[en] The dynamics of quantum systems unfolds within a subspace of the state space
or operator space, known as the Krylov space. This review presents the use of
Krylov subspace methods to provide an efficient description of quantum
evolution and quantum chaos, with emphasis on nonequilibrium phenomena of
many-body systems with a large Hilbert space. It provides a comprehensive
update of recent developments, focused on the quantum evolution of operators in
the Heisenberg picture as well as pure and mixed states. It further explores
the notion of Krylov complexity and associated metrics as tools for quantifying
operator growth, their bounds by generalized quantum speed limits, the
universal operator growth hypothesis, and its relation to quantum chaos,
scrambling, and generalized coherent states. A comparison of several
generalizations of the Krylov construction for open quantum systems is
presented. A closing discussion addresses the application of Krylov subspace
methods in quantum field theory, holography, integrability, quantum control,
and quantum computing, as well as current open problems.
MATSOUKAS, Stylianos Apollonas ; University of Luxembourg > Faculty of Science, Technology and Medicine > Department of Physics and Materials Science > Team Adolfo DEL CAMPO ECHEVARRIA
MARTINEZ AZCONA, Pablo ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Physics and Materials Science (DPHYMS)
Viswanath, V., Müller, G., The recursion method: Application to many body dynamics. Lecture Notes in Physics Monographs, 1994, Springer Berlin Heidelberg, 10.1007/978-3-540-48651-0.
Parlett, B.N., The Symmetric Eigenvalue Problem. 1998, Society for Industrial and Applied Mathematics, 10.1137/1.9781611971163.
Liesen, J., Strakos, Z., Krylov Subspace Methods: Principles and Analysis. 2012, Oxford University Press, 10.1093/acprof:oso/9780199655410.001.0001.
Krylov, A., De la résolution numérique de l’équation servant à déterminer dans des questions de mécanique appliquée les fréquences de petites oscillations des systèmes matériels. Bull. Acad. Sci. l'URSS. Cl. Sci. Math. Nat. 4 (1931), 491–539, 10.1017/CBO9781139424400 URL http://mi.mathnet.ru/izv5215, https://zbmath.org/?q=an:0002.29102|57.1454.02.
Lanczos, C., An iteration method for the solution of the eigenvalue problem of linear differential and integral operators. J. Res. Natl. Bur. Stand. 45 (1950), 255–282.
Cullum, J.K., Willoughby, R.A., Lanczos Algorithms for Large Symmetric Eigenvalue Computations. 2002, Society for Industrial and Applied Mathematics, 10.1137/1.9780898719192.
Komzsik, L., The Lanczos Method. 2003, Society for Industrial and Applied Mathematics, 10.1137/1.9780898718188.
Mori, H., A continued-fraction representation of the time-correlation functions. Progr. Theoret. Phys. 34:3 (1965), 399–416, 10.1143/PTP.34.399.
Cyrot-Lackmann, F., On the electronic structure of liquid transitional metals. Adv. Phys. 16:63 (1967), 393–400, 10.1080/00018736700101495.
Haydock, R., The recursive solution of the Schrödinger equation. Comput. Phys. Comm. 20:1 (1980), 11–16, 10.1016/0010-4655(80)90101-0 URL https://www.sciencedirect.com/science/article/pii/0010465580901010.
Grigolini, P., Grosso, G., Parravicini, G.P., Sparpaglione, M., Calculation of relaxation functions: A new development within the Mori formalism. Phys. Rev. B 27 (1983), 7342–7347, 10.1103/PhysRevB.27.7342 URL https://link.aps.org/doi/10.1103/PhysRevB.27.7342.
Grosso, G., Pastori Parravicini, G., Memory function methods in solid state physics. Advances in Chemical Physics: Memory Function Approahes to Stochastic Problems in Condensed Matter, 1985, Wiley Online Library, 133–181.
Mattis, D.C., How to reduce practically any problem to one dimension. Physics in One Dimension, 1981, Springer Berlin Heidelberg, 3–10, 10.1007/978-3-642-81592-8_1.
D'Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M., From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65:3 (2016), 239–362, 10.1080/00018732.2016.1198134.
