Algorithmic differentiations; Dynamical correlations; Efficient implementation; Many body wave functions; Optimization procedures; Quantum Monte Carlo simulations; Resonating valence bonds; Variational Monte Carlo; Physics and Astronomy (all); Physical and Theoretical Chemistry; Physics - Computational Physics; Physics - Materials Science; Physics - Strongly Correlated Electrons; Physics - Chemical Physics
Abstract :
[en] TurboRVB is a computational package for ab initio Quantum Monte Carlo (QMC) simulations of both molecular and bulk electronic systems. The code implements two types of well established QMC algorithms: Variational Monte Carlo (VMC) and diffusion Monte Carlo in its robust and efficient lattice regularized variant. A key feature of the code is the possibility of using strongly correlated many-body wave functions (WFs), capable of describing several materials with very high accuracy, even when standard mean-field approaches [e.g., density functional theory (DFT)] fail. The electronic WF is obtained by applying a Jastrow factor, which takes into account dynamical correlations, to the most general mean-field ground state, written either as an antisymmetrized geminal power with spin-singlet pairing or as a Pfaffian, including both singlet and triplet correlations. This WF can be viewed as an efficient implementation of the so-called resonating valence bond (RVB) Ansatz, first proposed by Pauling and Anderson in quantum chemistry [L. Pauling, The Nature of the Chemical Bond (Cornell University Press, 1960)] and condensed matter physics [P.W. Anderson, Mat. Res. Bull 8, 153 (1973)], respectively. The RVB Ansatz implemented in TurboRVB has a large variational freedom, including the Jastrow correlated Slater determinant as its simplest, but nontrivial case. Moreover, it has the remarkable advantage of remaining with an affordable computational cost, proportional to the one spent for the evaluation of a single Slater determinant. Therefore, its application to large systems is computationally feasible. The WF is expanded in a localized basis set. Several basis set functions are implemented, such as Gaussian, Slater, and mixed types, with no restriction on the choice of their contraction. The code implements the adjoint algorithmic differentiation that enables a very efficient evaluation of energy derivatives, comprising the ionic forces. Thus, one can perform structural optimizations and molecular dynamics in the canonical NVT ensemble at the VMC level. For the electronic part, a full WF optimization (Jastrow and antisymmetric parts together) is made possible, thanks to state-of-the-art stochastic algorithms for energy minimization. In the optimization procedure, the first guess can be obtained at the mean-field level by a built-in DFT driver. The code has been efficiently parallelized by using a hybrid MPI-OpenMP protocol, which is also an ideal environment for exploiting the computational power of modern Graphics Processing Unit accelerators.
Disciplines :
Physics
Author, co-author :
Nakano, Kousuke ; International School for Advanced Studies (SISSA), Via Bonomea 265, 34136 Trieste, Italy
Attaccalite, Claudio ; Aix-Marseille Université, CNRS, CINaM UMR 7325, Campus de Luminy, 13288 Marseille, France
BARBORINI, Matteo ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > HPC Platform ; CNR-NANO, Via Campi 213/a, 41125 Modena, Italy
Capriotti, Luca ; New York University, Tandon School of Engineering, 6 MetroTech Center, Brooklyn, New York 11201, USA
Casula, Michele ; Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Sorbonne Université, CNRS UMR 7590, IRD UMR 206, MNHN, 4 Place Jussieu, 75252 Paris, France
Coccia, Emanuele ; Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy
Dagrada, Mario; Forescout Technologies, John F. Kennedylaan 2, 5612AB Eindhoven, The Netherlands
Genovese, Claudio ; International School for Advanced Studies (SISSA), Via Bonomea 265, 34136 Trieste, Italy
Luo, Ye ; Computational Science Division, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, Illinois 60439, USA
Mazzola, Guglielmo ; IBM Research Zurich, Säumerstrasse 4, 8803 Rüschlikon, Switzerland
Zen, Andrea ; Department of Earth Sciences, University College London, Gower Street, London WC1E 6BT, United Kingdom
Sorella, Sandro ; International School for Advanced Studies (SISSA), Via Bonomea 265, 34136 Trieste, Italy
External co-authors :
yes
Language :
English
Title :
TurboRVB: A many-body toolkit for ab initio electronic simulations by quantum Monte Carlo.
