[en] This paper provides a comprehensive survey on the application and development of Artificial Intelligence (AI) and Machine Learning (ML) in satellite communication (SATCOM). It explores the increasing integration of AI/ML technologies in SATCOM systems, highlighting their potential to enhance performance, efficiency, and adaptability in response to growing demands for connectivity and data processing. The survey categorizes various use cases across different layers of satellite networks, detailing conventional solutions and the advantages of employing AI/ML techniques. It discusses the challenges associated with onboard processing, including hardware constraints, radiation tolerance, and the need for efficient resource management. Furthermore, the document examines the role of neuromorphic computing and COTS (Commercial Off-The-Shelf) devices in facilitating AI applications in space environments. Finally, we discuss the long-term developments of AI in the SATCOM sector and potential research directions. Overall, the survey emphasizes the transformative impact of AI/ML on the future of SATCOM, paving the way for innovative solutions in next-generation satellite networks.
Disciplines :
Sciences informatiques
Auteur, co-auteur :
Fontanesi, Gianluca ; Interdisciplinary Centre for Security, Reliability, and Trust (SnT), Luxembourg ; Nokia Bell Labs, Stuttgart, Germany
ORTIZ GOMEZ, Flor de Guadalupe ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom
LAGUNAS, Eva ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom ; Interdisciplinary Centre for Security, Reliability, and Trust (SnT), Luxembourg
GARCES SOCARRAS, Luis Manuel ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom
Baeza, Victor Monzon ; Interdisciplinary Centre for Security, Reliability, and Trust (SnT), Luxembourg
Vazquez, Miguel Angel ; Centre Tecnologic de les Telecommunicacions de Catalunya, Barcelona, Spain
VASQUEZ-PERALVO, Juan Andres ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom ; Interdisciplinary Centre for Security, Reliability, and Trust (SnT), Luxembourg
Minardi, Mario ; Interdisciplinary Centre for Security, Reliability, and Trust (SnT), Luxembourg
HA, Vu Nguyen ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom
Honnaiah, Puneeth Jubba ; Interdisciplinary Centre for Security, Reliability, and Trust (SnT), Luxembourg
Lacoste, Clement ; Interdisciplinary Centre for Security, Reliability, and Trust (SnT), Luxembourg
Drif, Youssouf ; Interdisciplinary Centre for Security, Reliability, and Trust (SnT), Luxembourg
Marrero, Liz Martinez
DAOUD, Saed Shaheer Awad ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom
ABDU, Tedros Salih ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom ; Interdisciplinary Centre for Security, Reliability, and Trust (SnT), Luxembourg
Eappen, Geoffrey ; Interdisciplinary Centre for Security, Reliability, and Trust (SnT), Luxembourg
Ur Rehman, Junaid ; King Fahd University of Petroleum and Minerals, Department of Electrical Engineering, The Center for Intelligent Secure Systems, Dhahran, Saudi Arabia
Martins, Wallace Alves ; Interdisciplinary Centre for Security, Reliability, and Trust (SnT), Luxembourg
Henarejos, Pol ; Centre Tecnologic de les Telecommunicacions de Catalunya, Barcelona, Spain
Al-Hraishawi, Hayder ; University of South Florida, Department of Electrical Engineering, Tampa, United States
Duncan, Juan Carlos Merlano ; Interdisciplinary Centre for Security, Reliability, and Trust (SnT), Luxembourg
VU, Thang Xuan ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom ; Interdisciplinary Centre for Security, Reliability, and Trust (SnT), Luxembourg
CHATZINOTAS, Symeon ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom ; Kyung Hee University, College of Electronics and Information, Yongin-si, South Korea
G. Geraci, D. Lopez-Perez, M. Benzaghta, and S. Chatzinotas, "Integrating terrestrial and non-terrestrial networks: 3d opportunities and challenges," IEEE Communications Magazine, 2022.
M. Á. Vázquez, P. Henarejos, A. I. Pérez-Neira, E. Grechi, A. Voight, J. C. Gil, I. Pappalardo, F. Di Credico, and R. M. Lancellotti, "On the Use of AI For Satellite Communications," arXiv preprint arXiv:2007.10110, 2020.
F. Ortiz, V. Monzon Baeza, L. M. Garces-Socarras, J. A. Vásquez-Peralvo, J. L. Gonzalez, G. Fontanesi, E. Lagunas, J. Querol, and S. Chatzinotas, "Onboard processing in satellite communications using ai accelerators," Aerospace, vol. 10, no. 2, p. 101, 2023.
C. Jiang, H. Zhang, Y. Ren, Z. Han, K.-C. Chen, and L. Hanzo, "Machine Learning Paradigms for Next-generation Wireless Networks," IEEE Wireless Commun., vol. 24, no. 2, pp. 98-105, 2016.
D. Bega, M. Gramaglia, A. Banchs, V. Sciancalepore, and X. Costa-Pérez, "A Machine Learning Approach to 5G Infrastructure Market Optimization," IEEE Trans. Mob. Comput., vol. 19, no. 3, pp. 498-512, 2019.
M. M. Azari, S. Solanki, S. Chatzinotas, O. Kodheli, H. Sallouha, A. Colpaert, J. F. M. Montoya, S. Pollin, A. Haqiqatnejad, A. Mostaani et al., "Evolution of Non-terrestrial Networks from 5G to 6G: A survey," IEEE Commun. Surveys Tuts., 2022.
O. Kodheli, E. Lagunas, N. Maturo, S. K. Sharma, B. Shankar, J. F. M. Montoya, J. C. M. Duncan, D. Spano, S. Chatzinotas, S. Kisseleff et al., "Satellite Communications in the New Space Era: A Survey and Future Challenges," IEEE Commun. Surveys Tuts., vol. 23, no. 1, pp. 70-109, 2020.
T. Hoeser and C. Kuenzer, "Object detection and image segmentation with deep learning on earth observation data: A review-part i: Evolution and recent trends," Remote Sensing, vol. 12, no. 10, p. 1667, 2020.
S. Walsh, D. Murphy, M. Doyle, J. Reilly, J. Thompson, R. Dunwoody, J. Erkal, G. Finneran, G. Fontanesi, J. Mangan et al., "Development of the eirsat-1 cubesat through functional verification of the engineering qualification model," Aerospace, vol. 8, no. 9, p. 254, 2021.
N. Saeed, A. Elzanaty, H. Almorad, H. Dahrouj, T. Y. Al- Naffouri, and M.-S. Alouini, "Cubesat communications: Recent advances and future challenges," IEEE Communications Surveys & Tutorials, vol. 22, no. 3, pp. 1839-1862, 2020.
P. K. Chowdhury, M. Atiquzzaman, and W. Ivancic, "Handover Schemes in Satellite Networks: State-of-the-art and Future Research Directions," IEEE Communications Surveys & Tutorials, vol. 8, no. 4, pp. 2-14, 2006.
H. Al-Hraishawi, H. Chougrani, S. Kisseleff, E. Lagunas, and S. Chatzinotas, "A Survey on Non-geostationary Satellite Systems: The Communication Perspective," IEEE Commun. Surveys Tuts., 2022.
L. M. Marrero, J. C. Merlano-Duncan, J. Querol, S. Kumar, J. Krivochiza, S. K. Sharma, S. Chatzinotas, A. Camps, and B. Ottersten, "Architectures and Synchronization Techniques for Distributed Satellite Systems: A Survey," IEEE Access, vol. 10, pp. 45 375-45 409, 2022.
P.-D. Arapoglou, K. Liolis, M. Bertinelli, A. Panagopoulos, P. Cottis, and R. De Gaudenzi, "Mimo over Satellite: A Review," IEEE communications surveys & tutorials, vol. 13, no. 1, pp. 27-51, 2010.
M. De Sanctis, E. Cianca, G. Araniti, I. Bisio, and R. Prasad, "Satellite Communications Supporting Internet of Remote Things," IEEE Internet Things J., vol. 3, no. 1, pp. 113-123, 2015.
M. Centenaro, C. E. Costa, F. Granelli, C. Sacchi, and L. Vangelista, "A survey on technologies, standards and open challenges in satellite IoT," IEEE Commun. Surveys Tuts., vol. 23, no. 3, pp. 1693-1720, 2021.
B. A. Homssi, K. Dakic, K. Wang, T. Alpcan, B. Allen, S. Kandeepan, A. Al-Hourani, and W. Saad, "Artificial Intelligence Techniques for Next-Generation Mega Satellite Networks," arXiv preprint arXiv:2207.00414, 2022.
V. Kothari, E. Liberis, and N. D. Lane, "The final frontier: Deep learning in space," in Proceedings of the 21st international workshop on mobile computing systems and applications, 2020, pp. 45-49.
M. Lofqvist and J. Cano, "Accelerating deep learning applications in space," arXiv preprint arXiv:2007.11089, 2020.
A. Russo and G. Lax, "Using Artificial Intelligence for Space Challenges: A Survey," Applied Sciences, vol. 12, no. 10, p. 5106, 2022.
K. Lu, H. Liu, L. Zeng, J. Wang, Z. Zhang, and J. An, "Applications and prospects of artificial intelligence in covert satellite communication: a review," Science China Information Sciences, vol. 66, no. 2, p. 121301, 2023.
F. Fourati and M.-S. Alouini, "Artificial Intelligence for Satellite Communication: A Review," Intelligent and Converged Networks, vol. 2, no. 3, pp. 213-243, 2021.
J. Wang, C. Jiang, H. Zhang, Y. Ren, K.-C. Chen, and L. Hanzo, "Thirty years of machine learning: The road to pareto-optimal wireless networks," IEEE Communications Surveys & Tutorials, vol. 22, no. 3, pp. 1472-1514, 2020.
Y. Sun, M. Peng, Y. Zhou, Y. Huang, and S. Mao, "Application of machine learning in wireless networks: Key techniques and open issues," IEEE Communications Surveys & Tutorials, vol. 21, no. 4, pp. 3072-3108, 2019.
X. Zhu and C. Jiang, "Integrated satellite-terrestrial networks toward 6g: Architectures, applications, and challenges," vol. 9, no. 1, pp. 437-461, conference Name: IEEE Internet of Things Journal.
R. De Gaudenzi, M. Luise, and L. Sanguinetti, "The open challenge of integrating satellites into (beyond-) 5g cellular networks," IEEE Network, vol. 36, no. 2, pp. 168-174, 2022.
F. G. Ortiz-Gomez, L. Lei, E. Lagunas, R. Martinez, D. Tarchi, J. Querol, M. A. Salas-Natera, and S. Chatzinotas, "Machine Learning for Radio Resource Management in Multibeam GEO Satellite Systems," Electronics, vol. 11, no. 7, p. 992, 2022.
T. M. Mitchell and T. M. Mitchell, Machine Learning. McGraw-hill New York, 1997, vol. 1, no. 9.
Y. Zhao, Y. Li, X. Zhang, G. Geng, W. Zhang, and Y. Sun, "A survey of networking applications applying the software defined networking concept based on machine learning," IEEE Access, vol. 7, pp. 95 397-95 417, 2019.
Y. LeCun, Y. Bengio, and G. Hinton, "Deep learning," nature, vol. 521, no. 7553, pp. 436-444, 2015.
W. G. Hatcher and W. Yu, "A survey of deep learning: Platforms, applications and emerging research trends," IEEE Access, vol. 6, pp. 24 411-24 432, 2018.
R. Collobert and S. Bengio, "Links between perceptrons, mlps and svms," in Proceedings of the twenty-first international conference on Machine learning, 2004, p. 23.
F. G. Ortiz-Gomez, D. Tarchi, R. Martínez, A. Vanelli-Coralli, M. A. Salas-Natera, and S. Landeros-Ayala, "Convolutional neural networks for flexible payload management in vhts systems," IEEE Systems Journal, vol. 15, no. 3, pp. 4675-4686, 2021.
P. Henarejos, M. A. Vazquez, and L. Blanco, "Traffic congestion prediction in satellite broadband communications," in Proceedings of the 39th International Communications Satellite Systems Conference (ICSSC), 2022.
I. Mallioras, Z. D. Zaharis, P. I. Lazaridis, and S. Pantelopoulos, "A Novel Realistic Approach of Adaptive Beamforming Based on Deep Neural Networks," IEEE Trans. Antennas Propag, 2022.
M. Á. Vázquez, P. Henarejos, I. Pappalardo, E. Grechi, J. Fort, J. C. Gil, and R. M. Lancellotti, "Machine Learning for Satellite Communications Operations," IEEE Commun. Mag., vol. 59, no. 2, pp. 22-27, 2021.
H. Al-Hraishawi, M. Minardi, H. Chougrani, O. Kodheli, J. F. M. Montoya, and S. Chatzinotas, "Multi-layer space information networks: Access design and softwarization," IEEE Access, 2021.
J. Liu, B. Zhao, Q. Xin, and H. Liu, "Dynamic channel allocation for satellite internet of things via deep reinforcement learning," in 2020 International Conference on Information Networking (ICOIN), 2020, pp. 465-470.
M. A. Qureshi, E. Lagunas, and G. Kaddoum, "Reinforcement learning for link adaptation and channel selection in leo satellite cognitive communications," IEEE Communications Letters, vol. 27, no. 3, pp. 951-955, 2023.
G. Bersuker, M. Mason, and K. L. Jones, "Neuromorphic computing: The potential for high-performance processing in space," Game Changer, pp. 1-12, 2018.
F. Ortiz, E. Lagunas, W. Martins, T. Dinh, N. Skatchkovsky, O. Simeone, B. Rajendran, T. Navarro, and S. Chatzinotas, "Towards the application of neuromorphic computing to satellite communications," in 39th International Communications Satellite Systems Conference (ICSSC). IEEE, 2022, pp. 1-7.
F. de Guadalupe Ortíz Gómez, R. M. Rodríguez-Osorio, M. A. S. Natera, S. L. Ayala, D. Tarchi, and A. Vanelli-Coralli, "On the use of neural networks for flexible payload management in vhts systems," in 25th Ka Broadband Commun. Conf, 2019, pp. 1-10.
Z. Lin, Z. Ni, L. Kuang, C. Jiang, and Z. Huang, "Dynamic beam pattern and bandwidth allocation based on multi-agent deep reinforcement learning for beam hopping satellite systems," IEEE Transactions on Vehicular Technology, vol. 71, no. 4, pp. 3917-3930, 2022.