Mori, T., Ikeda, T.N., Kaminishi, E., Ueda, M., Thermalization and prethermalization in isolated quantum systems: a theoretical overview. J. Phys. B: At. Mol. Opt. Phys., 51(11), 2018, 112001, 10.1088/1361-6455/aabcdf.
Haake, F., Gnutzmann, S., Kuś, M., Quantum signatures of chaos. Springer Series in Synergetics, 2019, Springer International Publishing, 10.1007/978-3-319-97580-1.
Gorin, T., Prosen, T., Seligman, T.H., Žnidarič, M., Dynamics of loschmidt echoes and fidelity decay. Phys. Rep. 435:2 (2006), 33–156, 10.1016/j.physrep.2006.09.003 URL https://www.sciencedirect.com/science/article/pii/S0370157306003310.
Fine, B.V., Elsayed, T.A., Kropf, C.M., de Wijn, A.S., Absence of exponential sensitivity to small perturbations in nonintegrable systems of spins 1/2. Phys. Rev. E, 89, 2014, 012923, 10.1103/PhysRevE.89.012923 URL https://link.aps.org/doi/10.1103/PhysRevE.89.012923.
Maldacena, J., Shenker, S.H., Stanford, D., A bound on chaos. J. High Energy Phys., 2016(8), 2016, 106, 10.1007/JHEP08(2016)106.
Tsuji, N., Shitara, T., Ueda, M., Bound on the exponential growth rate of out-of-time-ordered correlators. Phys. Rev. E, 98(1), 2018, 012216, 10.1103/PhysRevE.98.012216 URL https://link.aps.org/doi/10.1103/PhysRevE.98.012216.
Rakovszky, T., Pollmann, F., von Keyserlingk, C.W., Diffusive hydrodynamics of out-of-time-ordered correlators with charge conservation. Phys. Rev. X, 8, 2018, 031058, 10.1103/PhysRevX.8.031058 URL https://link.aps.org/doi/10.1103/PhysRevX.8.031058.
von Keyserlingk, C.W., Rakovszky, T., Pollmann, F., Sondhi, S.L., Operator hydrodynamics, OTOCs, and entanglement growth in systems without conservation laws. Phys. Rev. X, 8, 2018, 021013, 10.1103/PhysRevX.8.021013 URL https://link.aps.org/doi/10.1103/PhysRevX.8.021013.
Nahum, A., Vijay, S., Haah, J., Operator spreading in random unitary circuits. Phys. Rev. X, 8, 2018, 021014, 10.1103/PhysRevX.8.021014 URL https://link.aps.org/doi/10.1103/PhysRevX.8.021014.
Khemani, V., Vishwanath, A., Huse, D.A., Operator spreading and the emergence of dissipative hydrodynamics under unitary evolution with conservation laws. Phys. Rev. X, 8, 2018, 031057, 10.1103/PhysRevX.8.031057 URL https://link.aps.org/doi/10.1103/PhysRevX.8.031057.
Parker, D.E., Cao, X., Avdoshkin, A., Scaffidi, T., Altman, E., A universal operator growth hypothesis. Phys. Rev. X, 9, 2019, 041017, 10.1103/PhysRevX.9.041017 URL https://link.aps.org/doi/10.1103/PhysRevX.9.041017.
Motta, M., Sun, C., Tan, A.T.K., O'Rourke, M.J., Ye, E., Minnich, A.J., Brandão, F.G.S.L., Chan, G.K.-L., Determining eigenstates and thermal states on a quantum computer using quantum imaginary time evolution. Nat. Phys. 16:2 (2020), 205–210, 10.1038/s41567-019-0704-4.
Stair, N.H., Huang, R., Evangelista, F.A., A multireference quantum Krylov algorithm for strongly correlated electrons. J. Chem. Theory Comput. 16:4 (2020), 2236–2245, 10.1021/acs.jctc.9b01125.
Liu, J., Xin, Y., Quantum simulation of quantum field theories as quantum chemistry. J. High Energy Phys., 2020(12), 2020, 11, 10.1007/JHEP12(2020)011.
Cortes, C.L., Gray, S.K., Quantum Krylov subspace algorithms for ground- and excited-state energy estimation. Phys. Rev. A, 105, 2022, 022417, 10.1103/PhysRevA.105.022417 URL https://link.aps.org/doi/10.1103/PhysRevA.105.022417.