Progetti di Rilevante Interesse Nazionale Air Force Office of Scientific Research European Cooperation in Science and Technology Simons Foundation Grand Équipement National de Calcul Intensif Partnership for Advanced Computing in Europe AISBL RIKEN Seventh Framework Program
Funding text :
The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory (“Argonne”). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable world-wide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan. http://energy.gov/downloads/doe-public-access-plan.K.N. is grateful for computational resources from PRACE, Project No. 2019204934, and those from the facilities of the Research Center for Advanced Computing Infrastructure at Japan Advanced Institute of Science and Technology (JAIST). K.N. also acknowledges financial support from the Simons Foundation and that from Grant-in-Aid for Scientific Research on Innovative Areas (No. 16H06439). C.A. acknowledges funding from the European Union Seventh Framework Program under Grant Agreement No. 785219 Graphene Core 2 and COST Action TUMIEE CA17126. M.C. is grateful to the French grand équipement national de cal-cul intensif (GENCI) for the computational time provided through these years under Project No. 0906493; for the funded PRACE Project Nos. 2012061116, 2015133179, and 2016163936; and for the access to the Hokusai and K-computer granted by the Institute of Physical and Chemical Research (RIKEN). Y.L. was supported by the Argonne Leadership Computing Facility, which is a U.S. Department of Energy Office of Science User Facility operated under Contract No. DE-AC02-06CH11357. A.Z.’s work was sponsored by the Air Force Office of Scientific Research, Air Force Material Command, U.S. Air Force, under Grant No. FA9550-19-1-7007. S.S. acknowledges financial support from PRIN 2017BZPKSZ and computational resources from PRACE, Project No. 2019204934. S.S. is also grateful to his wife L. Urgias for bearing the too many weekends spent on the development of TURBORVB.
R. Ramprasad, R. Batra, G. Pilania, A. Mannodi-Kanakkithodi, and C. Kim, npj Comput. Mater. 3, 54 (2017). 10.1038/s41524-017-0056-5
K. Rajan, Mater. Today 8, 38 (2005). 10.1016/s1369-7021(05)71123-8
W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965). 10.1103/physrev.140.a1133
R. M. Martin, Electronic Structure: Basic Theory and Practical Methods (Cambridge University Press, 2004).
M. G. Medvedev, I. S. Bushmarinov, J. Sun, J. P. Perdew, and K. A. Lyssenko, Science 355, 49 (2017). 10.1126/science.aah5975
J. P. Perdew and K. Schmidt, AIP Conf. Proc. 577, 1-20 (2001). 10.1063/1.1390175
K. Burke, J. Chem. Phys. 136, 150901 (2012). 10.1063/1.4704546
A. J. Cohen, P. Mori-Sánchez, and W. Yang, Chem. Rev. 112, 289 (2012). 10.1021/cr200107z
A. Szabo and N. Ostlund, Modern Quantum Chemistry (Macmillan Publishing Co., Inc., 1982).
C. Møller and M. S. Plesset, Phys. Rev. 46, 618 (1934). 10.1103/physrev.46.618
P. J. Knowles and N. C. Handy, Chem. Phys. Lett. 111, 315 (1984). 10.1016/0009-2614(84)85513-x
B. O. Roos, P. R. Taylor, and P. E. M. Sigbahn, Chem. Phys. 48, 157 (1980). 10.1016/0301-0104(80)80045-0
J. Cízek, J. Chem. Phys. 45, 4256 (1966). 10.1063/1.1727484
W. Foulkes, L. Mitas, R. Needs, and G. Rajagopal, Rev. Mod. Phys. 73, 33 (2001). 10.1103/revmodphys.73.33
F. Becca and S. Sorella, Quantum Monte Carlo Approaches for Correlated Systems (Cambridge University Press, 2017).
N. Metropolis and S. Ulam, J. Am. Stat. Assoc. 44, 335 (1949). 10.1080/01621459.1949.10483310
J. Kim, A. D. Baczewski, T. D. Beaudet, A. Benali, M. C. Bennett, M. A. Berrill, N. S. Blunt, E. J. L. Borda, M. Casula, D. M. Ceperley, S. Chiesa, B. K. Clark, R. C. Clay, K. T. Delaney, M. Dewing, K. P. Esler, H. Hao, O. Heinonen, P. R. C. Kent, J. T. Krogel, I. Kylänpää, Y. W. Li, M. G. Lopez, Y. Luo, F. D. Malone, R. M. Martin, A. Mathuriya, J. McMinis, C. A. Melton, L. Mitas, M. A. Morales, E. Neuscamman, W. D. Parker, S. D. P. Flores, N. A. Romero, B. M. Rubenstein, J. A. R. Shea, H. Shin, L. Shulenburger, A. F. Tillack, J. P. Townsend, N. M. Tubman, B. Van Der Goetz, J. E. Vincent, D. C. Yang, Y. Yang, S. Zhang, and L. Zhao, J. Phys.: Condens. Matter 30, 195901 (2018). 10.1088/1361-648x/aab9c3
R. J. Needs, M. D. Towler, N. D. Drummond, and P. L. Ríos, J. Phys.: Condens. Matter 22, 023201 (2009). 10.1088/0953-8984/22/2/023201
L. K. Wagner, M. Bajdich, and L. Mitas, J. Comput. Phys. 228, 3390 (2009). 10.1016/j.jcp.2009.01.017
C. J. Umrigar and C. Filippi, Cornell-Holland Ab-initio Materials Package (CHAMP), http://pages.physics.cornell.edu/∼cyrus/champ.html; accessed 27 October 2019.