H. Nishiyama, D. Kudoh, N. Kato, and N. Kadowaki, "Load balancing and qos provisioning based on congestion prediction for geo/leo hybrid satellite networks," Proceedings of the IEEE, vol. 99, no. 11, pp. 1998-2007, 2011.
A. Checko, H. L. Christiansen, Y. Yan, L. Scolari, G. Kardaras, M. S. Berger, and L. Dittmann, "Cloud ran for mobile networks-a technology overview," IEEE Communications Surveys & Tutorials, vol. 17, no. 1, pp. 405-426, 2015.
A. Cornejo, S. Landeros-Ayala, J. M. Matias, and R. Martinez, "Applying learning methods to optimize the ground segment for hts systems," in 2020 IEEE 11th Latin American Symposium on Circuits & Systems (LASCAS), 2020, pp. 1-4.
T. Mortlock and Z. M. Kassas, "Assessing machine learning for leo satellite orbit determination in simultaneous tracking and navigation," in 2021 IEEE Aerospace Conference (50100), 2021, pp. 1-8.
X. He, K. Zhao, and X. Chu, "Automl: A survey of the state-ofthe- art," Knowledge-Based Systems, vol. 212, p. 106622, 2021.
N. Cheng, F. Lyu, W. Quan, C. Zhou, H. He, W. Shi, and X. Shen, "Space/aerial-assisted computing offloading for iot applications: A learning-based approach," IEEE Journal on Selected Areas in Communications, vol. 37, no. 5, pp. 1117-1129, 2019.
S. Xu, X.-W. Wang, and M. Huang, "Software-defined nextgeneration satellite networks: Architecture, challenges, and solutions," IEEE Access, vol. 6, pp. 4027-4041, 2018.
G. Furano, G. Meoni, A. Dunne, D. Moloney, V. Ferlet-Cavrois, A. Tavoularis, J. Byrne, L. Buckley, M. Psarakis, K.-O. Voss, and L. Fanucci, "Towards the use of artificial intelligence on the edge in space systems: Challenges and opportunities," IEEE Aerospace and Electronic Systems Magazine, vol. 35, no. 12, pp. 44-56, 2020.
G. Furano, A. Tavoularis, and M. Rovatti, "Ai in space: Applications examples and challenges," in 2020 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT). IEEE, 2020, pp. 1-6.
A.-H. M. Jallad and L. B. Mohammed, "Hardware support vector machine (svm) for satellite on-board applications," in 2014 NASA/ESA Conference on Adaptive Hardware and Systems (AHS). IEEE, 2014, pp. 256-261.
G. Labrèche, D. Evans, D. Marszk, T. Mladenov, V. Shiradhonkar, T. Soto, and V. Zelenevskiy, "Ops-sat spacecraft autonomy with tensorflow lite, unsupervised learning, and online machine learning," in 2022 IEEE Aerospace Conference (AERO). IEEE, 2022, pp. 1-17.
G. Giuffrida, L. Fanucci, G. Meoni, M. Batič, L. Buckley, A. Dunne, C. Van Dijk, M. Esposito, J. Hefele, N. Vercruyssen et al., "The α-sat-1 mission: The first on-board deep neural network demonstrator for satellite earth observation," IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1-14, 2021.
J. J. Garau Luis, "Robustness of reinforcement learning systems in real-world environments," Ph.D. dissertation, Massachusetts Institute of Technology, 2023.
B. Xie, H. Cui, P. Cao, Y. He, and M. Guizani, "Computation offloading optimization in satellite-terrestrial integrated networks via offline deep reinforcement learning," IEEE Internet of Things Journal, 2024.
S. Furman, T. Woods, C. Maracchion, and A. L. Drozd, "Offline reinforcement learning and cognitive radio resource management for space-based radio access network optimization," in 2023 IEEE Cognitive Communications for Aerospace Applications Workshop (CCAAW). IEEE, 2023, pp. 1-6.
X. Liu, H. Zhang, K. Long, A. Nallanathan, and V. C. M. Leung, "Deep dyna-reinforcement learning based on random access control in LEO satellite IoT networks," IEEE Internet of Things Journal, vol. 9, no. 16, pp. 14 818-14 828, 2022.
M. Plumridge, R. Maråk, C. Ceccobello, P. Gómez, G. Meoni, F. Svoboda, and N. D. Lane, "Rapid distributed fine-tuning of a segmentation model onboard satellites," arXiv preprint arXiv:2411.17831, 2024.
V. Růžička, G. Mateo-García, C. Bridges, C. Brunskill, C. Purcell, N. Longépé, and A. Markham, "Fast model inference and training on-board of satellites," in IGARSS 2023-2023 IEEE International Geoscience and Remote Sensing Symposium, 2023, pp. 2002-2005.
B. Xie, H. Cui, I. W.-H. Ho, Y. He, and M. Guizani, "Computation offloading and resource allocation in leo satelliteterrestrial integrated networks with system state delay," IEEE Transactions on Mobile Computing, 2024.
Y. Omid, M. Aristodemou, S. Lambotharan, M. Derakhshani, and L. Hanzo, "Reinforcement learning-based downlink transmit precoding for mitigating the impact of delayed csi in satellite systems," arXiv preprint arXiv:2410.21489, 2024.
C. Zhou, W. Wu, H. He, P. Yang, F. Lyu, N. Cheng, and X. Shen, "Deep reinforcement learning for delay-oriented iot task scheduling in sagin," IEEE Transactions on Wireless Communications, vol. 20, no. 2, pp. 911-925, 2021.
Y. Zhao, A. Xiao, S. Wu, Y. Ou, C. Jiang, and L. Kuang, "Delay sensitive beam hopping for satellite communication systems relying on fully decentralized soft actor-critics," in 2023 International Conference on Wireless Communications and Signal Processing (WCSP). IEEE, 2023, pp. 707-712.
S. Krishnan, B. Boroujerdian, W. Fu, A. Faust, and V. J. Reddi, "Air learning: a deep reinforcement learning gym for autonomous aerial robot visual navigation," Machine Learning, vol. 110, no. 9, pp. 2501-2540, 2021.
B. Chen, M. Xu, L. Li, and D. Zhao, "Delay-aware model-based reinforcement learning for continuous control," Neurocomputing, vol. 450, pp. 119-128, 2021.
T. V. Nguyen, H. D. Le, and A. T. Pham, "Adaptive rate/power control with ml-based channel prediction for optical satellite systems," IEEE Transactions on Aerospace and Electronic Systems, 2024.
M. Minardi, Y. Drif, T. X. Vu, I. Maity, C. Politis, and S. Chatzinotas, "SDN-based Testbed for Emerging Use Cases in Beyond 5G NTN-Terrestrial Networks," in 2nd International Workshop on Autonomous Network Management in 5G and Beyond Systems, Miami, FL, USA, May 2023, pp. 1-5.
G. Mateo-Garcia, J. Veitch-Michaelis, L. Smith, S. V. Oprea, G. Schumann, Y. Gal, A. G. Baydin, and D. Backes, "Towards global flood mapping onboard low cost satellites with machine learning," Scientific reports, vol. 11, no. 1, pp. 1-12, 2021.
"MLSAT | ESA TIA." [Online]. Available: https://artes.esa. int/projects/mlsat
"The new space age: Ibm develops a unique, custom edge computing solution in space," https://www.ibm.com/cloud/blog/ ibm-develops-a-unique-custom-edge-computing-solution-in-space.
"Stream b: Research for revolutionary technology advancement towards 6g - smart networks," https://smart-networks.europa.eu/ stream-b-research-for-revolutionary-technology-advancement-towards-6g/, fecha de acceso: 20-03-2023.
"Objectives - atria," https://www.atria-h2020.eu/objectives/, fecha de acceso: 20-03-2023.
"Dynasat," https://www.dynasat.eu/, fecha de acceso: 20-03-2023.
C. A. Balanis, Antenna theory: analysis and design. John wiley & sons, 2015.
R. L. Haupt, Antenna Arrays: A computational approach. Wiley-IEEE Press, 2010.
Vásquez-Peralvo, J. Querol, F. Ortiz, J. L. Rios, E. Lagunas, V. Monzon Baeza, G. Fontanesi, L. M. Garces-Socorras, J. C. Merlano Duncan, and S. Chatzinotas, "Flexible beamforming for direct radiating arrays in satellite communications," submitted to IEEE Access, 2022.
K.-B. Yu, "Adaptive beamforming for satellite communication with selective earth coverage and jammer nulling capability," IEEE Transactions on Signal Processing, vol. 44, no. 12, pp. 3162-3166, 1996.
G. Kautz, "Phase-only shaped beam synthesis via technique of approximated beam addition," IEEE Transactions on Antennas and Propagation, vol. 47, no. 5, pp. 887-894, 1999.
H. Schippers, J. Verpoorte, P. Jorna, A. Hulzinga, A. Meijerink, C. Roeloffzen, R. Heideman, A. Leinse, and M. Wintels, "Conformal phased array with beam forming for airborne satellite communication," in 2008 International ITG Workshop on Smart Antennas, 2008, pp. 343-350.
K. Sherman, "Phased array shaped multi-beam optimization for leo satellite communications using a genetic algorithm," in Proceedings 2000 IEEE International Conference on Phased Array Systems and Technology (Cat. No.00TH8510), 2000, pp. 501-504.
T.-B. Chen, Y.-L. Dong, Y.-C. Jiao, and F. Zhang, "Synthesis of circular antenna array using crossed particle swarm optimization algorithm," Journal of Electromagnetic Waves and Applications, vol. 20, no. 13, pp. 1785-1795, 2006.
D. Boeringer and D. Werner, "Particle swarm optimization versus genetic algorithms for phased array synthesis," IEEE Transactions on Antennas and Propagation, vol. 52, no. 3, pp. 771-779, 2004.
R. Webster, "A generalized hamming window," IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 26, no. 3, pp. 269-270, 1978.
T. Taylor, "Design of line-source antennas for narrow beamwidth and low side lobes," Transactions of the IRE Professional Group on Antennas and Propagation, vol. 3, no. 1, pp. 16-28, 1955.
R. B. Blackman and J. W. Tukey, "The measurement of power spectra from the point of view of communications engineering - part i," The Bell System Technical Journal, vol. 37, no. 1, pp. 185-282, 1958.
C. Dolph, "A current distribution for broadside arrays which optimizes the relationship between beam width and side-lobe level," Proceedings of the IRE, vol. 34, no. 6, pp. 335-348, 1946.
W. Li, X. Huang, and H. Leung, "Performance evaluation of digital beamforming strategies for satellite communications," IEEE Transactions on Aerospace and Electronic systems, vol. 40, no. 1, pp. 12-26, 2004.
S. Bianco, P. Napoletano, A. Raimondi, M. Feo, G. Petraglia, and P. Vinetti, "AESA Adaptive Beamforming Using Deep Learning," in 2020 IEEE Radar Conference (RadarConf20). IEEE, 2020, pp. 1-6.
A. J. Singh and M. Jayakumar, "Machine learning based digital beamforming for line-of-sight optimization in satcom on the move technology," in 2020 4th International Conference on Electronics, Communication and Aerospace Technology (ICECA). IEEE, 2020, pp. 422-427.
R. Kumar and S. Arnon, "Dnn beamforming for leo satellite communication at sub-thz bands," Electronics, vol. 11, no. 23, p. 3937, 2022.
J. A. Vásquez-Peralvo, J. Querol, E. Lagunas, F. Ortiz, L. M. Garcés-Socarrás, J. L. González-Rios, V. M. Baeza, and S. Chatzinotas, "Genetic algorithm-based beamforming in subarray architectures for geo satellites," in 2024 18th European Conference on Antennas and Propagation (EuCAP). IEEE, 2024, pp. 1-5.
F. Ortiz, J. A. Vasquez-Peralvo, J. Querol, E. Lagunas, J. L. G. Rios, M. O. Mendonça, L. Garces, V. M. Baeza, and S. Chatzinotas, "Supervised learning based real-time adaptive beamforming on-board multibeam satellites," in 2024 18th European Conference on Antennas and Propagation (EuCAP). IEEE, 2024, pp. 1-5.
Q. Zhao, Y. Hu, Z. Pang, and D. Ren, "Beam hopping for leo satellite:challenges and opportunities," in 2022 International Conference on Culture-Oriented Science and Technology (CoST), 2022, pp. 319-324.
P. Angeletti, D. F. Prim, and R. Rinaldo, Beam Hopping in Multi-Beam Broadband Satellite Systems: System Performance and Payload Architecture Analysis. [Online]. Available: https://arc.aiaa.org/doi/abs/10.2514/6.2006-5376
L. Lei, E. Lagunas, Y. Yuan, M. G. Kibria, S. Chatzinotas, and B. Ottersten, "Beam illumination pattern design in satellite networks: Learning and optimization for efficient beam hopping," IEEE Access, vol. 8, pp. 136 655-136 667, 2020.
E. Lagunas, M. G. Kibria, H. Al-Hraishawi, N. Maturo, and S. Chatzinotas, "Precoded cluster hopping for multibeam GEO satellite communication systems," Frontiers in Signal Processing, vol. 1, p. 721682, 2021.
J. Lei and M. A. Vazquez-Castro, "Multibeam satellite frequency/ time duality study and capacity optimization," Journal of Communications and Networks, vol. 13, no. 5, pp. 472-480, 2011.
R. Alegre-Godoy, N. Alagha, and M. A. Vázquez-Castro, "Offered capacity optimization mechanisms for multi-beam satellite systems," in 2012 IEEE International Conference on Communications (ICC). IEEE, 2012, pp. 3180-3184.
L. Chen, V. N. Ha, E. Lagunas, L. Wu, S. Chatzinotas, and B. Ottersten, "The next generation of beam hopping satellite systems: Dynamic beam illumination with selective precoding," IEEE Transactions on Wireless Communications, pp. 1-1, 2022.
V. N. Ha, T. T. Nguyen, E. Lagunas, J. C. M. Duncan, and S. Chatzinotas, "Geo payload power minimization: Joint precoding and beam hopping design," arXiv preprint arXiv:2208.10474, 2022.