Larocca, M., Wisniacki, D., Krylov-subspace approach for the efficient control of quantum many-body dynamics. Phys. Rev. A, 103, 2021, 023107, 10.1103/PhysRevA.103.023107 URL https://link.aps.org/doi/10.1103/PhysRevA.103.023107.
Takahashi, K., del Campo, A., Shortcuts to adiabaticity in Krylov space. Phys. Rev. X, 14, 2024, 011032, 10.1103/PhysRevX.14.011032 URL https://link.aps.org/doi/10.1103/PhysRevX.14.011032.
Bhattacharjee, B., A Lanczos approach to the adiabatic gauge potential. 2023 arXiv:2302.07228.
Gutzwiller, M., Chaos in classical and quantum mechanics. Interdisciplinary Applied Mathematics, 1990, Springer New York.
Guhr, T., Müller-Groeling, A., Weidenmüller, H.A., Random-matrix theories in quantum physics: common concepts. Phys. Rep. 299:4 (1998), 189–425, 10.1016/S0370-1573(97)00088-4 URL http://www.sciencedirect.com/science/article/pii/S0370157397000884.
Braun, D., Dissipative quantum chaos and decoherence. Springer Tracts in Modern Physics, 2003, Springer Berlin Heidelberg.
Borgonovi, F., Izrailev, F., Santos, L., Zelevinsky, V., Quantum chaos and thermalization in isolated systems of interacting particles. Phys. Rep. 626 (2016), 1–58, 10.1016/j.physrep.2016.02.005 Quantum chaos and thermalization in isolated systems of interacting particles, URL https://www.sciencedirect.com/science/article/pii/S0370157316000831.
Mehta, M., Random Matrices. 1991, Academic Press.
Forrester, P., Log-gases and random matrices (LMS-34). London Mathematical Society Monographs, 2010, Princeton University Press.
Eynard, B., Kimura, T., Ribault, S., Random matrices. 2015 arXiv:1510.04430.
Livan, G., Novaes, M., Vivo, P., Introduction to random matrices: Theory and practice. SpringerBriefs in Mathematical Physics, 2018, Springer International Publishing URL https://books.google.co.jp/books?id=-lJHDwAAQBAJ.
Akemann, G., Baik, J., Di Francesco, P., The Oxford Handbook of Random Matrix Theory. 2015, Oxford University Press, 10.1093/oxfordhb/9780198744191.001.0001.
Wigner, E.P., Characteristic vectors of bordered matrices with infinite dimensions. Ann. Math. 62:3 (1955), 548–564 URL http://www.jstor.org/stable/1970079.
Wigner, E.P., Characteristics vectors of bordered matrices with infinite dimensions II. Ann. Math. 65:2 (1957), 203–207 URL http://www.jstor.org/stable/1969956.
Wigner, E.P., On the distribution of the roots of certain symmetric matrices. Ann. Math. 67:2 (1958), 325–327 URL http://www.jstor.org/stable/1970008.
Dyson, F.J., Statistical theory of the energy levels of complex systems. I. J. Math. Phys. 3:1 (1962), 140–156, 10.1063/1.1703773.
Dyson, F.J., Statistical theory of the energy levels of complex systems. II. J. Math. Phys. 3:1 (1962), 157–165, 10.1063/1.1703774.
Dyson, F.J., Statistical theory of the energy levels of complex systems. III. J. Math. Phys. 3:1 (1962), 166–175, 10.1063/1.1703775.
Dyson, F.J., The threefold way. Algebraic structure of symmetry groups and ensembles in quantum mechanics. J. Math. Phys. 3:6 (1962), 1199–1215, 10.1063/1.1703863.
Bohigas, O., Giannoni, M.J., Schmit, C., Characterization of chaotic quantum spectra and universality of level fluctuation laws. Phys. Rev. Lett. 52 (1984), 1–4, 10.1103/PhysRevLett.52.1 URL https://link.aps.org/doi/10.1103/PhysRevLett.52.1.
Berry, M.V., Tabor, M., Ziman, J.M., Level clustering in the regular spectrum. Proc. R. Soc. A 356:1686 (1977), 375–394, 10.1098/rspa.1977.0140.