J. S. Spencer, N. S. Blunt, S. Choi, J. Etrych, M.-A. Filip, W. M. C. Foulkes, R. S. Franklin, W. J. Handley, F. D. Malone, V. A. Neufeld et al., J. Chem. Theory Comput. 15, 1728 (2019). 10.1021/acs.jctc.8b01217
S. Zhang, J. Carlson, and J. E. Gubernatis, Phys. Rev. B 55, 7464 (1997). 10.1103/physrevb.55.7464
M. Motta and S. Zhang, Wiley Interdiscip. Rev.: Comput. Mol. Sci. 8, e1364 (2018). 10.1002/wcms.1364
G. H. Booth, A. J. Thom, and A. Alavi, J. Chem. Phys. 131, 054106 (2009). 10.1063/1.3193710
G. H. Booth, A. Grüneis, G. Kresse, and A. Alavi, Nature 493, 365 (2013). 10.1038/nature11770
A. J. W. Thom, Phys. Rev. Lett. 105, 263004 (2010). 10.1103/physrevlett.105.263004
J. S. Spencer and A. J. Thom, J. Chem. Phys. 144, 084108 (2016). 10.1063/1.4942173
N. S. Blunt, T. W. Rogers, J. S. Spencer, and W. M. C. Foulkes, Phys. Rev. B 89, 245124 (2014). 10.1103/physrevb.89.245124
F. D. Malone, N. Blunt, J. J. Shepherd, D. Lee, J. Spencer, and W. Foulkes, J. Chem. Phys. 143, 044116 (2015). 10.1063/1.4927434
S. Ten-no, J. Chem. Phys. 138, 164126 (2013). 10.1063/1.4802766
Y. Ohtsuka and S. Ten-no, J. Chem. Phys. 143, 214107 (2015). 10.1063/1.4936412
S. Ten-no, J. Chem. Phys. 147, 244107 (2017). 10.1063/1.5003222
J. R. McClean and A. Aspuru-Guzik, Phys. Rev. A 91, 012311 (2015). 10.1103/physreva.91.012311
A. Nagy and V. Savona, Phys. Rev. A 97, 052129 (2018). 10.1103/physreva.97.052129
L. Pauling, The Nature of the Chemical Bond (Cornell University Press, 1960).
P. W. Anderson, Mat. Res. Bull 8, 153 (1973). 10.1016/0025-5408(73)90167-0
K. Nakano, R. Maezono, and S. Sorella, Phys. Rev. B 101, 155106 (2020). 10.1103/PhysRevB.101.155106
C. Umrigar, Phys. Rev. Lett. 71, 408 (1993). 10.1103/physrevlett.71.408
M. Stedman, W. Foulkes, and M. Nekovee, J. Chem. Phys. 109, 2630 (1998). 10.1063/1.476862
H. Flyvbjerg and H. G. Petersen, J. Chem. Phys. 91, 461 (1989). 10.1063/1.457480
S. Sorella and L. Capriotti, J. Chem. Phys. 133, 234111 (2010). 10.1063/1.3516208
S. Sorella, Phys. Rev. Lett. 80, 4558 (1998). 10.1103/physrevlett.80.4558
S. Sorella, M. Casula, and D. Rocca, J. Chem. Phys. 127, 014105 (2007). 10.1063/1.2746035
S. Sorella, Phys. Rev. B 71, 241103 (2005). 10.1103/physrevb.71.241103
C. J. Umrigar, J. Toulouse, C. Filippi, S. Sorella, and R. G. Hennig, Phys. Rev. Lett. 98, 110201 (2007). 10.1103/physrevlett.98.110201
J. Toulouse and C. J. Umrigar, J. Chem. Phys. 126, 084102 (2007). 10.1063/1.2437215
M. Casula, C. Filippi, and S. Sorella, Phys. Rev. Lett. 95, 100201 (2005). 10.1103/physrevlett.95.100201
D. F. Ten Haaf, H. J. Van Bemmel, J. M. Van Leeuwen, W. Van Saarloos, and D. M. Ceperley, Phys. Rev. B 51, 13039 (1995). 10.1103/physrevb.51.13039
M. Calandra Buonaura and S. Sorella, Phys. Rev. B 57, 11446 (1998). 10.1103/physrevb.57.11446
S. Sorella and L. Capriotti, Phys. Rev. B 61, 2599 (2000). 10.1103/physrevb.61.2599
M. Casula, "New QMC approaches for the simulation of electronic systems: A first application to aromatic molecules and transition metal compounds," Ph.D. thesis, International School for Advanced Studies (SISSA), 2005.
