Computer Science Applications; Physical and Theoretical Chemistry
Abstract :
[en] Electron correlation plays a crucial role in the energetics of reactions catalyzed by transition metal complexes, such as water splitting. In the present work we exploit the performance of various methods to describe the thermodynamics of a simple but representative model of water splitting reaction, based on a single cobalt ion as catalyst. Density Functional Theory (DFT) calculations show a significant dependence on the adopted functional, and not negligible differences with respect to CCSD(T) findings are found along the reaction cycle. We performed quantum Monte Carlo calculations using an unrestricted single Slater determinant wave function multiplied by a Jastrow factor using both DFT and fully optimized orbitals. Variational and Lattice Regularized Diffusion Monte Carlo results are in overall agreement with the CCSD(T) free-energy profile, even though differences in the description of the thermodynamics of the reaction cycle are found. NEVPT2 calculations reveal that the role of the static correlation of the different reaction steps is not large, and it is limited to only a few intermediate structures. Finally, the free-energy difference of the overall water splitting reaction computed at the quantum Monte Carlo level shows an excellent match with the experimental value of 4.92 eV, underlining the capability of these techniques to properly describe the dynamical correlation of such reactions.
Disciplines :
Physics
Author, co-author :
Chu, Shibing; Dipartimento di Scienze Fisiche e Chimiche, Università degli studi dell'Aquila , Via Vetoio (Coppito), 67100 L'Aquila, Italy
Coccia, Emanuele; Dipartimento di Scienze Fisiche e Chimiche, Università degli studi dell'Aquila , Via Vetoio (Coppito), 67100 L'Aquila, Italy ; Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire de Chimie Théorique, CC 137-4 place Jussieu, F. 75252 Paris Cedex 05, France
BARBORINI, Matteo ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > HPC Platform ; CNR-NANO, Via Campi 213/a, 41125 Modena, Italy
Guidoni, Leonardo; Dipartimento di Scienze Fisiche e Chimiche, Università degli studi dell'Aquila , Via Vetoio (Coppito), 67100 L'Aquila, Italy
External co-authors :
yes
Language :
English
Title :
Role of Electron Correlation along the Water Splitting Reaction.
Lewis, N. S.; Nocera, D. G. Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 15729-15735 10.1073/pnas.0603395103
Barber, J. Chem. Soc. Rev. 2009, 38, 185-196 10.1039/B802262N
Cook, T. R.; Dogutan, D. K.; Reece, S. Y.; Surendranath, Y.; Teets, T. S.; Nocera, D. G. Chem. Rev. 2010, 110, 6474-6502 10.1021/cr100246c
Nocera, D. G. Acc. Chem. Res. 2012, 45, 767-776 10.1021/ar2003013
Artero, V.; Chavarot-Kerlidou, M.; Fontecave, M. Angew. Chem., Int. Ed. 2011, 50, 7238-7266 10.1002/anie.201007987
Gust, D.; Moore, T. A.; Moore, A. L. Faraday Discuss. 2012, 155, 9-26 10.1039/C1FD00110H
Sartorel, A.; Bonchio, M.; Campagna, S.; Scandola, F. Tetrametallic molecular catalysts for photochemical water oxidation Chem. Soc. Rev. 2013, 42, 2262-2280 10.1039/C2CS35287G
Mattioli, G.; Giannozzi, P.; Bonapasta, A. A.; Guidoni, L. J. Am. Chem. Soc. 2013, 135, 15353-15363 10.1021/ja401797v
Kärkäs, M. D.; Verho, O.; Johnston, E. V.; Åkermark, B. Chem. Rev. 2014, 114, 11863-12001 10.1021/cr400572f
Blakemore, J. D.; Crabtree, R. H.; Brudvig, G. W. Chem. Rev. 2015, 115, 12974-13005 10.1021/acs.chemrev.5b00122
Schilling, M.; Patzke, G. R.; Hutter, J.; Luber, S. J. Phys. Chem. C 2016, 120, 7966-7975 10.1021/acs.jpcc.6b00712
Retegan, M.; Krewald, V.; Mamedov, F.; Neese, F.; Lubitz, W.; Cox, N.; Pantazis, D. A. Chem. Sci. 2016, 7, 72-84 10.1039/C5SC03124A
Kanan, M. W.; Nocera, D. G. Science 2008, 321, 1072-1075 10.1126/science.1162018
La Ganga, G.; Puntoriero, F.; Campagna, S.; Bazzan, I.; Berardi, S.; Bonchio, M.; Sartorel, A.; Natali, M.; Scandola, F. Faraday Discuss. 2012, 155, 177-190 10.1039/C1FD00093D
Evangelisti, F.; Güttinger, R.; Moré, R.; Luber, S.; Patzke, G. R. J. Am. Chem. Soc. 2013, 135, 18734-18737 10.1021/ja4098302