J. Tang, D. Bian, G. Li, J. Hu, and J. Cheng, "Optimization method of dynamic beam position for leo beam-hopping satellite communication systems," IEEE Access, vol. 9, pp. 57 578-57 588, 2021.
Z. Lin, Z. Ni, L. Kuang, C. Jiang, and Z. Huang, "Multisatellite beam hopping based on load balancing and interference avoidance for ngso satellite communication systems," IEEE Transactions on Communications, pp. 1-1, 2022.
L. Lei, E. Lagunas, Y. Yuan, M. G. Kibria, S. Chatzinotas, and B. Ottersten, "Deep learning for beam hopping in multibeam satellite systems," in 2020 IEEE 91st Vehicular Technology Conference (VTC2020-Spring). IEEE, 2020, pp. 1-5.
X. Hu, Y. Zhang, X. Liao, Z. Liu, W. Wang, and F. M. Ghannouchi, "Dynamic beam hopping method based on multiobjective deep reinforcement learning for next generation satellite broadband systems," IEEE Transactions on Broadcasting, vol. 66, no. 3, pp. 630-646, 2020.
E. Godino, L. Escolar, and A. P. Honold, Flexible Payload Operations of Satellite Communication Systems. [Online]. Available: https://arc.aiaa.org/doi/abs/10.2514/6.2018-2653
F. d. G. Ortíz Gómez, R. Martínez Rodríguez-Osorio, M. A. Salas Natera, S. Landeros Ayala, D. Tarchi, and A. Vanelli Coralli, "On the use of neural networks for flexible payload management in vhts systems," 2019.
K. An, T. Liang, X. Yan, Y. Li, and X. Qiao, "Power allocation in land mobile satellite systems: An energy-efficient perspective," IEEE Communications Letters, vol. 22, no. 7, pp. 1374-1377, 2018.
T. Qi and Y. Wang, "Energy-efficient power allocation over multibeam satellite downlinks with imperfect csi," in 2015 International Conference on Wireless Communications & Signal Processing (WCSP), 2015, pp. 1-5.
C. N. Efrem and A. D. Panagopoulos, "Dynamic energyefficient power allocation in multibeam satellite systems," IEEE Wireless Communications Letters, vol. 9, no. 2, pp. 228-231, 2020.
J. Choi and V. Chan, "Optimum power and beam allocation based on traffic demands and channel conditions over satellite downlinks," IEEE Transactions on Wireless Communications, vol. 4, no. 6, pp. 2983-2993, 2005.
F. R. Durand and T. Abrão, "Power allocation in multibeam satellites based on particle swarm optimization," AEU - International Journal of Electronics and Communications, vol. 78, pp. 124-133, 2017. [Online]. Available: https://www. sciencedirect.com/science/article/pii/S1434841116303739
A. I. Aravanis, B. Shankar M. R., P.-D. Arapoglou, G. Danoy, P. G. Cottis, and B. Ottersten, "Power allocation in multibeam satellite systems: A two-stage multi-objective optimization," IEEE Transactions on Wireless Communications, vol. 14, no. 6, pp. 3171-3182, 2015.
S. Liu, Y. Fan, Y. Hu, D. Wang, L. Liu, and L. Gao, "Ag-dpa: Assignment game-based dynamic power allocation in multibeam satellite systems," International Journal of Satellite Communications and Networking, vol. 38, no. 1, pp. 74-83, 2020. [Online]. Available: https://onlinelibrary.wiley. com/doi/abs/10.1002/sat.1310
J. Lei and M. A. Vázquez-Castro, "Joint power and carrier allocation for the multibeam satellite downlink with individual sinr constraints," in 2010 IEEE International Conference on Communications, 2010, pp. 1-5.
T. S. Abdu, S. Kisseleff, E. Lagunas, and S. Chatzinotas, "A low-complexity resource optimization technique for high throughput satellite," in 2021 17th International Symposium on Wireless Communication Systems (ISWCS), 2021, pp. 1-5.
T. S. Abdu, S. Kisseleff, E. Lagunas, and S. Chatzinotas, "Power and bandwidth minimization for demand-aware geo satellite systems," in 2021 IEEE Global Communications Conference (GLOBECOM), 2021, pp. 1-6.
T. S. Abdu, S. Kisseleff, E. Lagunas, and S. Chatzinotas, "Flexible resource optimization for geo multibeam satellite communication system," IEEE Transactions on Wireless Communications, vol. 20, no. 12, pp. 7888-7902, 2021.
T. Ramírez, C. Mosquera, and N. Alagha, "Flexible user mapping for radio resource assignment in advanced satellite payloads," IEEE Transactions on Broadcasting, vol. 68, no. 3, pp. 723-739, 2022.
G. Cocco, T. de Cola, M. Angelone, Z. Katona, and S. Erl, "Radio resource management optimization of flexible satellite payloads for dvb-s2 systems," IEEE Transactions on Broadcasting, vol. 64, no. 2, pp. 266-280, 2018.
A. Paris, I. Del Portillo, B. Cameron, and E. Crawley, "A genetic algorithm for joint power and bandwidth allocation in multibeam satellite systems," in 2019 IEEE Aerospace Conference, 2019, pp. 1-15.
F. de Guadalupe Ortíz Gómez, R. M. Rodríguez-Osorio, M. A. S. Natera, and S. L. Ayala, "On the use machine learning for flexible payload management in vhts systems," in Proceedings of 70th International Astronautical Congress 2019, 2019, pp. 1-6. [Online]. Available: https: //oa.upm.es/64705/
P. Zhang, X. Wang, Z. Ma, S. Liu, and J. Song, "An online power allocation algorithm based on deep reinforcement learning in multibeam satellite systems," International Journal of Satellite Communications and Networking, vol. 38, no. 5, pp. 450-461, 2020. [Online]. Available: https: //onlinelibrary.wiley.com/doi/abs/10.1002/sat.1352
J. J. G. Luis, M. Guerster, I. del Portillo, E. Crawley, and B. Cameron, "Deep reinforcement learning for continuous power allocation in flexible high throughput satellites," in 2019 IEEE Cognitive Communications for Aerospace Applications Workshop (CCAAW), 2019, pp. 1-4.
J. J. G. Luis, N. Pachler, M. Guerster, I. del Portillo, E. Crawley, and B. Cameron, "Artificial intelligence algorithms for power allocation in high throughput satellites: A comparison," in 2020 IEEE Aerospace Conference, 2020, pp. 1-15.
G. Fontanesi, A. Zhu, M. Arvaneh, and H. Ahmadi, "A transfer learning approach for uav path design with connectivity outage constraint," IEEE Internet of Things Journal, 2022.
A. Destounis and A. D. Panagopoulos, "Dynamic power allocation for broadband multi-beam satellite communication networks," IEEE Commun. Lett., vol. 15, no. 4, pp. 380-382, 2011.
H. Fenech, S. Amos, A. Tomatis, and V. Soumpholphakdy, "High throughput satellite systems: An analytical approach," IEEE Transactions on Aerospace and Electronic Systems, vol. 51, no. 1, pp. 192-202, 2015.
Y. Kawamoto, T. Kamei, M. Takahashi, N. Kato, A. Miura, and M. Toyoshima, "Flexible resource allocation with interbeam interference in satellite communication systems with a digital channelizer," IEEE Transactions on Wireless Communications, vol. 19, no. 5, pp. 2934-2945, 2020.
U. Park, H. W. Kim, D. S. Oh, and B. J. Ku, "Flexible bandwidth allocation scheme based on traffic demands and channel conditions for multi-beam satellite systems," in 2012 IEEE Vehicular Technology Conference (VTC Fall), 2012, pp. 1-5.
H. Wang, A. Liu, X. Pan, and L. Jia, "Optimal bandwidth allocation for multi-spot-beam satellite communication systems," in Proceedings 2013 International Conference on Mechatronic Sciences, Electric Engineering and Computer (MEC), 2013, pp. 2794-2798.
N. Pachler, J. J. G. Luis, M. Guerster, E. Crawley, and B. Cameron, "Allocating power and bandwidth in multibeam satellite systems using particle swarm optimization," in 2020 IEEE Aerospace Conference, 2020, pp. 1-11.
B. S. Mysore, E. Lagunas, S. Chatzinotas, and B. Ottersten, "Precoding for satellite communications: Why, how and what next?" IEEE Communications Letters, vol. 25, no. 8, pp. 2453-2457, 2021.
A. I. Perez-Neira, M. A. Vazquez, M. B. Shankar, S. Maleki, and S. Chatzinotas, "Signal processing for high-throughput satellites: Challenges in new interference-limited scenarios," IEEE Signal Processing Magazine, vol. 36, no. 4, pp. 112-131, 2019.
S. Liu, X. Hu, and W. Wang, "Deep reinforcement learning based dynamic channel allocation algorithm in multibeam satellite systems," IEEE Access, vol. 6, pp. 15 733-15 742, 2018.
B. Zhao, J. Liu, Z. Wei, and I. You, "A deep reinforcement learning based approach for energy-efficient channel allocation in satellite internet of things," IEEE Access, vol. 8, pp. 62 197-62 206, 2020.
Y. He, B. Sheng, H. Yin, D. Yan, and Y. Zhang, "Multiobjective deep reinforcement learning based time-frequency resource allocation for multi-beam satellite communications," China Communications, vol. 19, no. 1, pp. 77-91, 2022.
Z. Li, Z. Xie, and X. Liang, "Dynamic channel reservation strategy based on dqn algorithm for multi-service leo satellite communication system," IEEE Wireless Communications Letters, vol. 10, no. 4, pp. 770-774, 2021.
D. Deng, C. Wang, M. Pang, and W. Wang, "Dynamic resource allocation with deep reinforcement learning in multibeam satellite communication," IEEE Wireless Communications Letters, pp. 1-1, 2022.
X. Liao, X. Hu, Z. Liu, S. Ma, L. Xu, X. Li, W. Wang, and F. M. Ghannouchi, "Distributed intelligence: A verification for multi-agent drl-based multibeam satellite resource allocation," IEEE Communications Letters, vol. 24, no. 12, pp. 2785-2789, 2020.
C. Han, A. Liu, L. Huo, H. Wang, and X. Liang, "A predictionbased resource matching scheme for rentable leo satellite communication network," IEEE Communications Letters, vol. 24, no. 2, pp. 414-417, 2020.
X. Ding, L. Feng, Y. Zou, and G. Zhang, "Deep learning aided spectrum prediction for satellite communication systems," IEEE Transactions on Vehicular Technology, vol. 69, no. 12, pp. 16 314-16 319, 2020.
P. V. R. Ferreira, R. Paffenroth, A. M. Wyglinski, T. M. Hackett, S. G. Bilén, R. C. Reinhart, and D. J. Mortensen, "Multiobjective reinforcement learning for cognitive satellite communications using deep neural network ensembles," IEEE Journal on Selected Areas in Communications, vol. 36, no. 5, pp. 1030-1041, 2018.
T. S. Abdu, S. Kisseleff, L. Lei, E. Lagunas, J. Grotz, and S. Chatzinotas, "A deep learning based acceleration of complex satellite resource management problem," in 2022 30th European Signal Processing Conference (EUSIPCO), 2022, pp. 1092-1096.
H. Al-Hraishawi, E. Lagunas, and S. Chatzinotas, "Traffic simulator for multibeam satellite communication systems," in 10th Advanced Satellite Multimedia Syst. Conf. and the 16th Signal Process. Space Commun. Workshop (ASMS/SPSC), Sep. 2020, pp. 1-8.
F. G. Ortiz-Gomez, M. A. Salas-Natera, R. Martínez, and S. Landeros-Ayala, "Optimization in vhts satellite system design with irregular beam coverage for non-uniform traffic distribution," Remote Sensing, vol. 13, no. 13, 2021. [Online]. Available: https://www.mdpi.com/2072-4292/13/13/2642
P. J. Honnaiah, N. Maturo, S. Chatzinotas, S. Kisseleff, and J. Krause, "Demand-based adaptive multi-beam pattern and footprint planning for high throughput geo satellite systems," IEEE Open Journal of the Communications Society, vol. 2, pp. 1526-1540, 2021.
K. Rao, M. Cuchanski, and M. Tang, "Multiple beam antenna concepts for satellite communications," in Symposium on Antenna Technology and Applied Electromagnetics [ANTEM 1994]. IEEE, 1994, pp. 289-292.
S. K. Rao, "Advanced antenna technologies for satellite communications payloads," IEEE Transactions on Antennas and Propagation, vol. 63, no. 4, pp. 1205-1217, 2015.
M. Schneider, C. Hartwanger, and H. Wolf, "Antennas for multiple spot beam satellites," CEAS Space Journal, vol. 2, no. 1, pp. 59-66, 2011.
K. Y. Jo, Satellite communications network design and analysis. Artech house, 2011.
Y. Su, Y. Liu, Y. Zhou, J. Yuan, H. Cao, and J. Shi, "Broadband leo satellite communications: Architectures and key technologies," IEEE Wireless Communications, vol. 26, no. 2, pp. 55-61, 2019.
M. Takahashi, Y. Kawamoto, N. Kato, A. Miura, and M. Toyoshima, "Adaptive power resource allocation with multi-beam directivity control in high-throughput satellite communication systems," IEEE Wireless Communications Letters, vol. 8, no. 4, pp. 1248-1251, 2019.
S. Tani, K. Motoyoshi, H. Sano, A. Okamura, H. Nishiyama, and N. Kato, "An adaptive beam control technique for q band satellite to maximize diversity gain and mitigate interference to terrestrial networks," IEEE Transactions on Emerging Topics in Computing, vol. 7, no. 1, pp. 115-122, 2016.
S. Kisseleff, B. Shankar, D. Spano, and J.-D. Gayrard, "A new optimization tool for mega-constellation design and its application to trunking systems [international communications satellite systems conference]," 2019.
F. G. Ortiz-Gomez, D. Tarchi, R. Martínez, A. Vanelli-Coralli, M. A. Salas-Natera, and S. Landeros-Ayala, "Cooperative multi-agent deep reinforcement learning for resource management in full flexible vhts systems," IEEE Transactions on Cognitive Communications and Networking, vol. 8, no. 1, pp. 335-349, 2022.
G. Dalal, K. Dvijotham, M. Vecerik, T. Hester, C. Paduraru, and Y. Tassa, "Safe exploration in continuous action spaces," arXiv preprint arXiv:1801.08757, 2018.
