GNSS; LEO; Spire; CubeSats; Precise orbit determination; Raw observation approach
Abstract :
[en] CubeSats, a widely used class of nanosatellites, have made significant contributions to both geodetic and non-geodetic applications by offering low-cost, lightweight, and energy-efficient solutions. Spire Global Inc. has deployed over 120 3U CubeSats into various orbits, each equipped with a STRATOS GNSS receiver, a zenith-looking POD antenna, one or two RO antennas, and an attitude determination and control system. These features make Spire's LEMUR CubeSats ideal candidates for precise orbit determination (POD) and geodetic research. This study presents the first application of the raw observation approach for POD of commercial 3U CubeSats, focusing on 10 Spire GNSS-RO CubeSats with diverse orbital characteristics. The POD algorithm includes essential steps, such as the determination of a priori orbits and inertial quaternions for the Spire LEMUR CubeSats. Precise orbits are determined through both kinematic and reduced dynamic orbit solutions for the year 2020. In-flight calibrated antenna center variations (ACVs) are derived from the POD processing, revealing significant deviations from ground-based calibrations. Moreover, the calibrated ACVs vary among Flight Modules (FMs) with similar satellite buses and orbital characteristics, highlighting the necessity for independent in-flight calibration for each FM. To further enhance accuracy, azimuth- and elevation-dependent accuracy maps are generated from observation residuals and incorporated into the POD processing. The agreement between the reduced dynamic and kinematic orbits results in a 3D RMS difference of less than 5 cm. External validation further supports the reliability of the POD solutions. Comparisons with AIUB solutions for FM099 and FM103 in June 2020 show 3D RMS position agreements of 7.76 cm and 8.92 cm, and velocity agreements of 0.08 mm/s and 0.08 mm/s, respectively. Over the entire year, comparisons between the University of Luxembourg reduced dynamic orbits and Spire official L1B solutions achieve a 3D RMS of 22-29 cm in position and 0.25-1.04 mm/s in velocity. These results demonstrate the robustness of the raw observation approach for CubeSat POD and its potential to advance geodetic applications, such as the recovery of Earth's gravity field.
Allahvirdi-Zadeh, A., El-Mowafy, A., Wang, K., Precise orbit determination of CubeSats using proposed observations weighting model. Geodesy for a Sustainable Earth: Proceedings of the 2021 Scientific Assembly of the International Association of Geodesy, 2022, Springer, Beijing, China, 377–384, 10.1007/1345_2022_160.
Angling, M.J., Nogués-Correig, O., Nguyen, V., et al. Sensing the ionosphere with the Spire radio occultation constellation. J. Space Weather Space Clim., 11, 2021, 56, 10.1051/swsc/2021040.
Arnold, D., Peter, H., Mao, X., et al. Precise orbit determination of Spire nano satellites. Adv. Space Res. 72:11 (2023), 5030–5046, 10.1016/j.asr.2023.10.012.
Bock, H., Jäggi, A., Meyer, U., et al. Gps-derived orbits for the goce satellite. J. Geodesy 85:11 (2011), 807–818, 10.1007/s00190-011-0484-9.
Bowman, B.R., Tobiska, W.K., Marcos, F.A., et al. The JB2006 empirical thermospheric density model. J. Atmos. Sol.-Terr. Phys. 70:5 (2008), 774–793, 10.1016/j.jastp.2007.10.002.
Buendía, R.N., Tabibi, S., Talpe, M., Preliminary GNSS-R Altimetry in the Hudson Bay Based on Spire Grazing Angle Measurements. In IGARSS 2022–2022 IEEE International Geoscience and Remote Sensing Symposium, 2022, 7135–7138, 10.1109/IGARSS46834.2022.9883079.
Buendía, R.N., Tabibi, S., Talpe, M., et al. Ice sheet height retrievals from Spire grazing angle GNSS-R. Remote Sens. Environ., 297, 2023, 113757, 10.1016/j.rse.2023.113757.