M. Casula, S. Moroni, S. Sorella, and C. Filippi, J. Chem. Phys. 132, 154113 (2010). 10.1063/1.3380831
M. Casula, Phys. Rev. B 74, 161102 (2006). 10.1103/physrevb.74.161102
A. Zen, J. G. Brandenburg, A. Michaelides, and D. Alfè, J. Chem. Phys. 151, 134105 (2019). 10.1063/1.5119729
The correlation energy is typically defined as the difference between the exact energy and the Hartree-Fock energy, which is the variational minimum for a SD Ansatz.
However, the Jastrow factor makes ψ not factorizable when expectation values of quantum operators are evaluated. For this reason, it is not a feasible route to traditional quantum chemistry approaches as it requires stochastic approaches to evaluate efficiently the corresponding multidimensional integrals.
P. López Ríos, A. Ma, N. D. Drummond, M. D. Towler, and R. J. Needs, Phys. Rev. E 74, 066701 (2006). 10.1103/physreve.74.066701
Indeed, with backflow each time an electron is moved, all the entries in φAS(or several of them, if cut-offs are used) can be changed, resulting in a much more expensive algorithm.
T. Kato, Commun. Pure Appl. Math. 10, 151 (1957). 10.1002/cpa.3160100201
M. Bajdich, L. Mitas, G. Drobný, L. K. Wagner, and K. E. Schmidt, Phys. Rev. Lett. 96, 130201 (2006). 10.1103/physrevlett.96.130201
M. Bajdich, L. Mitas, L. K. Wagner, and K. E. Schmidt, Phys. Rev. B 77, 115112 (2008). 10.1103/physrevb.77.115112
C. Genovese, T. Shirakawa, and S. Sorella, arXiv:1911.09748 (2019).
P. Kasteleyn, J. Math. Phys. 4, 287 (1963). 10.1063/1.1703953
Some properties of the Pfaffian operator and their proofs are given in the work of Bajdich et al.60
M. Casula and S. Sorella, J. Chem. Phys. 119, 6500 (2003). 10.1063/1.1604379
A. Zen, E. Coccia, Y. Luo, S. Sorella, and L. Guidoni, J. Chem. Theory Comput. 10, 1048 (2014). 10.1021/ct401008s
A. Zen, E. Coccia, S. Gozem, M. Olivucci, and L. Guidoni, J. Chem. Theory Comput. 11, 992 (2015). 10.1021/ct501122z
S -1/2can be computed after a standard block diagonalization of the matrix S = UDU †, U being a unitary matrix and D = diag{ d 1,..., d 2 L } being a diagonal matrix, such that S -1/2= UD -1/2U †, where D -1/2is the diagonal matrix obtained by taking the inverse square root of each diagonal element d i of D. At this stage, we carefully remove from the basis the elements corresponding to the smallest eigenvalues d i in order to work with a sufficiently large condition number that guarantees stable finite precision numerical calculations.
C. Genovese, T. Shirakawa, K. Nakano, and S. Sorella, arXiv:2002.03347 (2020).
The nonzero eigenvalues of à are ± iλ k
M. Marchi, S. Azadi, M. Casula, and S. Sorella, J. Chem. Phys. 131, 154116 (2009). 10.1063/1.3249966
The output of AAD are matrices D μ, ν = α F α A μ, ν, where F is either the log of the WF or the corresponding local energy computed on a given configuration. Then, the projected derivatives corresponding to δ A μ, ν n easily follows from Eq. (67), by applying the chain rule.
It shall be noticed that there is not necessarily one leading term in the expansion in Eq. (71). For instance, when λ p = λ p + 1, the term with (i 1,..., i p ) = (1,..., p) has equal weight to the term (i 1,..., i p-1, i p ) = (1,..., p-1, p + 1).
The seniority number is the number of unpaired electrons in a determinant.