P. V. R. Ferreira, R. Paffenroth, A. M. Wyglinski, T. M. Hackett, S. G. Bilen, R. C. Reinhart, and D. J. Mortensen, "Reinforcement learning for satellite communications: From leo to deep space operations," IEEE Communications Magazine, vol. 57, no. 5, pp. 70-75, 2019.
H. He, W. Yuan, Y. Hou, S. Chen, X. Jiang, R. Zhu, and J. Yang, "Onboard processing aided transmission delay minimization for leo satellite networks," IEEE Transactions on Communications, 2024.
A. Almamori and S. Mohan, "A spectrally efficient algorithm for massive MIMO for mitigating pilot contamination," in 2017 IEEE 38th Sarnoff Symposium, Newark, NJ, USA, Sep. 2017, pp. 1-5.
A. Pérez-Neira, J. M. Veciana, M. Á. Vázquez, and E. Lagunas, "Distributed power control with received power constraints for time-area-spectrum licenses," Signal Processing, vol. 120, pp. 141-155, 2016.
E. Lagunas, S. Maleki, S. Chatzinotas, M. Soltanalian, A. I. Pérez-Neira, and B. Oftersten, "Power and rate allocation in cognitive satellite uplink networks," in 2016 IEEE International Conference on Communications (ICC). IEEE, 2016, pp. 1-6.
D. Chen, J. Zhang, and R. Zhao, "Adaptive modulation and coding in satellite-integrated 5g communication system," in 2021 IEEE 21st International Conference on Communication Technology (ICCT), 2021, pp. 1402-1407.
E. Inceöz, R. Tutgun, and A. M. Y. Turgut, "Fpga based transmitter design using adaptive coding and modulation schemes for low earth orbit satellite communications," in 2020 IEEE 5th International Symposium on Telecommunication Technologies (ISTT), 2020, pp. 39-44.
J. Bas and A. A. Dowhuszko, "Time-packing as enabler of optical feeder link adaptation in high throughput satellite systems," in 2020 IEEE 3rd 5G World Forum (5GWF), 2020, pp. 186-192.
S. Andrenacci, D. Spano, D. Christopoulos, S. Chatzinotas, J. Krause, and B. Ottersten, "Optimized link adaptation for dvb-s2x precoded waveforms based on snir estimation," in 2016 50th Asilomar Conference on Signals, Systems and Computers, 2016, pp. 502-506.
A. Tsakmalis, S. Chatzinotas, and B. Ottersten, "Interference constraint active learning with uncertain feedback for cognitive radio networks," IEEE Transactions on Wireless Communications, vol. 16, no. 7, pp. 4654-4668, 2017.
L. Pellaco, V. Saxena, M. Bengtsson, and J. Jaldén, "Wireless link adaptation with outdated csi - a hybrid data-driven and model-based approach," in 2020 IEEE 21st International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), 2020, pp. 1-5.
X. Wang, H. Li, and Q. Wu, "Optimizing adaptive coding and modulation for satellite network with ml-based csi prediction," in 2019 IEEE Wireless Communications and Networking Conference (WCNC), 2019, pp. 1-6.
D. Lee, Y. G. Sun, I. Sim, J.-H. Kim, Y. Shin, D. I. Kim, and J. Y. Kim, "Neural episodic control-based adaptive modulation and coding scheme for inter-satellite communication link," IEEE Access, vol. 9, pp. 159 175-159 186, 2021.
J. Ebert, W. Bailer, J. Flavio, K. Plimon, and M. Winter, "A method for acm on q/v-band satellite links based on artificial intelligence," in 2020 10th Advanced Satellite Multimedia Systems Conference and the 16th Signal Processing for Space Communications Workshop (ASMS/SPSC), 2020, pp. 1-5.
J. Zou, H. Xiong, D. Wang, and C. W. Chen, "Optimal power allocation for hybrid overlay/underlay spectrum sharing in multiband cognitive radio networks," IEEE Trans. Veh. Commun., vol. 62, no. 4, pp. 1827-1837, 2013.
S. K. Sharma, S. Chatzinotas, and B. Ottersten, "In-line Interference Mitigation Techniques for Spectral Coexistence of GEO and NGEO Satellites," Int. J. Satell. Commun. Network, vol. 34, no. 1, pp. 11-39, 2016.
K. Kim, I. A. Akbar, K. K. Bae, J.-S. Um, C. M. Spooner, and J. H. Reed, "Cyclostationary Approaches to Signal Detection and Classification in Cognitive Radio," in 2007 2nd IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks, 2007, pp. 212-215.
I. Jabandžić, F. Firyaguna, S. Giannoulis, A. Shahid, A. Mukhopadhyay, M. Ruffini, and I. Moerman, "The codysun approach: A novel distributed paradigm for dynamic spectrum sharing in satellite communications," Sensors, vol. 21, no. 23, 2021. [Online]. Available: https://www.mdpi. com/1424-8220/21/23/8052
W. Qin and F. Dovis, "Situational awareness of chirp jamming threats to gnss based on supervised machine learning," IEEE Trans. Aerosp. Electron. Syst., vol. 58, no. 3, pp. 1707-1720, 2022.
P. Henarejos, M. A. Vazquez, and A. I. Perez-Neira, "Deep learning for experimental hybrid terrestrial and satellite interference management," in 2019 IEEE 20th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), 2019, pp. 1-5.
M. Kulin, T. Kazaz, I. Moerman, and E. De Poorter, "Endto- End Learning From Spectrum Data: A Deep Learning Approach for Wireless Signal Identification in Spectrum Monitoring Applications," IEEE Access, vol. 6, pp. 18 484-18 501, 2018.
Y. Wang, C. Zhang, Q. Peng, and Z. Wang, "Learning to detect frame synchronization," in Neural Information Processing, M. Lee, A. Hirose, Z.-G. Hou, and R. M. Kil, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 570-578.
H. Wu, Z. Sun, and X. Zhou, "Deep learning-based frame and timing synchronization for end-to-end communications," Journal of Physics: Conference Series, vol. 1169, pp. 012-060, Feb 2019.
J. Wang, W. Tu, L. C. K. Hui, S. M. Yiu, and E. K. Wang, "Detecting time synchronization attacks in cyber-physical systems with machine learning techniques," in 2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS), 2017, pp. 2246-2251.
S. Lee, S. Kim, M. Seo, and D. Har, "Synchronization of frequency hopping by lstm network for satellite communication system," IEEE Communications Letters, vol. 23, no. 11, pp. 2054-2058, 2019.
D. Zibar, L. H. H. de Carvalho, M. Piels, A. Doberstein, J. Diniz, B. Nebendahl, C. Franciscangelis, J. Estaran, H. Haisch, N. G. Gonzalez, J. C. R. F. de Oliveira, and I. T. Monroy, "Application of machine learning techniques for amplitude and phase noise characterization," Journal of Lightwave Technology, vol. 33, no. 7, pp. 1333-1343, 2015.
J. Tong, R. Song, Y. Liu, C. Wang, Q. Zhou, and W. Wang, "Enhanced synchronization of 5g integrated satellite systems in multipath channels," in 2020 International Conference on Computer Vision, Image and Deep Learning (CVIDL), 2020, pp. 617-621.
V.-P. Bui, T. Van Chien, E. Lagunas, J. Grotz, S. Chatzinotas, and B. Ottersten, "Robust congestion control for demandbased optimization in precoded multi-beam high throughput satellite communications," IEEE Transactions on Communications, vol. 70, no. 10, pp. 6918-6937, 2022.
L. Bai, Q. Xu, S. Wu, S. Ventouras, and G. Goussetis, "A Novel Atmosphere-Informed Data-Driven Predictive Channel Modeling for B5G/6G Satellite-Terrestrial Wireless Communication Systems at Q-Band," IEEE Transactions on Vehicular Technology, vol. 69, no. 12, pp. 14 225-14 237, 2020.
L. Bai, C.-X. Wang, Q. Xu, S. Ventouras, and G. Goussetis, "Prediction of Channel Excess Attenuation for Satellite Communication Systems at Q-Band Using Artificial Neural Network," IEEE Antennas and Wireless Propagation Letters, vol. 18, no. 11, pp. 2235-2239, 2019.
A. Cornejo, S. Landeros-Ayala, J. M. Matias, F. Ortiz-Gomez, R. Martinez, and M. Salas-Natera, "Method of Rain Attenuation Prediction Based on Long-Short Term Memory Network," Neural Processing Letters, vol. 54, no. 4, pp. 2959-2995, 2022.
A. Ferdowsi and D. Whitefield, "Deep Learning for Rain Fade Prediction in Satellite Communications," in 2021 IEEE Globecom Workshops (GC Wkshps), 2021, pp. 1-6.
M. Á. Vázquez, A. Perez-Neira, D. Christopoulos, S. Chatzinotas, B. Ottersten, P.-D. Arapoglou, A. Ginesi, and G. Taricco, "Precoding in multibeam satellite communications: Present and future challenges," IEEE Wireless Communications, vol. 23, no. 6, pp. 88-95, 2016.
R. Hunger, Floating point operations in matrix-vector calculus. Munich University of Technology, Inst. for Circuit Theory and Signal Processing, 2005.
M. Van de Kamp, "Short-term prediction of rain attenuation using two samples," Electronics Letters, vol. 38, no. 23, p. 1, 2002.
L. De Montera, C. Mallet, L. Barthès, and P. Golé, "Shortterm prediction of rain attenuation level and volatility in Earth-to-Satellite links at EHF band," Nonlinear Processes in Geophysics, vol. 15, no. 4, pp. 631-643, 2008.
T. Maseng and P. Bakken, "A Stochastic Dynamic Model of Rain Attenuation," IEEE Transactions on Communications, vol. 29, no. 5, pp. 660-669, 1981.
N. Jeannin, L. Castanet, I. Dahman, V. Pourret, and B. Pouponneau, "Smart gateways switching control algorithms based on tropospheric propagation forecasts," International Journal of Satellite Communications and Networking, vol. 37, no. 1, pp. 43-55, 2019.
C. Huang, R. He, B. Ai, A. F. Molisch, B. K. Lau, K. Haneda, B. Liu, C.-X. Wang, M. Yang, C. Oestges, and Z. Zhong, "Artificial Intelligence Enabled Radio Propagation for Communications- Part I: Channel Characterization and Antenna- Channel Optimization," IEEE Transactions on Antennas and Propagation, vol. 70, no. 6, pp. 3939-3954, 2022.
M. A. Vázquez, P. Henarejos, and L. Blanco, "Deep Gateway Switching," in 2022 27th Ka and Broadband Communications Conference (Ka) and the 39th International Communications Satellite Systems Conference (ICSSC), 2012.
P. Hailes, L. Xu, R. G. Maunder, B. M. Al-Hashimi, and L. Hanzo, "A survey of fpga-based ldpc decoders," IEEE Communications Surveys & Tutorials, vol. 18, no. 2, pp. 1098-1122, 2016.
M. Y. Zinchenko, A. M. Levadniy, and Y. A. Grebenko, "Ldpc decoder power consumption optimization," in 2020 International Youth Conference on Radio Electronics, Electrical and Power Engineering (REEPE), 2020, pp. 1-5.
J. Kang, J. S. An, and B. Wang, "An efficient fec encoder core for vcm leo satellite-ground communications," IEEE Access, vol. 8, pp. 125 692-125 701, 2020.
V. Pignoly, B. Le Gal, C. Jego, B. Gadat, and L. Barthe, "Fair comparison of hardware and software ldpc decoder implementations for sdr space links," in 2020 27th IEEE International Conference on Electronics, Circuits and Systems (ICECS), 2020, pp. 1-4.
K. Niu, J. Dai, K. Tan, and J. Gao, "Deep learning methods for channel decoding: A brief tutorial," in 2021 IEEE/CIC International Conference on Communications in China (ICCC), 2021, pp. 144-149.
E. Nachmani, Y. Be'ery, and D. Burshtein, "Learning to decode linear codes using deep learning," in 2016 54th Annual Allerton Conference on Communication, Control, and Computing (Allerton), 2016, pp. 341-346.
N. Agrawal, "Machine intelligence in decoding of forward error correction codes." Ph.D. dissertation, 10 2017.
L. Lugosch, Learning Algorithms for Error Correction, ser. McGill theses. McGill University Libraries, 2018. [Online]. Available: https://books.google.es/books?id= EyANugEACAAJ
A. Haroon, F. Hussain, and M. R. Bajwa, "Decoding of error correcting codes using neural networks," 2013.
P. Henarejos and M. Ángel Vázquez, "Decoding 5g-nr communications via deep learning," in ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2020, pp. 3782-3786.
L. Pellaco, M. Bengtsson, and J. Jaldén, "Matrix-inverse-free deep unfolding of the weighted mmse beamforming algorithm," IEEE Open Journal of the Communications Society, vol. 3, pp. 65-81, 2022.
T. Yoo and A. Goldsmith, "On the optimality of multiantenna broadcast scheduling using zero-forcing beamforming," IEEE Journal on Selected Areas in Communications, vol. 24, no. 3, pp. 528-541, 2006.
P. Viswanath, D. Tse, and R. Laroia, "Opportunistic beamforming using dumb antennas," IEEE Transactions on Information Theory, vol. 48, no. 6, pp. 1277-1294, 2002.
A. Guidotti and A. Vanelli-Coralli, "Geographical scheduling for multicast precoding in multi-beam satellite systems," in 2018 9th Advanced Satellite Multimedia Systems Conference and the 15th Signal Processing for Space Communications Workshop (ASMS/SPSC), 2018, pp. 1-8.
G. Taricco, "Linear precoding methods for multi-beam broadband satellite systems," in European Wireless 2014; 20th European Wireless Conference, 2014, pp. 1-6.
V. Joroughi, M. A. Vázquez, and A. I. Pérez-Neira, "Generalized multicast multibeam precoding for satellite communications," IEEE Transactions on Wireless Communications, vol. 16, no. 2, pp. 952-966, 2016.
M. Á. Vázquez, M. R. B. Shankar, C. I. Kourogiorgas, P.-D. Arapoglou, V. Icolari, S. Chatzinotas, A. D. Panagopoulos, and A. I. Pérez-Neira, "Precoding, Scheduling, and Link Adaptation in Mobile Interactive Multibeam Satellite Systems," IEEE Journal on Selected Areas in Communications, vol. 36, no. 5, pp. 971-980, 2018.
