1027 1035 21439576 3135672
M.A. Van der Marck et al. Body mass index in Parkinson’s disease: A meta-analysis Parkinsonism Relat. Disord. 18 263 267 22100523
C.A. Melbourne et al. Genome-wide gene-air pollution interaction analysis of lung function in 300,000 individuals Environ. Int 159 107041 1:CAS:528:DC%2BB38XjvFOisr8%3D 34923368 8739564
Sierra, C. Hypertension and the Risk of Dementia. Front. Cardiovasc. Med.7, 5 (2020).
N.-Y. Shin et al. Adverse effects of hypertension, supine hypertension, and perivascular space on cognition and motor function in PD NPJ Parkinsons Dis. 7 69 1:CAS:528:DC%2BB3MXhvFGntLbN 34376695 8355129
H. Chohan et al. Type 2 Diabetes as a Determinant of Parkinson’s Disease Risk and Progression Mov. Disord. 36 1420 1429 33682937 9017318
Kang, S. H. et al. Fasting glucose variability and risk of dementia in Parkinson’s disease: a 9-year longitudinal follow-up study of a nationwide cohort. Front. Aging Neurosci.15, 1292524 (2024).
C. Sudlow et al. UK Biobank: An Open Access Resource for Identifying the Causes of a Wide Range of Complex Diseases of Middle and Old Age PLoS Med. 12 e1001779 25826379 4380465
K. Marek et al. The Parkinson Progression Marker Initiative (PPMI) Prog. Neurobiol. 95 629 635 9014725
Noyce, A. J. et al. Meta-analysis of early nonmotor features and risk factors for Parkinson disease. Ann. Neurol. 72, 893–901 (2012).
G. Livingston et al. Dementia prevention, intervention, and care: 2024 report of the Lancet standing Commission Lancet 404 572 628 39096926
Jacobs, B. M. et al. Parkinson’s disease determinants, prediction and gene–environment interactions in the UK Biobank. J. Neurol. Neurosurg. Psychiatry91, 1046–1054 (2020).
M.A. Nalls et al. Identification of novel risk loci, causal insights, and heritable risk for Parkinson’s disease: a meta-analysis of genome-wide association studies Lancet Neurol. 18 1091 1102 1:CAS:528:DC%2BC1MXitFemsbbF 31701892 8422160
M.I. Kurki et al. FinnGen provides genetic insights from a well-phenotyped isolated population Nature 613 508 518 1:CAS:528:DC%2BB3sXhslKmtrs%3D 36653562 9849126
Elsworth, B. et al. The MRC IEU OpenGWAS data infrastructure. bioRxiv https://research-information.bris.ac.uk/en/publications/the-mrc-ieu-opengwas-data-infrastructure (2020).
Lambert, S. A. et al. The Polygenic Score Catalog: new functionality and tools to enable FAIR research. medRxiv, https://www.medrxiv.org/content/10.1101/2024.05.29.24307783v1 (2024).
G. Liu et al. Genome-wide survival study identifies a novel synaptic locus and polygenic score for cognitive progression in Parkinson’s disease Nat. Genet 53 787 793 1:CAS:528:DC%2BB3MXhtVCqs7nE 33958783 8459648
Pin˜ero, J. et al. The DisGeNET knowledge platform for disease genomics: 2019 update. Nucleic Acids Res. 48, D845–D855 (2020).
Friedman, J. H. Greedy function approximation: A gradient boosting machine. Ann. Stat.29, 0090–5364 (2001).
L. Breiman Random Forests Mach. Learn. 45 5 32
H. Zou T. Hastie Regularization and Variable Selection Via the Elastic Net J. R. Stat. Soc. Ser. B Stat. Methodol. 67 301 320
Lundberg, S. M. & Lee, S.-I. A unified approach to interpreting model predictions in Proceedings of the 31st International Conference on Neural Information Processing Systems (Curran Associates Inc., 2017), 4768–4777.
Koller, D. & Friedman, N. Probabilistic Graphical Models: Principles and Techniques - Adaptive Computation and Machine Learning (The MIT Press, 2009).
Sood, M. et al. Realistic simulation of virtual multi-scale, multi-modal patient trajectories using Bayesian networks and sparse auto-encoders. Sci. Rep.10, 10971 (2020).
Scutari, M. & Denis, J.-B. Bayesian Networks with Examples in R 2nd. (Chapman and Hall, 2021).
Hemani, G, Elsworth, B, Palmer, T. & Rasteiro, R. ieugwasr: Interface to the ’OpenGWAS’ Database API R package version 1.0.1 https://mrcieu.github.io/ieugwasr/ (2024).
R. Malik et al. Multiancestry genome-wide association study of 520,000 subjects identifies 32 loci associated with stroke and stroke subtypes Nat. Genet. 50 524 537 1:CAS:528:DC%2BC1cXlt1Oks78%3D 29531354 5968830
S. Sakaue et al. A cross-population atlas of genetic associations for 220 human phenotypes Nat. Genet. 53 1415 1424 1:CAS:528:DC%2BB3MXitFGru7fO 34594039
H.M. Do¨nertas D.K. Fabian M. Fuentealba L. Partridge J.M. Thornton Common genetic associations between age-related diseases Nat. Aging 1 400 412 33959723
Mitchell, R. et al. MRC IEU UK Biobank GWAS pipeline version 2. University of Bristolhttps://data.bris.ac.uk/data/dataset/pnoat8cxo0u52p6ynfaekeigi (2019).
Howrigan, D. P. et al. Nealelab/UK Biobank GWAS: version 2. Neale Labhttp://www.nealelab.is/uk-biobank/ (2023).
Loh, P.-R., Kichaev, G., Gazal, S., Schoech, A. P. & Price, A. L. Mixed-model association for biobank-scale datasets. Nat. Genet.50, 906–908 (2018).
W. Zhang D. Ghosh A General Approach to Sensitivity Analysis for Mendelian Randomization Stat. Biosci. 13 34 55 33737984
S. Burgess S.G. Thompson Interpreting findings from Mendelian randomization using the MR-Egger method Eur. J. Epidemiol. 32 377 389 28527048 5506233
M. Verbanck C.-Y. Chen B. Neale R. Do Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases Nat. Genet. 50 693 698 1:CAS:528:DC%2BC1cXotF2kt7g%3D 29686387 6083837