B. P. Pritchard, D. Altarawy, B. T. Didier, T. D. Gibson, and T. L. Windus, J. Chem. Inf. Model. 59, 4814 (2019). 10.1021/acs.jcim.9b00725
J. R. Trail and R. J. Needs, J. Chem. Phys. 142, 064110 (2015). 10.1063/1.4907589
J. T. Krogel, J. A. Santana, and F. A. Reboredo, Phys. Rev. B 93, 75143 (2016). 10.1103/physrevb.93.075143
J. R. Trail and R. J. Needs, J. Chem. Phys. 146, 204107 (2017). 10.1063/1.4984046
M. C. Bennett, C. A. Melton, A. Annaberdiyev, G. Wang, L. Shulenburger, and L. Mitas, J. Chem. Phys. 147, 224106 (2017). 10.1063/1.4995643
M. C. Bennett, G. Wang, A. Annaberdiyev, C. A. Melton, L. Shulenburger, and L. Mitas, J. Chem. Phys. 149, 104108 (2018). 10.1063/1.5038135
A. Annaberdiyev, G. Wang, C. A. Melton, M. Chandler Bennett, L. Shulenburger, and L. Mitas, J. Chem. Phys. 149, 134108 (2018). 10.1063/1.5040472
M. Burkatzki, C. Filippi, and M. Dolg, J. Chem. Phys. 126, 234105 (2007). 10.1063/1.2741534
M. Burkatzki, C. Filippi, and M. Dolg, J. Chem. Phys. 129, 164115 (2008). 10.1063/1.2987872
S. Fahy, X. W. Wang, and S. G. Louie, Phys. Rev. B 42, 3503 (1990). 10.1103/physrevb.42.3503
S. Sorella, N. Devaux, M. Dagrada, G. Mazzola, and M. Casula, J. Chem. Phys. 143, 244112 (2015). 10.1063/1.4938089
C. Lin, F. H. Zong, and D. M. Ceperley, Phys. Rev. E 64, 016702 (2001). 10.1103/physreve.64.016702
M. Dagrada, S. Karakuzu, V. L. Vildosola, M. Casula, and S. Sorella, Phys. Rev. B 94, 245108 (2016). 10.1103/physrevb.94.245108
G. Rajagopal, R. J. Needs, S. Kenny, W. M. C. Foulkes, and A. James, Phys. Rev. Lett. 73, 1959 (1994). 10.1103/physrevlett.73.1959
G. Rajagopal, R. Needs, A. James, S. Kenny, and W. Foulkes, Phys. Rev. B 51, 10591 (1995). 10.1103/physrevb.51.10591
C. Pisani, R. Dovesi, and C. Roetti, Hartree-Fock Ab Initio Treatment of Crystalline Systems (Springer Berlin, 1988), Vol. 48.
R. Dovesi, A. Erba, R. Orlando, C. M. Zicovich-Wilson, B. Civalleri, L. Maschio, M. Rérat, S. Casassa, J. Baima, S. Salustro et al., Wiley Interdiscip. Rev.: Comput. Mol. Sci. 8, e1360 (2018). 10.1002/wcms.1360
S. Karakuzu, L. F. Tocchio, S. Sorella, and F. Becca, Phys. Rev. B 96, 205145 (2017). 10.1103/physrevb.96.205145
L. M. Fraser, W. M. C. Foulkes, G. Rajagopal, R. J. Needs, S. D. Kenny, and A. J. Williamson, Phys. Rev. B 53, 1814 (1996). 10.1103/physrevb.53.1814
A. J. Williamson, G. Rajagopal, R. J. Needs, L. M. Fraser, W. M. C. Foulkes, Y. Wang, and M.-Y. Chou, Phys. Rev. B 55, R4851 (1997). 10.1103/physrevb.55.r4851
P. R. C. Kent, R. Q. Hood, A. J. Williamson, R. J. Needs, W. M. C. Foulkes, and G. Rajagopal, Phys. Rev. B 59, 1917 (1999). 10.1103/physrevb.59.1917
H. Kwee, S. Zhang, and H. Krakauer, Phys. Rev. Lett. 100, 126404 (2008). 10.1103/physrevlett.100.126404
S. Chiesa, D. M. Ceperley, R. M. Martin, and M. Holzmann, Phys. Rev. Lett. 97, 076404 (2006). 10.1103/physrevlett.97.076404
M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian 16 Revision C.01, Gaussian, Inc., Wallingford, CT, 2016.