Z. Sha, Z. Wang, S. Chen, and L. Hanzo, "Graph theory based beam scheduling for inter-cell interference avoidance in mmwave cellular networks," IEEE Transactions on Vehicular Technology, vol. 69, no. 4, pp. 3929-3942, 2020.
S. Dimitrov, S. Erl, B. Barth, S. Jaeckel, A. Kyrgiazos, and B. G. Evans, "Radio resource management techniques for high throughput satellite communication systems," in 2015 European Conference on Networks and Communications (EuCNC). IEEE, 2015, pp. 175-179.
S. Zhang, M. Jia, Y. Wei, and Q. Guo, "User scheduling for multicast transmission in high throughput satellite systems," EURASIP Journal on Wireless Communications and Networking, vol. 2020, no. 1, p. 133, Jun 2020. [Online]. Available: https://doi.org/10.1186/s13638-020-01749-7
D. Christopoulos, S. Chatzinotas, and B. Ottersten, "Multicast multigroup precoding and user scheduling for frame-based satellite communications," IEEE Trans. Wireless Commun, vol. 14, p. 9, September 2015.
P. J. Honnaiah, E. Lagunas, S. Chatzinotas, and J. Krause, "Interference-aware demand-based user scheduling in precoded high throughput satellite systems," IEEE Open Journal of Vehicular Technology, vol. 3, pp. 120-137, 2022.
Y. D. Zhang and K. D. Pham, "Joint precoding and scheduling optimization in downlink multicell satellite communications," in 2020 54th Asilomar Conference on Signals, Systems, and Computers, 2020, pp. 480-484.
A. Bandi, B. S. Mysore R., S. Chatzinotas, and B. Ottersten, "Joint scheduling and precoding for frame-based multigroup multicasting in satellite communications," in 2019 IEEE Global Communications Conference (GLOBECOM), 2019, pp. 1-6.
A. Bandi, B. Shankar M. R, S. Chatzinotas, and B. Ottersten, "A joint solution for scheduling and precoding in multiuser MISO downlink channels," IEEE Transactions on Wireless Communications, vol. 19, no. 1, pp. 475-490, 2020.
A. Guidotti and A. Vanelli-Coralli, "Clustering strategies for multicast precoding in multibeam satellite systems," International Journal of Satellite Communications and Networking, vol. 38, no. 2, pp. 85-104, 2020. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/sat.1312
F. Ortiz, E. Lagunas, and S. Chatzinotas, "Unsupervised learning for user scheduling in multibeam precoded geo satellite systems," in 2022 Joint European Conference on Networks and Communications & 6G Summit (EuCNC/6G Summit), 2022, pp. 190-195.
F. Ortiz, E. Lagunas, and S. Chatzinotas, "Unsupervised learning for user scheduling in multibeam precoded geo satellite systems," in 2022 Joint European Conference on Networks and Communications & 6G Summit (EuCNC/6G Summit). IEEE, 2022, pp. 190-195.
Y. Chi, L. Liu, G. Song, C. Yuen, Y. L. Guan, and Y. Li, "Practical mimo-noma: Low complexity and capacity-approaching solution," IEEE Transactions on Wireless Communications, vol. 17, no. 9, pp. 6251-6264, 2018.
L. Liu, C. Yuen, Y. L. Guan, and Y. Li, "Capacity-achieving iterative lmmse detection for mimo-noma systems," in 2016 IEEE International Conference on Communications (ICC), 2016, pp. 1-6.
L. Liu, Y. Chi, C. Yuen, Y. L. Guan, and Y. Li, "Capacityachieving mimo-noma: Iterative lmmse detection," IEEE Transactions on Signal Processing, vol. 67, no. 7, pp. 1758-1773, 2019.
J. Jiao, Y. Sun, S. Wu, Y. Wang, and Q. Zhang, "Network utility maximization resource allocation for noma in satellitebased internet of things," IEEE Internet of Things Journal, vol. 7, no. 4, pp. 3230-3242, 2020.
B. Makki, K. Chitti, A. Behravan, and M.-S. Alouini, "A survey of noma: Current status and open research challenges," IEEE Open Journal of the Communications Society, vol. 1, pp. 179-189, 2020.
J. Zhao, X. Yue, S. Kang, and W. Tang, "Joint effects of imperfect csi and sic on noma based satellite-terrestrial systems," IEEE Access, vol. 9, pp. 12 545-12 554, 2021.
S. Xie, B. Zhang, D. Guo, and W. Ma, "Outage performance of noma-based integrated satellite-terrestrial networks with imperfect csi," Electronics Letters, vol. 55, no. 14, pp. 793-795, 2019. [Online]. Available: https://ietresearch.onlinelibrary. wiley.com/doi/abs/10.1049/el.2018.7839
V. Andiappan and V. Ponnusamy, "Deep learning enhanced noma system: A survey on future scope and challenges," Wireless Personal Communications, vol. 123, no. 1, pp. 839-877, Mar 2022. [Online]. Available: https://doi.org/10. 1007/s11277-021-09160-1
X. Yan, K. An, Q. Zhang, G. Zheng, S. Chatzinotas, and J. Han, "Delay constrained resource allocation for NOMA enabled satellite internet of things with deep reinforcement learning," IEEE Internet of Things Journal, 2020.
A. Wang, L. Lei, E. Lagunas, S. Chatzinotas, and B. Ottersten, "Dual-dnn assisted optimization for efficient resource scheduling in noma-enabled satellite systems," in 2021 IEEE Global Communications Conference (GLOBECOM), 2021, pp. 1-6.
Q. Liu, J. Jiao, S. Wu, R. Lu, and Q. Zhang, "Deep reinforcement learning-assisted noma age-optimal power allocation for s-iot network," in ICC 2022 - IEEE International Conference on Communications, 2022, pp. 1823-1828.
Y. Sun, Y. Wang, J. Jiao, S. Wu, and Q. Zhang, "Deep learning-based long-term power allocation scheme for NOMA downlink system in S-IoT," IEEE Access, vol. 7, pp. 86 288-86 296, 2019.
J. Luo, J. Tang, D. K. C. So, G. Chen, K. Cumanan, and J. A. Chambers, "A deep learning-based approach to power minimization in multi-carrier noma with swipt," IEEE Access, vol. 7, pp. 17 450-17 460, 2019.
A. Wang, L. Lei, E. Lagunas, S. Chatzinotas, and B. Ottersten, "Completion time minimization in noma systems: Learning for combinatorial optimization," IEEE Networking Letters, vol. 3, no. 1, pp. 15-18, 2021.
X. Yan, K. An, C.-X. Wang, W.-P. Zhu, Y. Li, and Z. Feng, "Genetic algorithm optimized support vector machine in nomabased satellite networks with imperfect csi," in ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2020, pp. 8817-8821.
Y. Mao, B. Clerckx, and V. O. Li, "Rate-splitting multiple access for downlink communication systems: bridging, generalizing, and outperforming sdma and noma," EURASIP Journal on Wireless Communications and Networking, vol. 2018, no. 1, p. 133, May 2018. [Online]. Available: https://doi.org/10.1186/s13638-018-1104-7
Y. Mao, B. Clerckx, and V. O. Li, "Energy efficiency of rate-splitting multiple access, and performance benefits over sdma and noma," in 2018 15th International Symposium on Wireless Communication Systems (ISWCS), 2018, pp. 1-5.
B. Clerckx, Y. Mao, E. Jorswieck, J. Yuan, D. Love, E. Erkip, and D. Niyato, "A primer on rate-splitting multiple access: Tutorial, myths, and frequently asked questions," 09 2022.
S. Gamal, M. Rihan, S. Hussin, A. Zaghloul, and A. A. Salem, "Multiple access in cognitive radio networks: From orthogonal and non-orthogonal to rate-splitting," IEEE Access, vol. 9, pp. 95 569-95 584, 2021.
L. Yin and B. Clerckx, "Rate-splitting multiple access for multigroup multicast and multibeam satellite systems," IEEE Transactions on Communications, vol. 69, no. 2, pp. 976-990, 2020.
L. Yin and B. Clerckx, "Rate-splitting multiple access for multibeam satellite communications," in 2020 IEEE International Conference on Communications Workshops (ICC Workshops), 2020, pp. 1-6.
Z. W. Si, L. Yin, and B. Clerckx, "Rate-splitting multiple access for multigateway multibeam satellite systems with feeder link interference," IEEE Transactions on Communications, vol. 70, no. 3, pp. 2147-2162, 2022.
X. Li, Y. Fan, R. Yao, P. Wang, N. Qi, N. I. Miridakis, and T. A. Tsiftsis, "Rate-splitting multiple access-enabled security analysis in cognitive satellite terrestrial networks," IEEE Transactions on Vehicular Technology, vol. 71, no. 11, pp. 11 756-11 771, 2022.
Q. Zhang and L. Zhu, "A deep learning approach for downlink sum rate maximization in satellite-terrestrial integrated network," in 2022 International Symposium on Networks, Computers and Communications (ISNCC), 2022, pp. 1-5.
Q. Zhang, L. Zhu, S. Jiang, and X. Tang, "Deep unfolding for cooperative rate splitting multiple access in hybrid satellite terrestrial networks," China Communications, vol. 19, no. 7, pp. 100-109, 2022.
J. Huang, Y. Yang, L. Yin, D. He, and Q. Yan, "Deep reinforcement learning-based power allocation for rate-splitting multiple access in 6g leo satellite communication system," IEEE Wireless Communications Letters, vol. 11, no. 10, pp. 2185-2189, 2022.
A. Vanelli-Coralli, A. Guidotti, T. Foggi, G. Colavolpe, and G. Montorsi, "5g and beyond 5g non-terrestrial networks: trends and research challenges," in 2020 IEEE 3rd 5G World Forum (5GWF), 2020, pp. 163-169.
M. Werner, C. Delucchi, H.-J. Vogel, G. Maral, and J.-J. De Ridder, "Atm-based routing in leo/meo satellite networks with intersatellite links," IEEE Journal on Selected Areas in Communications, vol. 15, no. 1, pp. 69-82, 1997.
G. Stock, J. A. Fraire, and H. Hermanns, "Distributed ondemand routing for leo mega-constellations: A starlink case study," in 2022 11th Advanced Satellite Multimedia Systems Conference and the 17th Signal Processing for Space Communications Workshop (ASMS/SPSC), 2022, pp. 1-8.
N. Razmi, B. Matthiesen, A. Dekorsy, and P. Popovski, "Onboard federated learning for dense leo constellations," in ICC 2022 - IEEE International Conference on Communications, 2022, pp. 4715-4720.
C. Qiu, H. Yao, F. R. Yu, F. Xu, and C. Zhao, "Deep qlearning aided networking, caching, and computing resources allocation in software-defined satellite-terrestrial networks," IEEE Transactions on Vehicular Technology, vol. 68, no. 6, pp. 5871-5883, 2019.
N. Kato, Z. M. Fadlullah, F. Tang, B. Mao, S. Tani, A. Okamura, and J. Liu, "Optimizing space-air-ground integrated networks by artificial intelligence," IEEE Wireless Communications, vol. 26, no. 4, pp. 140-147, 2019.
A. Cigliano and F. Zampognaro, "A machine learning approach for routing in satellite mega-constellations," in 2020 International Symposium on Advanced Electrical and Communication Technologies (ISAECT), 2020, pp. 1-6.
D. A. Tubiana, J. Farhat, G. Brante, and R. D. Souza, "Qlearning NOMA random access for IoT-satellite terrestrial relay networks," IEEE Wireless Communications Letters, vol. 11, no. 8, pp. 1619-1623, 2022.
O. Liberg, S. E. Löwenmark, S. Euler, B. Hofström, T. Khan, X. Lin, and J. Sedin, "Narrowband internet of things for non-terrestrial networks," IEEE Communications Standards Magazine, vol. 4, no. 4, pp. 49-55, 2020.
R. De Gaudenzi, O. Del Rio Herrero, G. Gallinaro, S. Cioni, and P. Arapoglou, "Random access schemes for satellite networks, from VSAT to M2M: a survey," International journal of satellite communications and networking, vol. 36, no. 1, pp. 66-107, 2018.
C. Kissling and A. M. Dlr, "On the integration of random access and DAMA channels for the return link of satellite networks," in 2013 IEEE International Conference on Communications (ICC), 2013, pp. 4282-4287.
R. De Gaudenzi and O. del Rio Herrero, "Advances in random access protocols for satellite networks," in 2009 International Workshop on Satellite and Space Communications, 2009, pp. 331-336.
B. Zhao, G. Ren, X. Dong, and H. Zhang, "Distributed qlearning based joint relay selection and access control scheme for iot-oriented satellite terrestrial relay networks," IEEE Communications Letters, vol. 25, no. 6, pp. 1901-1905, 2021.
M. V. da Silva, R. D. Souza, H. Alves, and T. Abrão, "A noma-based q-learning random access method for machine type communications," IEEE Wireless Communications Letters, vol. 9, no. 10, pp. 1720-1724, 2020.
D. Zhou, M. Sheng, Y. Wang, J. Li, and Z. Han, "Machine learning-based resource allocation in satellite networks supporting internet of remote things," IEEE Transactions on Wireless Communications, vol. 20, no. 10, pp. 6606-6621, 2021.
D. de la Torre, F. G. Ortiz-Gomez, M. Salas-Natera, and R. Martínez, "Analysis of the traffic demand on very high throughput satellite for 5g," in Proceedings of the XXXV Simposio Nacional de la Unión Científica Internacional de Radio (URSI 2020), Malaga, Spain, 2020, pp. 2-4.
J. Wu, Y. Peng, M. Song, M. Cui, and L. Zhang, "Link congestion prediction using machine learning for softwaredefined- network data plane," in 2019 International Conference on Computer, Information and Telecommunication Systems (CITS). IEEE, 2019, pp. 1-5.
Y. Li, R. Yu, C. Shahabi, and Y. Liu, "Diffusion convolutional recurrent neural network: Data-driven traffic forecasting," in International Conference on Learning Representations (ICLR '18), 2018.
