DNA methylation; Multi-omics; childhood adversity; proteomics; stress exposure; transcriptomics; Humans; Male; Female; Adult; DNA Methylation; Middle Aged; Monocytes/metabolism; Young Adult; Multiomics; Stress, Psychological/genetics; Stress, Psychological/metabolism; Adverse Childhood Experiences; Monocytes; Stress, Psychological; Physiology; Neuropsychology and Physiological Psychology; Endocrine and Autonomic Systems; Psychiatry and Mental Health; Behavioral Neuroscience
Abstract :
[en] The experience of adversity in childhood can have life-long consequences on health outcomes. In search of mediators of this relationship, alterations of bio-behavioral and cellular regulatory systems came into focus, including those dealing with basic gene regulatory processes. System biology oriented approaches have been proposed to gain a more comprehensive understanding of the complex multiple interrelations between and within layers of analysis. Here, we used co-expression based, supervised and unsupervised single and multi-omics systems approaches to investigate the association between childhood adversity and gene expression, protein expression and DNA methylation in CD14+ monocytes in the context of psychosocial stress exposure, in a sample of healthy adults with (n = 29) or without (n = 27) a history of childhood adversity. Childhood adversity explained some variance at the single analyte level and within gene and protein co-expression structures. A single-omics, post-stress gene expression model differentiated best between participants with a history of childhood adversity and control participants in supervised analyses. In unsupervised analyses, a multi-omics based model showed best performance but separated participants based on sex only. Multi-omics analyses are a promising concept but might yield different results based on the specific approach taken and the omics-datasets supplied. We found that stress associated gene-expression pattern were most strongly associated with childhood adversity, and integrating multiple cellular layers did not results in better discriminatory performance in our rather small sample. The capacity and yield of different omics-profiling methods might currently limit the full potential of integrative approaches.
Disciplines :
Neurosciences & behavior
Author, co-author :
Zang, Johannes C S; Faculty of Psychology, Institute for Health and Development, Ruhr University Bochum, Bochum, Germany
May, Caroline; Medizinisches Proteom-Center, Medical Proteome Analysis Centre for Protein Diagnostics (PRODI), Ruhr University, Bochum, Germany
Marcus, Katrin; Medizinisches Proteom-Center, Medical Proteome Analysis Centre for Protein Diagnostics (PRODI), Ruhr University, Bochum, Germany
KUMSTA, Robert ; University of Luxembourg > Faculty of Humanities, Education and Social Sciences (FHSE) > Department of Behavioural and Cognitive Sciences (DBCS) > Health and Behaviour ; Faculty of Psychology, Institute for Health and Development, Ruhr University Bochum, Bochum, Germany ; DZPG (German Center for Mental Health), partner site Bochum/Marburg, Germany
External co-authors :
no
Language :
English
Title :
Molecular correlates of childhood adversity - a multi-omics perspective on stress regulation.
Publication date :
December 2025
Journal title :
Stress: the International Journal on the Biology of Stress
Breen, M. S., Tylee, D. S., Maihofer, A. X., Neylan, T. C., Mehta, D., Binder, E. B., Chandler, S. D., Hess, J. L., Kremen, W. S., Risbrough, V. B., Woelk, C. H., Baker, D. G., Nievergelt, C. M., Tsuang, M. T., Buxbaum, J. D., & Glatt, S. J., (2018). PTSD blood transcriptome mega-analysis: Shared inflammatory pathways across biological sex and modes of trauma. Neuropsychopharmacology, 43(3), 469–481. https://doi.org/10.1038/npp.2017.220
Cole, S. W., (2014). Human social genomics. PLoS Genetics, 10(8), e1004601. https://doi.org/10.1371/journal.pgen.1004601
Cole, S. W., Hawkley, L. C., Arevalo, J. M. G., & Cacioppo, J. T., (2011). Transcript origin analysis identifies antigen-presenting cells as primary targets of socially regulated gene expression in leukocytes. Proceedings of the National Academy of Sciences of the United States of America, 108(7), 3080–3085. https://doi.org/10.1073/pnas.1014218108
cvequality: Tests for the Equality of Coefficients of Variation from Multiple Groups. (n.d.). R software package version 0.1.3. https://github.com/benmarwick/cvequality
Darzacq, X., Shav-Tal, Y., de Turris, V., Brody, Y., Shenoy, S. M., Phair, R. D., & Singer, R. H., (2007). In vivo dynamics of RNA polymerase II transcription. Nature Structural & Molecular Biology, 14(9), 796–806. https://doi.org/10.1038/nsmb1280
Epskamp, S., Cramer, A. O. J., Waldorp, L. J., Schmittmann, V. D., & Borsboom, D., (2012). Network visualizations of relationships in psychometric data. Journal of Statistical Software, 48(4), 1–18. https://doi.org/10.18637/jss.v048.i04
Frach, L., Tierling, S., Schwaiger, M., Moser, D., Heinrichs, M., Hengstler, J., Walter, J., & Kumsta, R., (2019). The mediating role of KITLG DNA methylation in the association between childhood adversity and cortisol stress reactivity does not replicate in monocytes. Psychoneuroendocrinology, 116, 104653.