P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo et al., J. Phys.: Condens. Matter 21, 395502 (2009). 10.1088/0953-8984/21/39/395502
J. P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981). 10.1103/physrevb.23.5048
S. Azadi, C. Cavazzoni, and S. Sorella, Phys. Rev. B 82, 125112 (2010). 10.1103/physrevb.82.125112
T. H. Dunning, Jr., J. Chem. Phys. 90, 1007 (1989). 10.1063/1.456153
K. Nakano, R. Maezono, and S. Sorella, J. Chem. Theory Comput. 15, 4044 (2019). 10.1021/acs.jctc.9b00295
R. Assaraf, S. Moroni, and C. Filippi, J. Chem. Theory Comput. 13, 5273 (2017). 10.1021/acs.jctc.7b00648
C. Umrigar, Int. J. Quantum Chem. 36, 217 (2009). 10.1002/qua.560360826
C. Attaccalite and S. Sorella, Phys. Rev. Lett. 100, 114501 (2008). 10.1103/physrevlett.100.114501
A. Zen, Y. Luo, S. Sorella, and L. Guidoni, J. Chem. Theory Comput. 9, 4332 (2013). 10.1021/ct400382m
G. Mazzola, A. Zen, and S. Sorella, J. Chem. Phys. 137, 134112 (2012). 10.1063/1.4755992
E. Neuscamman, C. J. Umrigar, and G. K.-L. Chan, Phys. Rev. B 85, 045103 (2012). 10.1103/physrevb.85.045103
Y. Luo, A. Zen, and S. Sorella, J. Chem. Phys. 141, 194112 (2014). 10.1063/1.4901430
G. E. P. Box and M. E. Muller, Ann. Math. Stat. 29, 610 (1958). 10.1214/aoms/1177706645
G. Mazzola, S. Yunoki, and S. Sorella, Nat. Commun. 5, 3487 (2014). 10.1038/ncomms4487
F. Mouhat, S. Sorella, R. Vuilleumier, A. M. Saitta, and M. Casula, J. Chem. Theory Comput. 13, 2400 (2017). 10.1021/acs.jctc.7b00017
H. F. Trotter, Proc. Amer. Math. Soc. 10, 545 (1959). 10.1090/s0002-9939-1959-0108732-6
M. Tuckerman, B. J. Berne, and G. J. Martyna, J. Chem. Phys. 97, 1990 (1992). 10.1063/1.463137
J. C. Sexton and D. H. Weingarten, Nucl. Phys. B 380, 667 (1992). 10.1016/0550-3213(92)90263-b
M. Ceriotti, M. Parrinello, T. E. Markland, and D. E. Manolopoulos, J. Chem. Phys. 133, 124104 (2010). 10.1063/1.3489925
G. Mazzola and S. Sorella, Phys. Rev. Lett. 118, 015703 (2017). 10.1103/physrevlett.118.015703
G. Mazzola, R. Helled, and S. Sorella, Phys. Rev. Lett. 120, 025701 (2018). 10.1103/physrevlett.120.025701
We assume, without the loss of generality, that N →≥ N →
R. Assaraf, M. Caffarel, and A. Scemama, Phys. Rev. E 75, 035701 (2007). 10.1103/physreve.75.035701
L. Stella, C. Attaccalite, S. Sorella, and A. Rubio, Phys. Rev. B 84, 245117 (2011). 10.1103/physrevb.84.245117
C. Genovese, A. Meninno, and S. Sorella, J. Chem. Phys. 150, 084102 (2019). 10.1063/1.5081933
R. Resta and S. Sorella, Phys. Rev. Lett. 82, 370 (1999). 10.1103/physrevlett.82.370
M. Capello, F. Becca, M. Fabrizio, S. Sorella, and E. Tosatti, Phys. Rev. Lett. 94, 026406 (2005). 10.1103/physrevlett.94.026406
M. Casula, C. Attaccalite, and S. Sorella, J. Chem. Phys. 121, 7110 (2004). 10.1063/1.1794632
S. Sorella and A. Zen, "The new resonating valence bond method for ab-initio electronic simulations," in Many-Electron Approaches in Physics, Chemistry and Mathematics: A Multidisciplinary View, edited by V. Bach and L. Delle Site (Springer International Publishing, Cham, 2014), pp. 377-392.