L. Lei, Y. Yuan, T. X. Vu, S. Chatzinotas, M. Minardi, and J. F. M. Montoya, "Dynamic-adaptive ai solutions for network slicing management in satellite-integrated b5g systems," IEEE Network, vol. 35, no. 6, pp. 91-97, 2021.
T. K. Rodrigues and N. Kato, "Network slicing with centralized and distributed reinforcement learning for combined satellite/ ground networks in a 6g environment," vol. 29, no. 1, pp. 104-110, conference Name: IEEE Wireless Communications.
I. Bisio, F. Lavagetto, G. Verardo, and T. de Cola, "Network slicing optimization for integrated 5g-satellite networks," in 2019 IEEE Global Communications Conference (GLOBECOM), pp. 1-6, ISSN: 2576-6813.
H. Linder, H. Clausen, and B. Collini-Nocker, "Satellite internet services using dvb/mpeg-2 and multicast web caching," IEEE Communications Magazine, vol. 38, no. 6, pp. 156-161, 2000.
C. Brinton, E. Aryafar, S. Corda, S. Russo, R. Reinoso, and M. Chiang, "An intelligent satellite multicast and caching overlay for cdns to improve performance in video applications," in Proc. AIAA Int. Commun. Satellite Syst. Conf., 2013, pp. 386-391.
S. Semanjski, A. Muls, I. Semanjski, and W. De Wilde, "Use and validation of supervised machine learning approach for detection of GNSS signal spoofing," in 2019 International Conference on Localization and GNSS (ICL-GNSS), Jun. 2019, pp. 1-6.
F. Gallardo and A. P. Yuste, "SCER spoofing attacks on the Galileo open service and machine learning techniques for enduser protection," IEEE Access, vol. 8, pp. 85 515-85 532, 2020.
S. Semanjski, I. Semanjski, W. De Wilde, and A. Muls, "Use of supervised machine learning for GNSS signal spoofing detection with validation on real-world meaconing and spoofing data-part i," Sensors, vol. 20, no. 4, Feb. 2020.
Q. Wu, C. Feres, D. Kuzmenko, D. Zhi, Z. Yu, X. Liu, and X. 'Leo' Liu, "Deep learning based RF fingerprinting for device identification and wireless security," Electron. Lett., vol. 54, no. 24, pp. 1405-1407, Nov. 2018.
N. Soltanieh, Y. Norouzi, Y. Yang, and N. C. Karmakar, "A review of radio frequency fingerprinting techniques," IEEE J. Radio Freq. Identification, vol. 4, no. 3, pp. 222-233, Jan. 2020.
T. Jian, B. C. Rendon, E. Ojuba, N. Soltani, Z. Wang, K. Sankhe, A. Gritsenko, J. Dy, K. Chowdhury, and S. Ioannidis, "Deep learning for rf fingerprinting: A massive experimental study," IEEE Internet Things Mag., vol. 3, no. 1, pp. 50-57, Mar. 2020.
J.-Y. Liu, H.-J. Ding, C.-M. Zhang, S.-P. Xie, and Q. Wang, "Practical phase-modulation stabilization in quantum key distribution via machine learning," Phys. Rev. Applied, vol. 12, p. 014059, Jul. 2019.
W. Wang and H.-K. Lo, "Machine learning for optimal parameter prediction in quantum key distribution," Phys. Rev. A, vol. 100, p. 062334, Dec. 2019.
Z.-A. Ren, Y.-P. Chen, J.-Y. Liu, H.-J. Ding, and Q. Wang, "Implementation of machine learning in quantum key distributions," IEEE Commun. Lett., vol. 25, no. 3, pp. 940-944, Mar. 2021.
3GPP, "System architecture for the 5G System (5GS)," 3rd Generation Partnership Project (3GPP), Technical Specification (TS) 23.501, 12 2021, version 17.3.0. [Online]. Available: http://www.3gpp.org/DynaReport/23501.htm
3GPP, "Management and orchestration; Concepts, use cases and requirements," 3rd Generation Partnership Project (3GPP), Technical Specification (TS) 28.530, 12 2021, version 17.2.0. [Online]. Available: http://www.3gpp.org/DynaReport/28530. Htm
B. Tiomela Jou, O. Vidal, P. Foulon, D. Pham- Minh, I. Keesmaat, M. Boutin, S. Watts, C. Politis, K. Liolis, R. Sperber, P. S. Khodashenas, and L. Goratti, "Integrated SaT5g general network architecture," issue: D3.1. [Online]. Available: https://www. sat5g-project.eu/wp-content/uploads/2019/04/SaT5G-D3. 1-Integrated-SaT5G-general-network-architecture_ADS_v1. 00_Inter....pdf
B. T. Jou, O. Vidal, J. Cahill, F. Arnal, L.-M. Honssin, M. Boutin, and D. K. Chau, "Architecture options for satellite integration into 5g networks," in 2018 European Conference on Networks and Communications (EuCNC), pp. 398-9, ISSN: 2575-4912.
T. Ahmed, A. Alleg, R. Ferrus, and R. Riggio, "On-demand network slicing using SDN/NFV-enabled satellite ground segment systems," in 2018 4th IEEE Conference on Network Softwarization and Workshops (NetSoft), pp. 242-246.
Y. Drif, E. Chaput, E. Lavinal, P. Berthou, B. Tiomela Jou, O. Gremillet, and F. Arnal, "An extensible network slicing framework for satellite integration into 5g," International Journal of Satellite Communications and Networking, vol. 39, no. 4, pp. 339-357, 2021.
Y. Drif, E. Lavinal, E. Chaput, P. Berthou, B. T. Jou, O. Grémillet, and F. Arnal, "Slice aware non terrestrial networks," in 2021 IEEE 46th Conference on Local Computer Networks (LCN), 2021, pp. 24-31.
O. Kodheli, A. Guidotti, and A. Vanelli-Coralli, "Integration of satellites in 5g through leo constellations," in GLOBECOM 2017-2017 IEEE Global Communications Conference, 2017, pp. 1-6.
O. Kodheli, A. Astro, J. Querol, M. Gholamian, S. Kumar, N. Maturo, and S. Chatzinotas, "Random access procedure over non-terrestrial networks: From theory to practice," vol. 9, pp. 109 130-109 143, conference Name: IEEE Access.
P. Mach and Z. Becvar, "Mobile edge computing: A survey on architecture and computation offloading," IEEE Communications Surveys & Tutorials, vol. 19, no. 3, pp. 1628-1656, 2017.
S. Wang, X. Zhang, Y. Zhang, L. Wang, J. Yang, and W. Wang, "A survey on mobile edge networks: Convergence of computing, caching and communications," IEEE Access, vol. 5, pp. 6757-6779, 2017.
L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker, "Web caching and zipf-like distributions: evidence and implications," in IEEE INFOCOM '99. Conference on Computer Communications. Proceedings. Eighteenth Annual Joint Conference of the IEEE Computer and Communications Societies. The Future is Now (Cat. No.99CH36320), vol. 1, 1999, pp. 126-134 vol.1.
Z. Zhang, W. Zhang, and F.-H. Tseng, "Satellite mobile edge computing: Improving qos of high-speed satellite-terrestrial networks using edge computing techniques," IEEE Network, vol. 33, no. 1, pp. 70-76, 2019.
Pierluigi Paganini. (2015, Aug.) Hacking the Iridium network could be very easy. Security Affairs. [Online]. Available: https://securityaffairs.co/wordpress/39510/ hacking/hacking-iridium-network.html
Z. Wu, Y. Zhang, Y. Yang, C. Liang, and R. Liu, "Spoofing and anti-spoofing technologies of global navigation satellite system: A survey," IEEE Access, vol. 8, pp. 165 444-165 496, 2020.
P. Yue, J. An, J. Zhang, G. Pan, S. Wang, P. Xiao, and L. Hanzo, "On the security of LEO satellite communication systems: Vulnerabilities, countermeasures, and future trends," arXiv preprint arXiv:2201.03063, Jan. 2022.
W. Akoto. (2020, Feb.) Hackers could shut down satellites-or turn them into weapons. The Conversation. [Online]. Available: https://theconversation.com/ hackers-could-shut-down-satellites-or-turn-them-into-weapons-130932
N. Rodríguez-Barroso, D. Jiménez-López, M. V. Luzón, F. Herrera, and E. Martínez-Cámara, "Survey on federated learning threats: Concepts, taxonomy on attacks and defences, experimental study and challenges," Inf. Fusion, vol. 90, pp. 148-173, Feb. 2023.
H. Cruickshank, "A security system for satellite networks," in Proc. Fifth Satellite Systems for Mobile Commun. and Navigation. IET, May 1996, pp. 187-190.
M.-S. Hwang, C.-C. Yang, and C.-Y. Shiu, "An authentication scheme for mobile satellite communication systems," SIGOPS Oper. Syst. Rev., vol. 37, no. 4, p. 42-47, Oct. 2003.
X. Deng, J. Shao, L. Chang, and J. Liang, "A blockchainbased authentication protocol using cryptocurrency technology in LEO satellite networks," Electronics, vol. 10, no. 24, 2021.
E. Jedermann, M. Strohmeier, M. Schäfer, J. Schmitt, and V. Lenders, "Orbit-based authentication using tdoa signatures in satellite networks," in Proceedings of the 14th ACM Conference on Security and Privacy in Wireless and Mobile Networks, 2021, p. 175-180.
Y. Liu, L. Ni, and M. Peng, "A secure and efficient authentication protocol for satellite-terrestrial networks," IEEE Internet Things J., 2022, early access.
H. Fang, X. Wang, and S. Tomasin, "Machine learning for intelligent authentication in 5G and beyond wireless networks," IEEE Wireless Commun., vol. 26, no. 5, pp. 55-61, Oct. 2019.
W. M. Mahmoud, D. Elfiky, S. M. Robaa, M. S. Elnawawy, and S. M. Yousef, "Effect of atomic Oxygen on LEO cubesat," Int. J. Aeronaut. Space Sci., vol. 22, no. 3, pp. 726-733, Jun. 2021.
S. Qiu, K. Sava, and W. Guo, "Robust satellite antenna fingerprinting under degradation using recurrent neural network," Mod. Phys. Lett. B, vol. 36, no. 12, p. 2250043, Apr. 2022.
C. Jiang, X. Wang, J. Wang, H.-H. Chen, and Y. Ren, "Security in space information networks," IEEE Commun. Mag., vol. 53, no. 8, pp. 82-88, Aug. 2015.
S. Lohani and R. Joshi, "Satellite network security," in 2020 International Conference on Emerging Trends in Communication, Control and Computing (ICONC3), Feb. 2020, pp. 1-5.
J. Ma, R. Shrestha, J. Adelberg, C.-Y. Yeh, Z. Hossain, E. Knightly, J. M. Jornet, and D. M. Mittleman, "Security and eavesdropping in terahertz wireless links," Nature, vol. 563, no. 7729, pp. 89-93, Nov. 2018.
B. Li, Z. Fei, C. Zhou, and Y. Zhang, "Physical-layer security in space information networks: A survey," IEEE Internet Things J., vol. 7, no. 1, pp. 33-52, Sep. 2020.
Y. Huang, J. Wang, C. Zhong, T. Q. Duong, and G. K. Karagiannidis, "Secure transmission in cooperative relaying networks with multiple antennas," IEEE Trans. Wireless Commun., vol. 15, no. 10, pp. 6843-6856, Jul. 2016.
N. Zhao, F. R. Yu, M. Li, Q. Yan, and V. C. M. Leung, "Physical layer security issues in interference- alignment-based wireless networks," IEEE Commun. Mag., vol. 54, no. 8, pp. 162-168, Aug. 2016.
M. G. Schraml, A. Knopp, and K.-U. Storek, "Multi-user MIMO satellite communications with secrecy constraints," in MILCOM 2019-2019 IEEE Military Communications Conference (MILCOM), Nov. 2019, pp. 17-22.
M. G. Schraml, R. T. Schwarz, and A. Knopp, "Multiuser MIMO concept for physical layer security in multibeam satellite systems," IEEE Trans. Inf. Forensics Security, vol. 16, pp. 1670-1680, Nov. 2021.
C. Gidney and M. Ekerå, "How to factor 2048 bit RSA integers in 8 hours using 20 million noisy qubits," Quantum, vol. 5, p. 433, Apr. 2021.
C. H. Bennett and G. Brassard, "Quantum cryptography: Public key distribution and coin tossing," in Proceedings of IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, India. New York: IEEE, Dec. 1984, pp. 175-179.
A. K. Ekert, "Quantum cryptography based on Bell's theorem," Phys. Rev. Lett., vol. 67, pp. 661-663, Aug. 1991.
H.-K. Lo, M. Curty, and B. Qi, "Measurement-deviceindependent quantum key distribution," Phys. Rev. Lett., vol. 108, p. 130503, Mar 2012.
R. Renner, "Security of quantum key distribution," Ph.D. dissertation, Swiss Federal Institute of Technology, Zurich, Switzerland, 2005.
M. Curty, F. Xu, W. Cui, C. C. W. Lim, K. Tamaki, and H.-K. Lo, "Finite-key analysis for measurement-device-independent quantum key distribution," Nat. Commun., vol. 5, Apr. 2014.
M. Tomamichel, C. C. W. Lim, N. Gisin, and R. Renner, "Tight finite-key analysis for quantum cryptography," Nat. Commun., vol. 3, p. 634, Jan. 2012.
R. Renner and R. Wolf, "Quantum advantage in cryptography," arXiv preprint arxiv:2206.04078, 2022.
J. ur Rehman, Y. Jeong, and H. Shin, "Quantum key distribution with a control key," in 2017 Int. Symp. Wireless Commun. Systems (ISWCS), Aug. 2017, pp. 112-116.
J. ur Rehman, S. Qaisar, Y. Jeong, and H. Shin, "Security of a control key in quantum key distribution," Mod. Phys. Lett. B, vol. 31, no. 11, p. 1750119, Apr. 2017.