Haas, R., Zelezniak, A., Iacovacci, J., Kamrad, S., Townsend, S., & Ralser, M., (2017). Designing and interpreting ‘multi-omic’ experiments that may change our understanding of biology. Current Opinion in Systems Biology, 6, 37–45. https://doi.org/10.1016/j.coisb.2017.08.009
Hausser, J., Mayo, A., Keren, L., & Alon, U., (2019). Central dogma rates and the trade-off between precision and economy in gene expression. Nature Communications, 10, 68.
Heim, C. M., Entringer, S., & Buss, C., (2019). Translating basic research knowledge on the biological embedding of early-life stress into novel approaches for the developmental programming of lifelong health. Psychoneuroendocrinology, 105, 123–137. https://doi.org/10.1016/j.psyneuen.2018.12.011
Hoffman, G. E., & Schadt, E. E., (2016). variancePartition: Interpreting drivers of variation in complex gene expression studies. BMC Bioinformatics, 17(1), 483. https://doi.org/10.1186/s12859-016-1323-z
Houtepen, L. C., Vinkers, C. H., Carrillo-Roa, T., Hiemstra, M., van Lier, P. A., Meeus, W., Branje, S., Heim, C. M., Nemeroff, C. B., Mill, J., Schalkwyk, L. C., Creyghton, M. P., Kahn, R. S., Joëls, M., Binder, E. B., & Boks, M. P. M., (2016). Genome-wide DNA methylation levels and altered cortisol stress reactivity following childhood trauma in humans. Nature Communications, 7(1), 10967. https://doi.org/10.1038/ncomms10967
Jamil, I. N., Remali, J., Azizan, K. A., Nor Muhammad, N. A., Arita, M., Goh, H.-H., & Aizat, W. M., (2020). Systematic multi-omics integration (MOI) approach in plant systems biology. Frontiers in Plant Science, 11, 944. https://doi.org/10.3389/fpls.2020.00944
Krassowski, M., Das, V., Sahu, S. K., & Misra, B. B., (2020). State of the field in multi-omics research: From computational needs to data mining and sharing. Frontiers in Genetics, 11, 610798. https://doi.org/10.3389/fgene.2020.610798
Langfelder, P., & Horvath, S., (2008). WGCNA: An R package for weighted correlation network analysis. BMC Bioinformatics, 9(1), 559. https://doi.org/10.1186/1471-2105-9-559
Lupien, S. J., McEwen, B. S., Gunnar, M. R., & Heim, C., (2009). Effects of stress throughout the lifespan on the brain, behaviour and cognition. Nature Reviews. Neuroscience, 10(6), 434–445. https://doi.org/10.1038/nrn2639
Miller, G. E., Murphy, M. L. M., Cashman, R., Ma, R., Ma, J., Arevalo, J. M. G., Kobor, M. S., & Cole, S. W., (2014). Greater inflammatory activity and blunted glucocorticoid signaling in monocytes of chronically stressed caregivers. Brain, Behavior, and Immunity, 41, 191–199. https://doi.org/10.1016/j.bbi.2014.05.016
O’Donovan, A., Sun, B., Cole, S., Rempel, H., Lenoci, M., Pulliam, L., & Neylan, T., (2011). Transcriptional control of monocyte gene expression in post-traumatic stress disorder. Disease Markers, 30(2-3), 123–132. https://doi.org/10.1155/2011/560572
Pinu, F. R., Beale, D. J., Paten, A. M., Kouremenos, K., Swarup, S., Schirra, H. J., & Wishart, D., (2019). Systems biology and multi-omics integration: Viewpoints from the metabolomics research community. Metabolites, 9(4), 76. https://doi.org/10.3390/metabo9040076
Rohart, F., Gautier, B., Singh, A., & Lê Cao, K.-A., (2017). mixOmics: An R package for ‘omics feature selection and multiple data integration. PLoS Computational Biology, 13(11), e1005752. https://doi.org/10.1371/journal.pcbi.1005752
Sathyanarayanan, A., Mueller, T. T., Ali Moni, M., Schueler, K., Baune, B. T., Lio, P., Mehta, D., Baune, B. T., Dierssen, M., Ebert, B., Fabbri, C., Fusar-Poli, P., Gennarelli, M., Harmer, C., Howes, O. D., Janzing, J. G. E., Lio, P., Maron, E., Mehta, D., … Xicota, L., (2023). Multi-omics data integration methods and their applications in psychiatric disorders. European Neuropsychopharmacology,69, 26–46. https://doi.org/10.1016/j.euroneuro.2023.01.001