A. Zen, B. L. Trout, and L. Guidoni, J. Chem. Phys. 141, 014305 (2014). 10.1063/1.4885144
M. Casula, M. Marchi, S. Azadi, and S. Sorella, Chem. Phys. Lett. 477, 255 (2009). 10.1016/j.cplett.2009.07.005
M. Casula, S. Yunoki, C. Attaccalite, and S. Sorella, Comput. Phys. Commun. 169, 386 (2005). 10.1016/j.cpc.2005.03.086
N. Dupuy and M. Casula, J. Chem. Phys. 148, 134112 (2018). 10.1063/1.5016494
F. Sterpone, L. Spanu, L. Ferraro, S. Sorella, and L. Guidoni, J. Chem. Theory Comput. 4, 1428 (2008). 10.1021/ct800121e
A. Zen, Y. Luo, G. Mazzola, L. Guidoni, and S. Sorella, J. Chem. Phys. 142, 144111 (2015). 10.1063/1.4917171
M. Dagrada, M. Casula, A. M. Saitta, S. Sorella, and F. Mauri, J. Chem. Theory Comput. 10, 1980 (2014). 10.1021/ct401077x
A theory is size-consistent if the energy E A+Bof the supersystem made of two fragments A and B at a sufficiently large distance is equal to the sum E A+ E Bof the energy of the fragments. When a theory is size consistent, it is equivalent to take as reference energy for interaction energy evaluation the sum of the fragments or the supersystem with the fragments far apart, whereas if the theory is not, there is an arbitrary shift as large as E A+ E B-E A+Bin the interaction energy.
JSD and JAGP could describe the O-O system if the number of unpaired electrons is changed, for instance, if four unpaired electrons are used. However, this is not the right parametrization of the O2molecule.
J. Toulouse and C. J. Umrigar, J. Chem. Phys. 128, 174101 (2008). 10.1063/1.2908237
R. A. Aziz and M. Slaman, Chem. Phys. 130, 187 (1989). 10.1016/0301-0104(89)87048-x
J. M. Merritt, V. E. Bondybey, and M. C. Heaven, Science 324, 1548 (2009). 10.1126/science.1174326
S. R. Langhoff and C. W. Bauschlicher, J. Chem. Phys. 95, 5882 (1991). 10.1063/1.461609
L. Bytautas and K. Ruedenberg, J. Chem. Phys. 122, 154110 (2005). 10.1063/1.1869493
A. Zen, D. Zhelyazov, and L. Guidoni, J. Chem. Theory Comput. 8, 4204 (2012). 10.1021/ct300576n
Indeed, in order to improve the precision by an order of magnitude, the sampling (so, the computational cost) has to be increased by two orders of magnitude. Considering that the evaluation of the energy and all the force components in TurboRVB costs only 4 times the evaluation of only the energy with the same sampling (see Sec. VI), the speedup is 100/4 = 25.
Y. Luo and S. Sorella, Front. Mater. 2, 29 (2015). 10.3389/fmats.2015.00029
S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, J. Chem. Phys. 132, 154104 (2010). 10.1063/1.3382344
B. V. D. Goetz and E. Neuscamman, J. Chem. Theory Comput. 13, 2035 (2017). 10.1021/acs.jctc.7b00158
C. Umrigar, M. Nightingale, and K. Runge, J. Chem. Phys. 99, 2865 (1993). 10.1063/1.465195
A. Zen, S. Sorella, M. J. Gillan, A. Michaelides, and D. Alfè, Phys. Rev. B 93, 241118 (2016). 10.1103/physrevb.93.241118
N. Nemec, M. D. Towler, and R. Needs, J. Chem. Phys. 132, 034111 (2010). 10.1063/1.3288054
T. D. Beaudet, M. Casula, J. Kim, S. Sorella, and R. M. Martin, J. Chem. Phys. 129, 164711 (2008). 10.1063/1.2987716
L. Spanu, S. Sorella, and G. Galli, Phys. Rev. Lett. 103, 196401 (2009). 10.1103/physrevlett.103.196401
A. Zen, L. M. Roch, S. J. Cox, X. L. Hu, S. Sorella, D. Alfè, and A. Michaelides, J. Phys. Chem. C 120, 26402 (2016). 10.1021/acs.jpcc.6b09559
D. Nissenbaum, L. Spanu, C. Attaccalite, B. Barbiellini, and A. Bansil, Phys. Rev. B 79, 035416 (2009). 10.1103/physrevb.79.035416