S.-K. Liao, W.-Q. Cai, W.-Y. Liu, L. Zhang, Y. Li, J.-G. Ren, J. Yin, Q. Shen, Y. Cao, Z.-P. Li, F.-Z. Li, X.-W. Chen, L.- H. Sun, J.-J. Jia, J.-C. Wu, X.-J. Jiang, J.-F. Wang, Y.-M. Huang, Q. Wang, Y.-L. Zhou, L. Deng, T. Xi, L. Ma, T. Hu, Q. Zhang, Y.-A. Chen, N.-L. Liu, X.-B. Wang, Z.-C. Zhu, C.-Y. Lu, R. Shu, C.-Z. Peng, J.-Y. Wang, and J.-W. Pan, "Satelliteto- ground quantum key distribution," Nature, vol. 549, no. 7670, pp. 43-47, Sep. 2017.
S.-K. Liao, W.-Q. Cai, J. Handsteiner, B. Liu, J. Yin, L. Zhang, D. Rauch, M. Fink, J.-G. Ren, W.-Y. Liu, Y. Li, Q. Shen, Y. Cao, F.-Z. Li, J.-F. Wang, Y.-M. Huang, L. Deng, T. Xi, L. Ma, T. Hu, L. Li, N.-L. Liu, F. Koidl, P. Wang, Y.-A. Chen, X.-B. Wang, M. Steindorfer, G. Kirchner, C.-Y. Lu, R. Shu, R. Ursin, T. Scheidl, C.-Z. Peng, J.-Y. Wang, A. Zeilinger, and J.-W. Pan, "Satellite-relayed intercontinental quantum network," Phys. Rev. Lett., vol. 120, p. 030501, Jan. 2018.
S. Pirandola, "Satellite quantum communications: Fundamental bounds and practical security," Physical Review Research, vol. 3, no. 2, p. 023130, 2021.
S. Wang, W. Chen, Z.-Q. Yin, D.-Y. He, C. Hui, P.-L. Hao, G.-J. Fan-Yuan, C. Wang, L.-J. Zhang, J. Kuang, S.-F. Liu, Z. Zhou, Y.-G. Wang, G.-C. Guo, and Z.-F. Han, "Practical gigahertz quantum key distribution robust against channel disturbance," Opt. Lett., vol. 43, no. 9, pp. 2030-2033, May 2018.
H.-M. Chin, N. Jain, D. Zibar, U. L. Andersen, and T. Gehring, "Machine learning aided carrier recovery in continuous-variable quantum key distribution," npj Quantum Inf., vol. 7, no. 1, p. 20, Feb 2021.
H. Choi and S. Pack, "Cooperative downloading for leo satellite networks: A drl-based approach," Sensors, vol. 22, no. 18, p. 6853, 2022.
L. Dalin, W. Haijiao, Y. Zhen, G. Yanfeng, and S. Shi, "An online distributed satellite cooperative observation scheduling algorithm based on multiagent deep reinforcement learning," IEEE Geoscience and Remote Sensing Letters, vol. 18, no. 11, pp. 1901-1905, 2020.
R. Deng, B. Di, H. Zhang, L. Kuang, and L. Song, "Ultradense leo satellite constellations: How many leo satellites do we need?" IEEE Transactions on Wireless Communications, vol. 20, no. 8, pp. 4843-4857, 2021.
R. Radhakrishnan, W. W. Edmonson, F. Afghah, R. M. Rodriguez-Osorio, F. Pinto, and S. C. Burleigh, "Survey of inter-satellite communication for small satellite systems: Physical layer to network layer view," IEEE Communications Surveys & Tutorials, vol. 18, no. 4, pp. 2442-2473, 2016.
B. Palmintier, C. Kitts, P. Stang, and M. Swartwout, "A distributed computing architecture for small satellite and multi-spacecraft missions," 2002.
G. Ghiasi, T.-Y. Lin, and Q. V. Le, "Nas-fpn: Learning scalable feature pyramid architecture for object detection," in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2019, pp. 7036-7045.
V. Monzon Baeza, F. Ortiz, E. Lagunas, T. S. Abdu, and S. Chatzinotas, "Gateway station geographical planning for emerging non-geostationary satellites constellations," IEEE Network, vol. 38, no. 4, pp. 158-165, 2024.
Y. Abe, F. Ortiz, E. Lagunas, V. M. Baeza, S. Chatzinotas, and H. Tsuji, "Optimizing satellite network infrastructure: A joint approach to gateway placement and routing," in 2024 IEEE 99th Vehicular Technology Conference (VTC2024- Spring), 2024, pp. 1-6.
I. del Portillo Barrios, B. Cameron, and E. Crawley, "Ground segment architectures for large leo constellations with feeder links in ehf-bands," 03 2018, pp. 1-14.
E. Juan, M. Lauridsen, J. Wigard, and P. E. Mogensen, "5g new radio mobility performance in leo-based non-terrestrial networks," in 2020 IEEE Globecom Workshops (GC Wkshps, 2020, pp. 1-6.
N. K. Lyras, C. N. Efrem, C. I. Kourogiorgas, A. D. Panagopoulos, and P.-D. Arapoglou, "Optimizing the ground network of optical meo satellite communication systems," IEEE Systems Journal, vol. 14, no. 3, pp. 3968-3976, 2020.
N. Torkzaban, A. Gholami, J. S. Baras, and C. Papagianni, "Joint satellite gateway placement and routing for integrated satellite-terrestrial networks," in ICC 2020-2020 IEEE International Conference on Communications (ICC), 2020, pp. 1-6.
A. Alvaro, L. Pascual, A. Abad, P. Pinto, A. Alvarez- Herrero, T. Belenguer, C. Miravet, P. Campo, L. F. Rodriguez, M. Reyes, J. Socas, and J. Bermejo, "Caramuel: The future of space quantum key distribution in geo," in 2022 IEEE International Conference on Space Optical Systems and Applications (ICSOS), 2022, pp. 57-65.
C. N. Efrem and A. D. Panagopoulos, "Globally optimal selection of ground stations in satellite systems with site diversity," IEEE Wireless Communications Letters, vol. 9, no. 7, pp. 1101-1104, 2020.
H. Dahrouj, R. Alghamdi, H. Alwazani, S. Bahanshal, A. A. Ahmad, A. Faisal, R. Shalabi, R. Alhadrami, A. Subasi, M. T. Al-Nory, O. Kittaneh, and J. S. Shamma, "An overview of machine learning-based techniques for solving optimization problems in communications and signal processing," IEEE Access, vol. 9, pp. 74 908-74 938, 2021.
K. Çelikbilek, Z. Saleem, R. Morales Ferre, J. Praks, and E. S. Lohan, "Survey on optimization methods for leo-satellitebased networks with applications in future autonomous transportation," Sensors, vol. 22, no. 4, 2022. [Online]. Available: https://www.mdpi.com/1424-8220/22/4/1421
S. C. Cripps, RF power amplifiers for wireless communications. Artech house Norwood, MA, 2006, vol. 2.
E. McCune, "Chapter 3 - transmitter linearity and energy efficiency," in Linearization and Efficiency Enhancement Techniques for Silicon Power Amplifiers, E. Kerhervé and D. Belot, Eds. Oxford: Academic Press, 2015, pp. 55-81. [Online]. Available: https://www.sciencedirect.com/science/ article/pii/B9780124186781000039
T. Kobal, Y. Li, X. Wang, and A. Zhu, "Digital predistortion of rf power amplifiers with phase-gated recurrent neural networks," IEEE Transactions on Microwave Theory and Techniques, 2022.
Y. Zhang, Y. Li, F. Liu, and A. Zhu, "Vector decomposition based time-delay neural network behavioral model for digital predistortion of rf power amplifiers," IEEE Access, vol. 7, pp. 91 559-91 568, 2019.
X. Chen, Z. Lu, S. Zhang, S. Xu, and Y. Wang, "An intermodulation oriented learning based digital pre-distortion technique via joint intermediate and radio frequency optimization," IEEE Transactions on Wireless Communications, 2022.
L. Sun, P. Chu, and R. Zhu, "Navigation signal radio frequency channel modeling and predistortion technology based on artificial intelligence technology and neural network," Mobile Information Systems, vol. 2022, 2022.
M. S. Elbamby, C. Perfecto, C.-F. Liu, J. Park, S. Samarakoon, X. Chen, and M. Bennis, "Wireless edge computing with latency and reliability guarantees," Proceedings of the IEEE, vol. 107, no. 8, pp. 1717-1737, 2019.
E. Lagunas, F. Ortiz, G. Eappen, S. Daoud, W. A. Martins, J. Querol, S. Chatzinotas, N. Skatchkovsky, B. Rajendran, and O. Simeone, "Performance evaluation of neuromorphic hardware for onboard satellite communication applications," arXiv preprint arXiv:2401.06911, 2024.
AMD Inc., "First space-grade Versal AI Core devices to ship early 2023," p. 1, nov 2022. [Online]. Available: https://www. amd.com/en/press-releases/2022-11-15-amd-announces\ -completion-class-b-qualification-for-first-space-grade
G. Pang, "The AI Chip Race," IEEE Intelligent Systems, vol. 37, no. 2, pp. 111-112, 2022, accessed: 2022-9.
I. Rodriguez, L. Kosmidis, O. Notebaert, F. J. Cazorla, and D. Steenari, "An On-board Algorithm Implementation on an Embedded GPU: A Space Case Study," in Design, Automation and Test in Europe Conference and Exhibition, DATE 2020. Grenoble, France: Institute of Electrical and Electronics Engineers Inc., mar 2020, pp. 1718-1719.
AMD XILINX Inc., "Versal Architecture and Product Data Sheet: Overview," AMD XILINX Inc., San Jose, CA, Data Sheet, nov 2022.
NVIDIA Corp., "NVIDIA Jetson AGX Orin Series," Tech. Rep., mar 2022. [Online]. Available: http://ci.nii.ac.jp/naid/ 40005137127/
AMD XILINX Inc., "AI Inference with Versal AI Core Series," AMD XILINX Inc., San Jose, CA, Tech. Rep., 2022.
Qualcomm, "Qualcomm Cloud AI 100 Purpose-built for high performance, low-power AI processing in the cloud." Qualcomm Technologies Inc., Tech. Rep., 2020.
Qualcomm, "Qualcomm Cloud AI 100 Edge Development Kit," Qualcomm Technologies Inc., Product Brief, 2020. [Online]. Available: https://www.qualcomm.com/products/ cloud-artificial-intelligence/cloud-ai
XILINX Inc., "AI Core Series Versal" AI Core Series Product Selection Guide," XILINX Inc., Product Selection Guide, 2019.
iWave Systems, "Versal AI Edge/Prime SOM - iWave Systems," p. 1, 2023. [Online]. Available: https://www.iwavesystems.com/product/ versal-ai-edge-system-on-module/
T. electronic, "TE0950 AMD Versal" AI Edge Evaluation board," https://shop.trenz-electronic.de/en/ TE0950-02-EGBE21A-AMD-Versal-AI-Edge-Evalboard-with-VE2302-1LSE-8-GB-DDR4-SDRAM-15x12-cm/, p. 1, 2023.
F. Akopyan, J. Sawada, A. Cassidy, R. Alvarez-Icaza, J. Arthur, P. Merolla, N. Imam, Y. Nakamura, P. Datta, G.-J. Nam, B. Taba, M. Beakes, B. Brezzo, J. B. Kuang, R. Manohar, W. P. Risk, B. Jackson, and D. S. Modha, "Truenorth: Design and tool flow of a 65 mw 1 million neuron programmable neurosynaptic chip," IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 34, no. 10, pp. 1537-1557, 2015.
M. Davies, N. Srinivasa, T. Lin, G. Chinya, Y. Cao, S. H. Choday, G. Dimou, P. Joshi, N. Imam, S. Jain, Y. Liao, C. Lin, A. Lines, R. Liu, D. Mathaikutty, S. McCoy, A. Paul, J. Tse, G. Venkataramanan, Y. Weng, A. Wild, Y. Yang, and H. Wang, "Loihi: A Neuromorphic Manycore Processor with On-Chip Learning," IEEE Micro, vol. 38, no. 1, pp. 82-99, Jan 2018.
S. Furber and P. Bogdan, Eds., SpiNNaker - A spiking neural network architecture, ser. NowOpen. Hanover, MD: now, Mar. 2020.
J. Schemmel, A. Grübl, S. Hartmann, A. Kononov, C. Mayr, K. Meier, S. Millner, J. Partzsch, S. Schiefer, S. Scholze, R. Schüffny, and M.-O. Schwartz, "Live demonstration: A scaled-down version of the brainscales wafer-scale neuromorphic system," in 2012 IEEE International Symposium on Circuits and Systems (ISCAS), 2012, pp. 702-702.
B. V. Benjamin, P. Gao, E. McQuinn, S. Choudhary, A. R. Chandrasekaran, J.-M. Bussat, R. Alvarez-Icaza, J. V. Arthur, P. A. Merolla, and K. Boahen, "Neurogrid: A mixed-analogdigital multichip system for large-scale neural simulations," Proceedings of the IEEE, vol. 102, no. 5, pp. 699-716, 2014.
A. Neckar, S. Fok, B. V. Benjamin, T. C. Stewart, N. N. Oza, A. R. Voelker, C. Eliasmith, R. Manohar, and K. Boahen, "Braindrop: A mixed-signal neuromorphic architecture with a dynamical systems-based programming model," Proceedings of the IEEE, vol. 107, no. 1, pp. 144-164, 2019.
S. Moradi, N. Qiao, F. Stefanini, and G. Indiveri, "A scalable multicore architecture with heterogeneous memory structures for dynamic neuromorphic asynchronous processors (dynaps)," IEEE Transactions on Biomedical Circuits and Systems, vol. 12, no. 1, pp. 106-122, 2018.
C. Frenkel, M. Lefebvre, J.-D. Legat, and D. Bol, "A 0.086- mm2 12.7-pj/sop 64k-synapse 256-neuron online-learning digital spiking neuromorphic processor in 28-nm cmos," IEEE Transactions on Biomedical Circuits and Systems, vol. 13, no. 1, pp. 145-158, 2019.
F. Ortiz, N. Skatchkovsky, E. Lagunas, W. A. Martins, G. Eappen, S. Daoud, O. Simeone, B. Rajendran, and S. Chatzinotas, "Energy-efficient on-board radio resource management for satellite communications via neuromorphic computing," IEEE Transactions on Machine Learning in Communications and Networking, vol. 2, pp. 169-189, 2024.