Schwaiger, M., Grinberg, M., Moser, D., Zang, J. C. S., Heinrichs, M., Hengstler, J. G., Rahnenführer, J., Cole, S., & Kumsta, R., (2016). Altered stress-induced regulation of genes in monocytes in adults with a history of childhood adversity. Neuropsychopharmacology, 41(10), 2530–2540. https://doi.org/10.1038/npp.2016.57
Shannon, C. P., Blimkie, T. M., Ben-Othman, R., Gladish, N., Amenyogbe, N., Drissler, S., Edgar, R. D., Chan, Q., Krajden, M., Foster, L. J., Kobor, M. S., Mohn, W. W., Brinkman, R. R., Le Cao, K.-A., Scheuermann, R. H., Tebbutt, S. J., Hancock, R. E. W., Koff, W. C., Kollmann, T. R., Sadarangani, M., & Lee, A. H.-Y., (2020). Multi-omic data integration allows baseline immune signatures to predict hepatitis B vaccine response in a small cohort. Frontiers in Immunology, 11, 578801. https://doi.org/10.3389/fimmu.2020.578801
Singh, A., Shannon, C. P., Gautier, B., Rohart, F., Vacher, M., Tebbutt, S. J., & Lê Cao, K.-A., (2019). DIABLO: An integrative approach for identifying key molecular drivers from multi-omics assays. Bioinformatics, 35(17), 3055–3062. https://doi.org/10.1093/bioinformatics/bty1054
Snyder-Mackler, N., Burger, J. R., Gaydosh, L., Belsky, D. W., Noppert, G. A., Campos, F. A., Bartolomucci, A., Yang, Y. C., Aiello, A. E., O’Rand, A., Harris, K. M., Shively, C. A., Alberts, S. C., & Tung, J., (2020). Social determinants of health and survival in humans and other animals. Science, 368(6493), eaax9553. https://doi.org/10.1126/science.aax9553
Sonuga-Barke, E. J. S., Kennedy, M., Kumsta, R., Knights, N., Golm, D., Rutter, M., Maughan, B., Schlotz, W., & Kreppner, J., (2017). Child-to-adult neurodevelopmental and mental health trajectories after early life deprivation: The young adult follow-up of the longitudinal English and Romanian Adoptees study. Lancet, 389(10078), 1539–1548. https://doi.org/10.1016/S0140-6736(17)30045-4
Speicher, N. K., & Pfeifer, N., (2015). Integrating different data types by regularized unsupervised multiple kernel learning with application to cancer subtype discovery. Bioinformatics, 31(12), i268–75. https://doi.org/10.1093/bioinformatics/btv244
Subramanian, I., Verma, S., Kumar, S., Jere, A., & Anamika, K., (2020). Multi-omics data integration, interpretation, and its application. Bioinformatics and Biology Insights, 14, 1177932219899051. https://doi.org/10.1177/1177932219899051
Teicher, M. H., Gordon, J. B., & Nemeroff, C. B., (2022). Recognizing the importance of childhood maltreatment as a critical factor in psychiatric diagnoses, treatment, research, prevention, and education. Molecular Psychiatry, 27(3), 1331–1338. https://doi.org/10.1038/s41380-021-01367-9
Wohleb, E. S., & Delpech, J.-C., (2017). Dynamic cross-talk between microglia and peripheral monocytes underlies stress-induced neuroinflammation and behavioral consequences. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 79(Pt A), 40–48. https://doi.org/10.1016/j.pnpbp.2016.04.013
Wohleb, E. S., McKim, D. B., Sheridan, J. F., & Godbout, J. P., (2014). Monocyte trafficking to the brain with stress and inflammation: A novel axis of immune-to-brain communication that influences mood and behavior. Frontiers in Neuroscience, 8, 447.
Yan, J., Risacher, S. L., Shen, L., & Saykin, A. J., (2018). Network approaches to systems biology analysis of complex disease: Integrative methods for multi-omics data. Briefings in Bioinformatics, 19(6), 1370–1381. https://doi.org/10.1093/bib/bbx066
Zang, J. C. S., May, C., Hellwig, B., Moser, D., Hengstler, J. G., Cole, S., Heinrichs, M., Rahnenführer, J., & Marcus, K., (2021). Proteome analysis of monocytes implicates altered mitochondrial functioning in adults reporting adverse childhood experiences. Translational Psychiatry, 13, 31.
Zang, J. C. S., May, C., Hellwig, B., Moser, D., Hengstler, J. G., Cole, S., Heinrichs, M., Rahnenführer, J., Marcus, K., & Kumsta, R., (2023). Proteome analysis of monocytes implicates altered mitochondrial biology in adults reporting adverse childhood experiences. Translational Psychiatry, 13(1), 31. https://doi.org/10.1038/s41398-023-02320-w