Atas, Y.Y., Bogomolny, E., Giraud, O., Roux, G., Distribution of the ratio of consecutive level spacings in random matrix ensembles. Phys. Rev. Lett., 110, 2013, 084101, 10.1103/PhysRevLett.110.084101 URL https://link.aps.org/doi/10.1103/PhysRevLett.110.084101.
Xu, Z., García-Pintos, L.P., Chenu, A., del Campo, A., Extreme decoherence and quantum chaos. Phys. Rev. Lett., 122, 2019, 014103, 10.1103/PhysRevLett.122.014103 URL https://link.aps.org/doi/10.1103/PhysRevLett.122.014103.
Can, T., Random Lindblad dynamics. J. Phys. A, 52(48), 2019, 485302, 10.1088/1751-8121/ab4d26.
Denisov, S., Laptyeva, T., Tarnowski, W., Chruściński, D., Życzkowski, K., Universal spectra of random Lindblad operators. Phys. Rev. Lett., 123, 2019, 140403, 10.1103/PhysRevLett.123.140403 URL https://link.aps.org/doi/10.1103/PhysRevLett.123.140403.
Can, T., Oganesyan, V., Orgad, D., Gopalakrishnan, S., Spectral gaps and midgap states in random quantum master equations. Phys. Rev. Lett., 123, 2019, 234103, 10.1103/PhysRevLett.123.234103 URL https://link.aps.org/doi/10.1103/PhysRevLett.123.234103.
Sá, L., Ribeiro, P., Prosen, T., Spectral and steady-state properties of random liouvillians. J. Phys. A, 53(30), 2020, 305303, 10.1088/1751-8121/ab9337.
Wang, K., Piazza, F., Luitz, D.J., Hierarchy of relaxation timescales in local random liouvillians. Phys. Rev. Lett., 124, 2020, 100604, 10.1103/PhysRevLett.124.100604 URL https://link.aps.org/doi/10.1103/PhysRevLett.124.100604.
del Campo, A., Takayanagi, T., Decoherence in conformal field theory. J. High Energy Phys., 2020(2), 2020, 170, 10.1007/JHEP02(2020)170.
Xu, Z., Chenu, A., Prosen, T., del Campo, A., Thermofield dynamics: Quantum chaos versus decoherence. Phys. Rev. B, 103, 2021, 064309, 10.1103/PhysRevB.103.064309 URL https://link.aps.org/doi/10.1103/PhysRevB.103.064309.
Zhou, Y.-N., Mao, L., Zhai, H., Rényi entropy dynamics and Lindblad spectrum for open quantum systems. Phys. Rev. Res., 3, 2021, 043060, 10.1103/PhysRevResearch.3.043060 URL https://link.aps.org/doi/10.1103/PhysRevResearch.3.043060.
Cornelius, J., Xu, Z., Saxena, A., Chenu, A., del Campo, A., Spectral filtering induced by non-hermitian evolution with balanced gain and loss: Enhancing quantum chaos. Phys. Rev. Lett., 128, 2022, 190402, 10.1103/PhysRevLett.128.190402 URL https://link.aps.org/doi/10.1103/PhysRevLett.128.190402.
Matsoukas-Roubeas, A.S., Roccati, F., Cornelius, J., Xu, Z., Chenu, A., del Campo, A., Non-hermitian Hamiltonian deformations in quantum mechanics. J. High Energy Phys., 2023(1), 2023, 60, 10.1007/JHEP01(2023)060.
Sá, L., Ribeiro, P., Prosen, T., Symmetry classification of many-body Lindbladians: Tenfold way and beyond. Phys. Rev. X, 13, 2023, 031019, 10.1103/PhysRevX.13.031019 URL https://link.aps.org/doi/10.1103/PhysRevX.13.031019.
Kawabata, K., Kulkarni, A., Li, J., Numasawa, T., Ryu, S., Symmetry of open quantum systems: Classification of dissipative quantum chaos. PRX Quantum, 4, 2023, 030328, 10.1103/PRXQuantum.4.030328 URL https://link.aps.org/doi/10.1103/PRXQuantum.4.030328.
Kawabata, K., Xiao, Z., Ohtsuki, T., Shindou, R., Singular-value statistics of non-hermitian random matrices and open quantum systems. PRX Quantum, 4, 2023, 040312, 10.1103/PRXQuantum.4.040312 URL https://link.aps.org/doi/10.1103/PRXQuantum.4.040312.