European Space Agency, "Satellite Signal Processing Techniques using a Commercial Off-The-Shelf AI Chipset (SPAICE)," p. 1, 2022. [Online]. Available: https://connectivity.esa.int/projects/spaice
L. M. Garcés-Socarrás, A. Nik, F. Ortiz, J. A. Vásquez- Peralvo, J. L. Gonzalez, M. Chehailty, M. Kuhfuss, E. Lagunas, J. Thoemel, S. Kumar, V. Singh, J. C. Duncan, S. Malmir, S. Varadajulu, J. Querol, and S. Chatzinotas, "Artificial Intelligence Satellite Telecommunication Testbed using Commercial Off-The-Shelf Chipsets," in The First Joint European Space Agency / IAA Conference on AI in and for Space (SPAICE2024), D. Dold, A. Hadjiivanov, and D. Izzo, Eds., ESA European Centre for Space Applications and Telecommunications (ECSAT). Harwell, UK: European Space Agency (ESA), sep 2024, pp. 169-174. [Online]. Available: https://zenodo.org/records/13885551
L. Kosmidis, I. Rodríguez, Á. Jover, S. Alcaide, J. Lachaize, J. Abella, O. Notebaert, F. J. Cazorla, and D. Steenari, "GPU4S (GPUs for Space): Are we there yet?" in European Workshop on On-Board Data Processing (OBDP), ESA, Ed. Online: ESA, jun 2021, pp. 1-8. [Online]. Available: https://atpi.eventsair.com/QuickEventWebsitePortal/ obdp-2021/website/Agenda/AgendaItemDetail?id= c719851f-003e-47ad-81ca-0255dcd1f651
D. Steenari, K. Forster, D. O'Callaghan, M. Tali, C. Hay, M. Cebecauer, M. Ireland, S. McBerren, and R. Camarero, "Survey of High-Performance Processors and FPGAs for On-Board Processing and Machine Learning Applications," in European Workshop on On-Board Data Processing (OBDP), ESA, Ed. Online: ESA, jun 2021, p. 28. [Online]. Available: https://atpi.eventsair.com/QuickEventWebsitePortal/ obdp-2021/website/Agenda/AgendaItemDetail?id= 1dea8c4d-04a0-4f40-8d9c-2bee77a904d7
R. Ginosar, D. Goldfeld, P. Aviely, R. Golan, A. Meir, F. Lange, D. Alon, T. Liran, and A. Shabtai, "Ramon Space RC64-based AI/ML Inference Engine," in European Workshop on On-Board Data Processing (OBDP), jun 2021, pp. 1-33. [Online]. Available: https://zenodo.org/record/5521124
I. Rodriguez, L. Kosmidis, J. Lachaize, O. Notebaert, and D. Steenari, "Design and Implementation of an Open GPU Benchmarking Suite for Space Payload Processing," Universitat Politecnica de Catalunya, pp. 1-6, 2019.
D. Steenari, L. Kosmidis, I. Rodriquez-Ferrandez, A. Jover- Alvarez, and K. Forster, "OBPMark (On-Board Processing Benchmarks) - Open Source Computational Performance Benchmarks for Space Applications," in European Workshop on On-Board Data Processing (OBDP), ESA, Ed. On-line: ESA, jun 2021, pp. 14-17. [Online]. Available: https://atpi. eventsair.com/QuickEventWebsitePortal/obdp-2021/website
L. Kosmidis, J. Lachaize, J. Abella, O. Notebaert, F. J. Cazorla, and D. Steenari, "GPU4S: Embedded GPUs in Space," in 22nd Euromicro Conference on Digital System Design, DSD 2019. Kallithea, Greece: Institute of Electrical and Electronics Engineers Inc., aug 2019, pp. 399-405.
L. Kosmidis, I. Rodriguez, Á. Jover, S. Alcaide, J. Lachaize, J. Abella, O. Notebaert, F. J. Cazorla, and D. Steenari, "GPU4S: Embedded GPUs in space - Latest project updates," Microprocessors and Microsystems, vol. 77, p. 103143, sep 2020. [Online]. Available: https://www.sciencedirect.com/ science/article/pii/S0141933120303100
H. Marques, K. Foerster, M. Bargholz, M. Tali, L. Mansilla, and D. Steenari, "Development methods and deployment of machine learning model inference for two Space Weather onboard analysis applications on several embedded systems," in ESA Workshop on Avionics, Data, Control and Software Systems (ADCSS). ESA, nov 2021, pp. 1-14.
K. Ferrone, C. Willis, F. Guan, J. Ma, L. Peterson, and S. Kry, "A Review of Magnetic Shielding Technology for Space Radiation," Radiation 2023, Vol. 3, Pages 46-57, vol. 3, no. 1, pp. 46-57, mar 2023. [Online]. Available: https://www.mdpi.com/2673-592X/3/1/ 5/htmhttps://www.mdpi.com/2673-592X/3/1/5
N. Ya'acob, A. Zainudin, R. Magdugal, and N. F. Naim, "Mitigation of space radiation effects on satellites at Low Earth Orbit (LEO)," Proceedings - 6th IEEE International Conference on Control System, Computing and Engineering, ICCSCE 2016, pp. 56-61, apr 2017.
O. Gutiérrez, M. Prieto, A. Perales-Eceiza, A. Ravanbakhsh, M. Basile, and D. Guzmán, "Toward the Use of Electronic Commercial Off-the-Shelf Devices in Space: Assessment of the True Radiation Environment in Low Earth Orbit (LEO)," Electronics 2023, Vol. 12, Page 4058, vol. 12, no. 19, p. 4058, sep 2023. [Online]. Available: https://www.mdpi.com/2079-9292/12/ 19/4058/htmhttps://www.mdpi.com/2079-9292/12/19/4058
Z. W. Han, K. F. Song, S. J. Liu, Q. F. Guo, G. X. Ding, L. P. He, C. W. Li, H. J. Zhang, Y. Liu, and B. Chen, "Lightweight Omnidirectional Radiation Protection for a Photon-Counting Imaging System in Space Applications," Applied Sciences 2023, Vol. 13, Page 5905, vol. 13, no. 10, p. 5905, may 2023. [Online]. Available: https://www.mdpi.com/2076-3417/13/ 10/5905/htmhttps://www.mdpi.com/2076-3417/13/10/5905
Z. Vahedi, A. O. Ezzati, and H. Sabri, "Design of a space radiation shield for electronic components of LEO satellites regarding displacement damage," The European Physical Journal Plus 2024 139:2, vol. 139, no. 2, pp. 1-8, feb 2024. [Online]. Available: https://link.springer.com/article/ 10.1140/epjp/s13360-024-05025-1
Radiation Handbook for Electronics, 2019, no. SGZY002A. [Online]. Available: www.ti.com/radbook
C. I. Underwood and M. K. Oldfield, "Observed radiationinduced degradation of commercial-off-the-shelf (COTS) devices operating in low-Earth orbit," IEEE Transactions on Nuclear Science, vol. 45, no. 6, pp. 2737-2744, 1998.
AMD XILINX Inc., "XQR Versal for Space 2.0 Applications," AMD XILINX Inc., San Jose, CA, Product Brief, 2022.
J. Cornebise, I. Oršolić, and F. Kalaitzis, "Open highresolution satellite imagery: The worldstrat dataset- with application to super-resolution," arXiv preprint arXiv:2207.06418, 2022.
A. Van Etten, D. Lindenbaum, and T. M. Bacastow, "Spacenet: A remote sensing dataset and challenge series. arxiv 2018," arXiv preprint arXiv:1807.01232, 1807.
M. Schmitt, S. A. Ahmadi, and R. Hänsch, "There is no data like more data-current status of machine learning datasets in remote sensing," in 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS. IEEE, 2021, pp. 1206-1209.
S. Ayesha, M. K. Hanif, and R. Talib, "Overview and comparative study of dimensionality reduction techniques for high dimensional data," Information Fusion, vol. 59, pp. 44-58, 2020.
J. Zhang, J. Yu, and D. Tao, "Local deep-feature alignment for unsupervised dimension reduction," IEEE Transactions on Image Processing, vol. 27, no. 5, pp. 2420-2432, 2018.
G. T. Reddy, M. P. K. Reddy, K. Lakshmanna, R. Kaluri, D. S. Rajput, G. Srivastava, and T. Baker, "Analysis of dimensionality reduction techniques on Big Data," IEEE Access, vol. 8, pp. 54 776-54 788, 2020.
R. M. Gahar, O. Arfaoui, M. S. Hidri, and N. B. Hadj-Alouane, "A distributed approach for high-dimensionality heterogeneous data reduction," IEEE Access, vol. 7, pp. 151 006-151 022, 2019.
O. A. Abdullah, H. Al-Hraishawi, and S. Chatzinotas, "Deep learning-based device-free localization in wireless sensor networks," in IEEE Wireless Commun. Net. Conf. (WCNC), Mar. 2023, pp. 1-6.
H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng, "Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations," in Int. Conf. on machine learning, 2009, pp. 609-616.
R. Abdulhammed, H. Musafer, A. Alessa, M. Faezipour, and A. Abuzneid, "Features dimensionality reduction approaches for machine learning based network intrusion detection," Electronics, vol. 8, no. 3, 2019.
H. Shirmard, E. Farahbakhsh, A. Beiranvand Pour, A. M. Muslim, R. D. Müller, and R. Chandra, "Integration of selective dimensionality reduction techniques for mineral exploration using ASTER satellite data," Remote Sensing, vol. 12, no. 8, 2020.
V. Monzon Baeza, F. Ortiz, S. Herrero Garcia, and E. Lagunas, "Enhanced communications on satellite-based iot systems to support maritime transportation services," Sensors, vol. 22, no. 17, 2022. [Online]. Available: https: //www.mdpi.com/1424-8220/22/17/6450
S. Cheng, Y. Gao, X. Li, Y. Du, Y. Du, and S. Hu, Blockchain Application in Space Information Network Security: Third International Conference, SINC 2018, Changchun, China, August 9-10, 2018, Revised Selected Papers, 01 2019, pp. 3-9.
L. Pellaco, N. Singh, and J. Jaldén, "Spectrum prediction and interference detection for satellite communications," 10 2019.
H. Xu, P. V. Klaine, O. Onireti, B. Cao, M. Imran, and L. Zhang, "Blockchain-enabled resource management and sharing for 6g communications," Digital Communications and Networks, vol. 6, no. 3, pp. 261-269, 2020. [Online]. Available: https://www.sciencedirect.com/science/article/pii/ S2352864820300249
S. Laaper, "Using blockchain to drive supply chain transparency future trends in supply chain." [Online]. Available: https://www2.deloitte.com/us/en/pages/ operations/articles/blockchain-supply-chain-innovation.html
R. Xu, Y. Chen, E. Blasch, and G. Chen, "Exploration of blockchain-enabled decentralized capability-based access control strategy for space situation awareness," Opt. Eng, vol. 58, no. 4, 2019. [Online]. Available: https://www. sciencedirect.com/science/article/pii/S2352864820300249
H. Ibrahim, M. A. Shouman, N. A. El-Fishawy, and A. Ahmed, "Literature review of blockchain technology in space industry: Challenges and applications," in 2021 International Conference on Electronic Engineering (ICEEM), 2021, pp. 1-8.
L. Clark, Y.-C. Tung, M. Clark, and L. Zapanta, "A blockchain-based reputation system for small satellite relay networks," in 2020 IEEE Aerospace Conference, 2020, pp. 1-8.
F. Tang, C. Wen, L. Luo, M. Zhao, and N. Kato, "Blockchainbased trusted traffic offloading in space-air-ground integrated networks (sagin): A federated reinforcement learning approach," IEEE Journal on Selected Areas in Communications, vol. 40, no. 12, pp. 3501-3516, 2022.
S. Prakash, M. Stewart, C. Banbury, M. Mazumder, P. Warden, B. Plancher, and V. J. Reddi, "Is tinyml sustainable? assessing the environmental impacts of machine learning on microcontrollers," arXiv preprint arXiv:2301.11899, 2023.
J. ur Rehman, H. Al-Hraishawi, and S. Chatzinotas, "Quantum approximate optimization algorithm for knapsack resource allocation problems in communication systems," in IEEE Int. Conf Commun. (ICC), Rome, Italy, Jun. 2023, pp. 1-6.
L. Oleynik, J. ur Rehman, H. Al-Hraishawi, and S. Chatzinotas, "Variational estimation of optimal signal states for quantum channels," IEEE Trans. on Quantum Eng., vol. 5, pp. 1-8, 2024.
H.-Y. Huang, M. Broughton, J. Cotler, S. Chen, J. Li, M. Mohseni, H. Neven, R. Babbush, R. Kueng, J. Preskill, and J. R. McClean, "Quantum advantage in learning from experiments," Science, vol. 376, no. 6598, pp. 1182-1186, Jun. 2022.
M. C. Caro, H.-Y. Huang, M. Cerezo, K. Sharma, A. Sornborger, L. Cincio, and P. J. Coles, "Generalization in quantum machine learning from few training data," Nature Communications, vol. 13, no. 1, p. 4919, Aug. 2022.
"Quantum Computing for Developers | DWave." [Online]. Available: https://www.dwavesys.com/ solutions-and-products/developer/
H. Al-Hraishawi, J. ur Rehman, M. Razavi, and S. Chatzinotas, "Characterizing and utilizing the interplay between quantum technologies and non-terrestrial networks," IEEE Open J. Commun. Soc., vol. 5, pp. 1937-1957, Mar. 2024.
A. Zappone, M. Di Renzo, and M. Debbah, "Wireless networks design in the era of deep learning: Model-based, ai-based, or both?" IEEE Transactions on Communications, vol. 67, no. 10, pp. 7331-7376, 2019.
N. Shlezinger, J. Whang, Y. C. Eldar, and A. G. Dimakis, "Model-based deep learning," Proceedings of the IEEE, 2023.
M. Kochupillai, M. Kahl, M. Schmitt, H. Taubenböck, and X. X. Zhu, "Earth observation and artificial intelligence: Understanding emerging ethical issues and opportunities," IEEE Geoscience and Remote Sensing Magazine, 2022.
F. G. Ortíz-Gómez, R. Martínez-Rodríguez-Osorio, and S. Landeros-Ayala, "Method of optimizing the costs of a satellite network in ka and q/v bands in the feeder link," in 35th AIAA International Communications Satellite Systems Conference, 2017, p. 5442.