Cappaert, J. (2020). The spire small satellite network. In Handbook of Small Satellites: Technology, Design, Manufacture, Applications, Economics and Regulation (pp. 1101–1121). Springer. doi:doi.org/10.1007/978-3-030-36308-6_93.
Chang, X.W., Yang, X., Zhou, T., MLAMBDA: A modified LAMBDA method for integer least-squares estimation. J. Geodesy 79 (2005), 552–565, 10.1007/s00190-005-0004-x.
Dach, R., & Walser, P. (2015). Bernese GNSS Software Version 5.2, URL: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=abaa1f824259ccced6ca660d5cc883bd50f76552.
Davoli, F., Kourogiorgas, C., Marchese, M., et al. Small satellites and CubeSats: Survey of structures, architectures, and protocols. Int. J. Satell. Commun. Netw. 37:4 (2019), 343–359, 10.1002/sat.1277.
Desai, S., Wahr, J., Beckley, B., Revisiting the pole tide for and from satellite altimetry. J. Geodesy 89:12 (2015), 1233–1243, 10.1007/s00190-015-0848-7.
Dobslaw, H., Bergmann-Wolf, I., Dill, R., et al. A new high-resolution model of non-tidal atmosphere and ocean mass variability for de-aliasing of satellite gravity observations: AOD1B RL06. Geophys. J. Int. 211:1 (2017), 263–269, 10.1093/gji/ggx302.
Doelling, D.R., Sun, M., Nguyen, L.T., et al. Advances in Geostationary-Derived Longwave Fluxes for the CERES Synoptic (SYN1deg) Product. J. Atmos. Ocean. Technol. 33:3 (2016), 503–521, 10.1175/JTECH-D-15-0147.1.
Donlon, C., Berruti, B., Mecklenberg, S., et al. The sentinel-3 mission: Overview and status. In 2012 IEEE International Geoscience and Remote Sensing Symposium, 2012, IEEE, 1711–1714, 10.1109/IGARSS.2012.6351194.
Ellmer, M., Mayer-Gürr, T., High precision dynamic orbit integration for spaceborne gravimetry in view of GRACE Follow-on. Adv. Space Res. 60:1 (2017), 1–13, 10.1016/j.asr.2017.04.015.
Folkner, W.M., Williams, J.G., Boggs, D.H., The planetary and lunar ephemeris DE421 and and DE431. IPN Prog. Rep. 42:178 (2009), 1–34.
Forsythe, V.V., Duly, T., Hampton, D., et al. Validation of Ionospheric Electron Density Measurements Derived From Spire CubeSat Constellation. Radio Sci., 55(1), 2020, 10.1029/2019RS006953 e2019RS006953.
Grombein, T., Arnold, D., Kobel, C., et al. Gravity field recovery based on GPS data of CubeSats from the Spire constellation. In Proceedings of the 28th IUGG General Assembly. Berlin, Germany, 2023, 10.57757/IUGG23-3392.
Hilla, S. (2010). The Extended Standard Product 3 Orbit Format (SP3-c). Technical Report National Geodetic Survey, National Ocean Service, NOAA.
Ho, S.-P., Pedatella, N., Foelsche, U., et al. Using Radio Occultation Data for Atmospheric Numerical Weather Prediction, Climate Sciences, and Ionospheric Studies and Initial Results from COSMIC-2, Commercial RO Data, and Recent RO Missions. Bull. Am. Meteorol. Soc. 103:11 (2022), E2506–E2512, 10.1175/BAMS-D-22-0174.1.
International GNSS Service (IGS) (2020). IGS Repro3 ANTEX File: igsR3.atx. URL: http://ftp.aiub.unibe.ch/awg/igsR3_2233.atx.
Jäggi, A., Arnold, D., Precise orbit determination. Global Gravity Field Modeling from Satellite-to-Satellite Tracking Data. 2017, 35–80, 10.1007/978-3-319-49941-3_2.