Matsoukas-Roubeas, A.S., Beau, M., Santos, L.F., del Campo, A., Unitarity breaking in self-averaging spectral form factors. Phys. Rev. A, 108, 2023, 062201, 10.1103/PhysRevA.108.062201 URL https://link.aps.org/doi/10.1103/PhysRevA.108.062201.
Zhou, Y.-N., Zhou, T.-G., Zhang, P., General properties of the spectral form factor in open quantum systems. Front. Phys., 19(3), 2024, 31202, 10.1007/s11467-024-1406-7.
Leviandier, L., Lombardi, M., Jost, R., Pique, J.P., Fourier transform: A tool to measure statistical level properties in very complex spectra. Phys. Rev. Lett. 56 (1986), 2449–2452, 10.1103/PhysRevLett.56.2449 URL https://link.aps.org/doi/10.1103/PhysRevLett.56.2449.
Wilkie, J., Brumer, P., Time-dependent manifestations of quantum chaos. Phys. Rev. Lett. 67 (1991), 1185–1188, 10.1103/PhysRevLett.67.1185 URL https://link.aps.org/doi/10.1103/PhysRevLett.67.1185.
Alhassid, Y., Whelan, N., Onset of chaos and its signature in the spectral autocorrelation function. Phys. Rev. Lett. 70 (1993), 572–575, 10.1103/PhysRevLett.70.572 URL https://link.aps.org/doi/10.1103/PhysRevLett.70.572.
Ma, J.-Z., Correlation hole of survival probability and level statistics. J. Phys. Soc. Japan 64:11 (1995), 4059–4063, 10.1143/JPSJ.64.4059.
Brézin, E., Hikami, S., Spectral form factor in a random matrix theory. Phys. Rev. E 55 (1997), 4067–4083, 10.1103/PhysRevE.55.4067 URL https://link.aps.org/doi/10.1103/PhysRevE.55.4067.
Hammerich, A.D., Muga, J.G., Kosloff, R., Time-dependent quantum-mechanical approaches to the continuous spectrum: Scattering resonances in a finite box. Isr. J. Chem. 29:4 (1989), 461–471, 10.1002/ijch.198900057 URL https://onlinelibrary.wiley.com/doi/abs/10.1002/ijch.198900057.
Wall, M.R., Neuhauser, D., Extraction, through filter-diagonalization, of general quantum eigenvalues or classical normal mode frequencies from a small number of residues or a short-time segment of a signal. I. Theory and application to a quantum-dynamics model. J. Chem. Phys. 102:20 (1995), 8011–8022, 10.1063/1.468999.
Mandelshtam, V.A., Taylor, H.S., A low-storage filter diagonalization method for quantum eigenenergy calculation or for spectral analysis of time signals. J. Chem. Phys. 106:12 (1997), 5085–5090, 10.1063/1.473554.
Prange, R.E., The spectral form factor is not self-averaging. Phys. Rev. Lett. 78 (1997), 2280–2283, 10.1103/PhysRevLett.78.2280 URL https://link.aps.org/doi/10.1103/PhysRevLett.78.2280.
Gharibyan, H., Hanada, M., Shenker, S.H., Tezuka, M., Onset of random matrix behavior in scrambling systems. JHEP, 2018(7), 2018, 124, 10.1007/JHEP07(2018)124.
Dyer, E., Gur-Ari, G., 2D CFT partition functions at late times. J. High Energy Phys., 2017(8), 2017, 75, 10.1007/JHEP08(2017)075.
Cotler, J.S., Gur-Ari, G., Hanada, M., Polchinski, J., Saad, P., Shenker, S.H., Stanford, D., Streicher, A., Tezuka, M., Black holes and random matrices. J. High Energy Phys., 2017(5), 2017, 118, 10.1007/JHEP05(2017)118.
Cotler, J., Hunter-Jones, N., Liu, J., Yoshida, B., Chaos, complexity, and random matrices. J. High Energy Phys., 2017(11), 2017, 48, 10.1007/JHEP11(2017)048.
del Campo, A., Molina-Vilaplana, J., Sonner, J., Scrambling the spectral form factor: Unitarity constraints and exact results. Phys. Rev. D, 95, 2017, 126008, 10.1103/PhysRevD.95.126008 URL https://link.aps.org/doi/10.1103/PhysRevD.95.126008.