Mattioli, G.; Risch, M.; Bonapasta, A. A.; Dau, H.; Guidoni, L. Phys. Chem. Chem. Phys. 2011, 13, 15437-15441 10.1039/c1cp21776c
Mattioli, G.; Zaharieva, I.; Dau, H.; Guidoni, L. J. Am. Chem. Soc. 2015, 137, 10254-10267 10.1021/jacs.5b05174
Wang, L.-P.; Van Voorhis, T. J. Phys. Chem. Lett. 2011, 2, 2200-2204 10.1021/jz201021n
Kwapien, K.; Piccinin, S.; Fabris, S. J. Phys. Chem. Lett. 2013, 4, 4223-4230 10.1021/jz402263d
Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard, T.; Jónsson, H. J. Phys. Chem. B 2004, 108, 17886-17892 10.1021/jp047349j
Foulkes, W. M. C.; Mitas, L.; Needs, R. J.; Rajagopal, G. Rev. Mod. Phys. 2001, 73, 33-83 10.1103/RevModPhys.73.33
Scemama, A.; Caffarel, M.; Oseret, E.; Jalby, W. J. Comput. Chem. 2013, 34, 938-951 10.1002/jcc.23216
Barborini, M.; Guidoni, L. J. Chem. Theory Comput. 2015, 11, 4109-4118 10.1021/acs.jctc.5b00427
Coccia, E.; Varsano, D.; Guidoni, L. J. Chem. Theory Comput. 2013, 9, 8-12 10.1021/ct3007502
Coccia, E.; Varsano, D.; Guidoni, L. J. Chem. Theory Comput. 2014, 10, 501-506 10.1021/ct400943a
Zen, A.; Luo, Y.; Mazzola, G.; Guidoni, L.; Sorella, S. J. Chem. Phys. 2015, 142, 144111 10.1063/1.4917171
Zen, A.; Coccia, E.; Luo, Y.; Sorella, S.; Guidoni, L. J. Chem. Theory Comput. 2014, 10, 1048-1061 10.1021/ct401008s
Austin, B. M.; Zubarev, D. Y.; Lester, W. A. Chem. Rev. 2012, 112, 263-288 10.1021/cr2001564
Coccia, E.; Guidoni, L. J. Comput. Chem. 2012, 33, 2332-2339 10.1002/jcc.23071
Barborini, M.; Sorella, S.; Guidoni, L. J. Chem. Theory Comput. 2012, 8, 1260-1269 10.1021/ct200724q
Coccia, E.; Chernomor, O.; Barborini, M.; Sorella, S.; Guidoni, L. J. Chem. Theory Comput. 2012, 8, 1952-1962 10.1021/ct300171q
Zen, A.; Luo, Y.; Sorella, S.; Guidoni, L. J. Chem. Theory Comput. 2013, 9, 4332-4350 10.1021/ct400382m
Varsano, D.; Coccia, E.; Pulci, O.; Conte, A. M.; Guidoni, L. Comput. Theor. Chem. 2014, 1040-1041, 338-346 10.1016/j.comptc.2014.03.011
Zen, A.; Trout, B. L.; Guidoni, L. J. Chem. Phys. 2014, 141, 014305 10.1063/1.4885144
Zen, A.; Coccia, E.; Gozem, S.; Olivucci, M.; Guidoni, L. J. Chem. Theory Comput. 2015, 11, 992-1005 10.1021/ct501122z
Barborini, M.; Coccia, E. J. Chem. Theory Comput. 2015, 11, 5696-5704 10.1021/acs.jctc.5b00819
Barborini, M.; Guidoni, L. J. Chem. Theory Comput. 2015, 11, 508-517 10.1021/ct501157f
Doblhoff-Dier, K.; Meyer, J.; Hoggan, P. E.; Kroes, G.-J.; Wagner, L. K. J. Chem. Theory Comput. 2016, 12, 2583-2597 10.1021/acs.jctc.6b00160
Bressanini, D.; Reynolds, P. J. Advances in Chemical Physics, Monte Carlo Methods in Chemical Physics; 1998; Vol. 105, pp 5345-5350.
Reynolds, P. J.; Ceperley, D. M.; Alder, B. J.; Lester, W. A. J. Chem. Phys. 1982, 77, 5593 10.1063/1.443766
Casula, M.; Filippi, C.; Sorella, S. Phys. Rev. Lett. 2005, 95, 100201 10.1103/PhysRevLett.95.100201
Casula, M.; Moroni, S.; Sorella, S.; Filippi, C. J. Chem. Phys. 2010, 132, 154113 10.1063/1.3380831
Marchi, M.; Azadi, S.; Casula, C.; Sorella, S. J. Chem. Phys. 2009, 131, 154116 10.1063/1.3249966
Drummond, N. D.; Towler, M. D.; Needs, R. J. Phys. Rev. B: Condens. Matter Mater. Phys. 2004, 70, 234119 10.1103/PhysRevB.70.235119
Sterpone, F.; Spanu, L.; Ferraro, L.; Sorella, S.; Guidoni, L. J. Chem. Theory Comput. 2008, 4, 1428-1434 10.1021/ct800121e
Neese, F. WIREs Comput. Mol. Sci. 2012, 2, 73-78 10.1002/wcms.81
Sorella, S. TurboRVB Quantum Monte Carlo package. http://people.sissa.it/~sorella/web/index.html (accessed Feb 2016).
Burkatzki, M.; Filippi, C.; Dolg, M. J. Chem. Phys. 2007, 126, 234105 10.1063/1.2741534
Burkatzki, M.; Filippi, C.; Dolg, M. J. Chem. Phys. 2008, 129, 164115 10.1063/1.2987872
Toulouse, J.; Umrigar, C. J. J. Chem. Phys. 2007, 126, 084102 10.1063/1.2437215
Umrigar, C. J.; Toulouse, J.; Filippi, C.; Sorella, S.; Hennig, R. G. Phys. Rev. Lett. 2007, 98, 110201 10.1103/PhysRevLett.98.110201
Toulouse, J.; Umrigar, C. J. J. Chem. Phys. 2008, 128, 174101 10.1063/1.2908237
Reiher, M.; Salomon, O.; Hess, B. A. Theor. Chem. Acc. 2001, 107, 48-55 10.1007/s00214-001-0300-3