Jäggi, A., Dach, R., Montenbruck, O., et al. Phase center modeling for LEO GPS receiver antennas and its impact on precise orbit determination. J. Geodesy 83:12 (2009), 1145–1162, 10.1007/s00190-009-0333-2.
Jäggi, A., Dahle, C., Arnold, D., et al. Swarm kinematic orbits and gravity fields from 18months of GPS data. Adv. Space Res. 57:1 (2016), 218–233, 10.1016/j.asr.2015.10.035.
Klaes, K.D., Cohen, M., Buhler, Y., et al. An introduction to the EUMETSAT polar system. Bull. Am. Meteorol. Soc. 88:7 (2007), 1085–1096, 10.1175/BAMS-88-7-1085.
Klaes, K.D., Montagner, F., & Larigauderie, C. (2013). Metop-B, the second satellite of the EUMETSAT polar system, in orbit. In Earth Observing Systems XVIII (pp. 336–350). SPIE volume 8866. doi:doi.org/10.1117/12.2022440.
Kobel, C., Kalarus, M., Arnold, D., et al. Impact of incorporating Spire CubeSat GPS observations in a global GPS network solution. Adv. Space Res. 73:12 (2024), 6079–6093, 10.1016/j.asr.2024.04.015.
Kopacz, J.R., Herschitz, R., Roney, J., Small satellites an overview and assessment. Acta Astronaut. 170 (2020), 93–105, 10.1016/j.actaastro.2020.01.034.
Kornfeld, R.P., Arnold, B.W., Gross, M.A., et al. GRACE-FO: The Gravity Recovery and Climate Experiment Follow-On Mission. J. Spacecr. Rockets. 56:3 (2019), 931–951, 10.2514/1.A34326.
Kouba, J. (2009). A guide to using International GNSS Service (IGS) products, URL: http://acc.igs.org/UsingIGSProductsVer21.pdf.
Kvas, A., Brockmann, J.M., Krauss, S., et al. GOCO06s–a satellite-only global gravity field model. Earth Syst. Sci. Data Discuss. 2020 (2020), 1–31, 10.5194/essd-13-99-2021.
Lambin, J., Morrow, R., Fu, L.-L., et al. The OSTM/jason-2 mission. Mar. Geodesy 33:S1 (2010), 4–25.
Lemoine, F.G., Goossens, S., Sabaka, T.J., et al. High-degree gravity models from GRAIL primary mission data. J. Geophys. Res. Planets 118:8 (2013), 1676–1698, 10.1002/jgre.20118.
Levchenko, I., Bazaka, K., Ding, Y., et al. Space micropropulsion systems for Cubesats and small satellites: From proximate targets to furthermost frontiers. Appl. Phys. Rev., 5(1), 2018, 011104, 10.1063/1.5007734.
Lyard, F.H., Allain, D.J., Cancet, M., et al. Fes 2014 global ocean tide atlas: design and performance. Ocean Sci. 17:3 (2021), 615–649, 10.5194/os-17-615-2021.
Macmillan, S., Olsen, N., Observatory data and the Swarm mission. Earth Planets Space 65 (2013), 1355–1362.
Mayer-Gürr, T. (2008). Gravitationsfeldbestimmung aus der Analyse kurzer Bahnbögen am Beispiel der Satellitenmissionen CHAMP und GRACE. Ph.D. thesis. URL: https://hdl.handle.net/20.500.11811/1391.
Mayer-Guerr, T., Behzadpour, S., Eicker, A., et al. GROOPS: A software toolkit for gravity field recovery and GNSS processing. Comput. Geosci., 2021, 104864, 10.1016/j.cageo.2021.104864.
Ménard, Y., Fu, L.-L., Escudier, P., et al. The Jason-1 mission special issue: Jason-1 calibration/validation. Mar. Geodesy 26:3–4 (2003), 131–146, 10.1080/714044514.
Michaelis, I., Styp-Rekowski, K., Rauberg, J., et al. Geomagnetic data from the GOCE satellite mission. Earth Planets Space, 74(1), 2022, 135, 10.1186/s40623-022-01691-6.