Torres-Herrera, E.J., García-García, A.M., Santos, L.F., Generic dynamical features of quenched interacting quantum systems: Survival probability, density imbalance, and out-of-time-ordered correlator. Phys. Rev. B, 97, 2018, 060303, 10.1103/PhysRevB.97.060303 URL https://link.aps.org/doi/10.1103/PhysRevB.97.060303.
Schiulaz, M., Torres-Herrera, E.J., Santos, L.F., Thouless and relaxation time scales in many-body quantum systems. Phys. Rev. B, 99, 2019, 174313, 10.1103/PhysRevB.99.174313 URL https://link.aps.org/doi/10.1103/PhysRevB.99.174313.
Shir, R., Martinez-Azcona, P., Chenu, A., Full range spectral correlations and their spectral form factors in chaotic and integrable models. 2023 arXiv:2311.09292.
Chenu, A., Molina-Vilaplana, J., del Campo, A., Work statistics, loschmidt echo and information scrambling in chaotic quantum systems. Quantum, 3, 2019, 127, 10.22331/q-2019-03-04-127.
Wei, Z., Tan, C., Zhang, R., Generalized spectral form factor in random matrix theory. 2024 arXiv:2401.02119.
Fonda, L., Ghirardi, G.C., Rimini, A., Decay theory of unstable quantum systems. Rep. Progr. Phys., 41(4), 1978, 587, 10.1088/0034-4885/41/4/003.
Facchi, P., Pascazio, S., Quantum zeno dynamics: mathematical and physical aspects. J. Phys. A, 41(49), 2008, 493001, 10.1088/1751-8113/41/49/493001.
Peres, A., Stability of quantum motion in chaotic and regular systems. Phys. Rev. A 30 (1984), 1610–1615, 10.1103/PhysRevA.30.1610 URL https://link.aps.org/doi/10.1103/PhysRevA.30.1610.
Li, J., Prosen, T., Chan, A., Spectral statistics of non-hermitian matrices and dissipative quantum chaos. Phys. Rev. Lett., 127, 2021, 170602, 10.1103/PhysRevLett.127.170602 URL https://link.aps.org/doi/10.1103/PhysRevLett.127.170602.
Roccati, F., Balducci, F., Shir, R., Chenu, A., Diagnosing non-hermitian many-body localization and quantum chaos via singular value decomposition. Phys. Rev. B, 109, 2024, L140201, 10.1103/PhysRevB.109.L140201 URL https://link.aps.org/doi/10.1103/PhysRevB.109.L140201.
Joshi, L.K., Elben, A., Vikram, A., Vermersch, B., Galitski, V., Zoller, P., Probing many-body quantum chaos with quantum simulators. Phys. Rev. X, 12, 2022, 011018, 10.1103/PhysRevX.12.011018 URL https://link.aps.org/doi/10.1103/PhysRevX.12.011018.
Vasilyev, D.V., Grankin, A., Baranov, M.A., Sieberer, L.M., Zoller, P., Monitoring quantum simulators via quantum nondemolition couplings to atomic clock qubits. PRX Quantum, 1, 2020, 020302, 10.1103/PRXQuantum.1.020302 URL https://link.aps.org/doi/10.1103/PRXQuantum.1.020302.
Das, A.K., et al. Proposal for many-body quantum chaos detection. 2024 arXiv:2401.01401.
Dong, H., et al. Measuring spectral form factor in many-body chaotic and localized phases of quantum processors. 2024 arXiv:2403.16935.
Larkin, A.I., Ovchinnikov, Y.N., Quasiclassical method in the theory of superconductivity. J. Exp. Theor. Phys., 1969 URL https://api.semanticscholar.org/CorpusID:117608877.
Kitaev, A., A simple model of quantum holography (Part 1) and (Part 2). 2015 https://online.kitp.ucsb.edu/online/joint98/kitaev/, https://online.kitp.ucsb.edu/online/entangled15/kitaev2/, Talk given at KITP.
Hayden, P., Preskill, J., Black holes as mirrors: quantum information in random subsystems. J. High Energy Phys., 2007(09), 2007, 120, 10.1088/1126-6708/2007/09/120.