G. Ferlat, M. Hellgren, F.-X. Coudert, H. Hay, F. Mauri, and M. Casula, Phys. Rev. Mater. 3, 063603 (2019). 10.1103/physrevmaterials.3.063603
M. Calandra, F. Becca, and S. Sorella, Phys. Rev. Lett. 81, 5185 (1998). 10.1103/physrevlett.81.5185
L. Capriotti, A. E. Trumper, and S. Sorella, Phys. Rev. Lett. 82, 3899 (1999). 10.1103/physrevlett.82.3899
F. Becca, M. Capone, and S. Sorella, Phys. Rev. B 62, 12700 (2000). 10.1103/physrevb.62.12700
L. Capriotti, F. Becca, A. Parola, and S. Sorella, Phys. Rev. Lett. 87, 097201 (2001). 10.1103/physrevlett.87.097201
S. Sorella, G. B. Martins, F. Becca, C. Gazza, L. Capriotti, A. Parola, and E. Dagotto, Phys. Rev. Lett. 88, 117002 (2002). 10.1103/physrevlett.88.117002
J. G. Bednorz and K. A. Müller, Z. Phys. B 64, 189 (1986). 10.1007/bf01303701
Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono, J. Am. Chem. Soc. 130, 3296 (2008). 10.1021/ja800073m
M. Marchi, S. Azadi, and S. Sorella, Phys. Rev. Lett. 107, 086807 (2011). 10.1103/physrevlett.107.086807
M. Casula and S. Sorella, Phys. Rev. B 88, 155125 (2013). 10.1103/physrevb.88.155125
B. Busemeyer, M. Dagrada, S. Sorella, M. Casula, and L. K. Wagner, Phys. Rev. B 94, 035108 (2016). 10.1103/physrevb.94.035108
S. Sorella, K. Seki, O. O. Brovko, T. Shirakawa, S. Miyakoshi, S. Yunoki, and E. Tosatti, Phys. Rev. Lett. 121, 066402 (2018). 10.1103/physrevlett.121.066402
M. Barborini and L. Guidoni, J. Chem. Phys. 137, 224309 (2012). 10.1063/1.4769791
M. Barborini and E. Coccia, J. Chem. Theory Comput. 11, 5696 (2015). 10.1021/acs.jctc.5b00819
M. Barborini and L. Guidoni, J. Chem. Theory Comput. 11, 508 (2015). 10.1021/ct501157f
M. Barborini and L. Guidoni, J. Chem. Theory Comput. 11, 4109 (2015). 10.1021/acs.jctc.5b00427
E. Coccia and L. Guidoni, J. Comput. Chem. 33, 2332 (2012). 10.1002/jcc.23071
E. Coccia, D. Varsano, and L. Guidoni, J. Chem. Theory Comput. 9, 8 (2013). 10.1021/ct3007502
E. Coccia, D. Varsano, and L. Guidoni, J. Chem. Theory Comput. 10, 501 (2014). 10.1021/ct400943a
E. Coccia, D. Varsano, and L. Guidoni, J. Chem. Theory Comput. 13, 4357 (2017). 10.1021/acs.jctc.7b00505
E. Coccia, O. Chernomor, M. Barborini, S. Sorella, and L. Guidoni, J. Chem. Theory Comput. 8, 1952 (2012). 10.1021/ct300171q
S. Chu, E. Coccia, M. Barborini, and L. Guidoni, J. Chem. Theory Comput. 12, 5803 (2016). 10.1021/acs.jctc.6b00632
M. Barborini and L. Guidoni, J. Chem. Phys. 145, 124107 (2016). 10.1063/1.4963015
S. Sorella, M. Casula, L. Spanu, and A. Dal Corso, Phys. Rev. B 83, 075119 (2011). 10.1103/physrevb.83.075119
N. Devaux, M. Casula, F. Decremps, and S. Sorella, Phys. Rev. B 91, 081101 (2015). 10.1103/physrevb.91.081101
H. Hay, G. Ferlat, M. Casula, A. P. Seitsonen, and F. Mauri, Phys. Rev. B 92, 144111 (2015). 10.1103/physrevb.92.144111
M. Motta, D. M. Ceperley, G. K.-L. Chan, J. A. Gomez, E. Gull, S. Guo, C. A. Jiménez-Hoyos, T. N. Lan, J. Li, F. Ma, A. J. Millis, N. V. Prokof'ev, U. Ray, G. E. Scuseria, S. Sorella, E. M. Stoudenmire, Q. Sun, I. S. Tupitsyn, S. R. White, D. Zgid, and S. Zhang (Simons Collaboration on the Many-Electron Problem), Phys. Rev. X 7, 031059 (2017). 10.1103/physrevx.7.031059
M. Motta, C. Genovese, F. Ma, Z.-H. Cui, R. Sawaya, G. K. Chan, N. Chepiga, P. Helms, C. Jimenez-Hoyos, A. J. Millis et al., arXiv:1911.01618 (2019).
E. Wigner and H. Huntington, J. Chem. Phys. 3, 764 (1935). 10.1063/1.1749590
N. W. Ashcroft, Phys. Rev. Lett. 21, 1748 (1968). 10.1103/physrevlett.21.1748