Montenbruck, O., Garcia-Fernandez, M., Yoon, Y., et al. Antenna phase center calibration for precise positioning of LEO satellites. GPS Sol. 13 (2009), 23–34, 10.1007/s10291-008-0094-z.
Montenbruck, O., Gill, E., Satellite Orbits: Models, Methods and Applications. 2000, Springer, Berlin, Heidelberg, 10.1007/978-3-642-58351-3.
Montenbruck, O., Hackel, S., Wermuth, M., et al. Sentinel-6A precise orbit determination using a combined GPS/Galileo receiver. J. Geodesy, 95(9), 2021, 109, 10.1007/s00190-021-01563-z.
Nguyen, V.A., Nogués-Correig, O., Yuasa, T., et al. Initial GNSS phase altimetry measurements from the spire satellite constellation. Geophys. Res. Lett., 47(15), 2020, 10.1029/2020GL088308.
Riley, W.J., & Howe, D.A. (2008). Handbook of frequency stability analysis volume 1065. US Department of Commerce, National Institute of Standards and Technology. URL: https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=50505.
Roesler, C.J., Morton, Y.J., Wang, Y., et al. Coherent GNSS-reflections characterization over ocean and sea ice based on spire global CubeSat Data. IEEE Trans. Geosci. Remote Sens. 60 (2022), 1–18, 10.1109/TGRS.2021.3129999.
Ruf, C. et al. (2022). Cygnss handbook.
Scharroo, R., Bonekamp, H., Ponsard, C., et al. Jason continuity of services: continuing the Jason altimeter data records as Copernicus Sentinel-6. Ocean Sci. 12:2 (2016), 471–479, 10.5194/os-12-471-2016.
Schönemann, E. (2014). Analysis of GNSS raw observations in PPP solutions. 42. Technische Universität Darmstadt. URL: https://tuprints.ulb.tu-darmstadt.de/id/eprint/3843.
Schönemann, E., Becker, M., Springer, T., A new approach for GNSS analysis in a multi-GNSS and multi-signal environment. J. Geod. Sci. 1:3 (2011), 204–214, 10.2478/v10156-010-0023-2.
Schreiner, W.S., Weiss, J., Anthes, R.A., et al. COSMIC-2 radio occultation constellation: First results. Geophys. Res. Lett., 47(4), 2020, 10.1029/2019GL086841 e2019GL086841.
Selmke, I., Dach, R., Arnold, D. et al. (2020). CODE repro3 product series for the IGS, URL: http://ftp.aiub.unibe.ch/REPRO_2020. doi:doi.org/10.7892/boris.135946.
Setti, P.T. Jr, Tabibi, S., Evaluation of Spire GNSS-R reflectivity from multiple GNSS constellations for soil moisture estimation. Int. J. Remote Sens. 44:20 (2023), 6422–6441, 10.1080/01431161.2023.2270108.
Setti, P.T. Jr, Tabibi, S., Spaceborne gnss-reflectometry for surface water mapping in the amazon basin. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 17 (2024), 6658–6670, 10.1109/JSTARS.2024.3373899.
Setti, P.T. Jr, Tabibi, S., Enhancing Soil Moisture Estimates Through the Fusion of SMAP and GNSS-R Data at 3-Km Resolution for Daily Mapping. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 18 (2025), 5303–5316, 10.1109/JSTARS.2025.3532607.
Shafiei, P., Bemtgen, J., Tabibi, S., Precise Orbit Determination of the Spire GNSS-RO Constellation. In AGU24 Annual Meeting, 2024.
Shafiei, P., Bemtgen, J., Talpe, M., et al. Initial Orbit Determination Results from the University of Luxembourg using Spire GNSS Tracking Data. 2023, In European Geosciences Union (EGU) General Assembly, 10.5194/egusphere-egu23-15932.
Shafiei, P., Tabibi, S., Can the Spire GNSS-RO CubeSats Constellation Observe Earth's Gravity Field. In European Geosciences Union (EGU) General. Assembly., 2025, 10.5194/egusphere-egu25-6797.
Shuster, M.D., et al. A survey of attitude representations. Nav. 8:9 (1993), 439–517 URL: https://malcolmdshuster.com/Pub_1993h_J_Repsurv_scan.pdf.
Spire (2021a). Spire ANTEX File Description, Version 1.0,.
Springer, T., Dilssner, F., Escobar, D., et al. NAPEOS: The ESA/ESOC tool for space geodesy. Geophysical Research Abstracts., 13, 2011 URL: https://meetingorganizer.copernicus.org/EGU2011/EGU2011-8287.pdf.
Strasser, S., Reprocessing Multiple GNSS Constellations and a Global Station Network from 1994 to 2020 with the Raw Observation Approach. Ph.D. thesis, 2022, Graz University of Technology Graz, Austria, 10.3217/978-3-85125-885-1.
Strasser, S., & Mayer-Gürr, T. (2021). IGS repro3 products by Graz University of Technology (TUG). doi:doi.org/10.3217/dataset-4528-0723-0867.
Strasser, S., Mayer-Gürr, T., Zehentner, N., Processing of gnss constellations and ground station networks using the raw observation approach. J. Geodesy 93:7 (2019), 1045–1057, 10.1007/s00190-018-1223-2.
Suesser-Rechberger, B., Krauss, S., Strasser, S., et al. Improved precise kinematic LEO orbits based on the raw observation approach. Adv. Space Res. 69:10 (2022), 3559–3570, 10.1016/j.asr.2022.03.014.
Tapley, B.D., Bettadpur, S., Watkins, M., et al. The gravity recovery and climate experiment: Mission overview and early results. Geophys. Res. Lett., 31(9), 2004, 10.1029/2004GL019920.
Teunissen, P., The least-squeres ambiguity decorrelation adjustment: a method for fast GPS integer ambiguity estimation. J. Geodesy 70 (1995), 65–82, 10.1007/BF00863419.
Teunissen, P.J., Montenbruck, O., Springer handbook of global navigation satellite systems, volume 10, 2017, Springer.
Vaze, P., Neeck, S., Bannoura, W. et al. (2010). The Jason-3 Mission: Completing the transition of ocean altimetry from research to operations. In Sensors, systems, and next-generation satellites XIV (pp. 264–268). SPIE volume 7826. doi:doi.org/10.1117/12.868543.
Wang, Y., Morton, Y.J., Ionospheric Total Electron Content and Disturbance Observations From Space-Borne Coherent GNSS-R Measurements. IEEE Trans. Geosci. Remote Sens. 60 (2022), 1–13, 10.1109/TGRS.2021.3093328.
Wermuth, M., Montenbruck, O., & Van Helleputte, T. (2010). GPS high precision orbit determination software tools (GHOST), URL: https://elib.dlr.de/74046/1/Wermuth_et_al(2010).pdf.
Wöske, F., Kato, T., Rievers, B., et al. GRACE accelerometer calibration by high precision non-gravitational force modeling. Adv. Space Res. 63:3 (2019), 1318–1335, 10.1016/j.asr.2018.10.025.
Wu, J.-T., Wu, S.C., Hajj, G.A. et al. (1992). Effects of antenna orientation on GPS carrier phase. Astrodyn. 1991, (pp. 1647–1660). doi:doi.org/10.1007/BF03655303.
Zehentner, N., Mayer-Gürr, T., New approach to estimate time variable gravity fields from high-low satellite tracking data. In Gravity, Geoid and Height Systems: Proceedings of the IAG Symposium GGHS2012, 2014, Springer, 111–116, 10.1007/978-3-319-10837-7_14.
Zehentner, N., Mayer-Gürr, T., Precise orbit determination based on raw GPS measurements. J. Geodesy 90:3 (2016), 275–286, 10.1007/s00190-015-0872-7.