Sekino, Y., Susskind, L., Fast scramblers. J. High Energy Phys., 2008(10), 2008, 065, 10.1088/1126-6708/2008/10/065.
Swingle, B., Bentsen, G., Schleier-Smith, M., Hayden, P., Measuring the scrambling of quantum information. Phys. Rev. A, 94, 2016, 040302, 10.1103/PhysRevA.94.040302 URL https://link.aps.org/doi/10.1103/PhysRevA.94.040302.
Sachdev, S., Ye, J., Gapless spin-fluid ground state in a random quantum heisenberg magnet. Phys. Rev. Lett. 70 (1993), 3339–3342, 10.1103/PhysRevLett.70.3339 URL https://link.aps.org/doi/10.1103/PhysRevLett.70.3339.
Strogatz, S.H., Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering. second ed., 2019, CRC Press, Boca Raton, 10.1201/9780429492563.
Jalabert, R.A., Pastawski, H.M., Environment-independent decoherence rate in classically chaotic systems. Phys. Rev. Lett. 86 (2001), 2490–2493, 10.1103/PhysRevLett.86.2490 URL https://link.aps.org/doi/10.1103/PhysRevLett.86.2490.
Jacquod, P., Silvestrov, P., Beenakker, C., Golden rule decay versus Lyapunov decay of the quantum loschmidt echo. Phys. Rev. E, 64, 2001, 055203, 10.1103/PhysRevE.64.055203 URL https://link.aps.org/doi/10.1103/PhysRevE.64.055203.
Yan, B., Cincio, L., Zurek, W.H., Information scrambling and loschmidt echo. Phys. Rev. Lett., 124, 2020, 160603, 10.1103/PhysRevLett.124.160603 URL https://link.aps.org/doi/10.1103/PhysRevLett.124.160603.
Lewis-Swan, R.J., Safavi-Naini, A., Bollinger, J.J., Rey, A.M., Unifying scrambling, thermalization and entanglement through measurement of fidelity out-of-time-order correlators in the Dicke model. Nat. Commun., 10(1), 2019, 1581, 10.1038/s41467-019-09436-y.
Tian, Z., Lin, Y., Fischer, U.R., Du, J., Testing the upper bound on the speed of scrambling with an analogue of hawking radiation using trapped ions. Eur. Phys. J. C, 82(3), 2022, 212, 10.1140/epjc/s10052-022-10149-8.
Maldacena, J., Stanford, D., Remarks on the Sachdev-Ye-Kitaev model. Phys. Rev. D, 94, 2016, 106002, 10.1103/PhysRevD.94.106002 URL https://link.aps.org/doi/10.1103/PhysRevD.94.106002.
Kobrin, B., Yang, Z., Kahanamoku-Meyer, G.D., Olund, C.T., Moore, J.E., Stanford, D., Yao, N.Y., Many-body chaos in the Sachdev-Ye-Kitaev model. Phys. Rev. Lett., 126, 2021, 030602, 10.1103/PhysRevLett.126.030602 URL https://link.aps.org/doi/10.1103/PhysRevLett.126.030602.
Trunin, D.A., Pedagogical introduction to the Sachdev–Ye–Kitaev model and two-dimensional dilaton gravity. Phys.-Usp., 64(3), 2021, 219, 10.3367/UFNe.2020.06.038805.
Zanardi, P., Anand, N., Information scrambling and chaos in open quantum systems. Phys. Rev. A, 103(6), 2021, 062214, 10.1103/PhysRevA.103.062214 URL https://link.aps.org/doi/10.1103/PhysRevA.103.062214.
Zhang, Y.-L., Huang, Y., Chen, X., Information scrambling in chaotic systems with dissipation. Phys. Rev. B, 99, 2019, 014303, 10.1103/PhysRevB.99.014303 URL https://link.aps.org/doi/10.1103/PhysRevB.99.014303.
Weinstein, Z., Kelly, S.P., Marino, J., Altman, E., Scrambling transition in a radiative random unitary circuit. Phys. Rev. Lett., 131, 2023, 220404, 10.1103/PhysRevLett.131.220404 URL https://link.aps.org/doi/10.1103/PhysRevLett.131.220404.
Schuster, T., Yao, N.Y., Operator growth in open quantum systems. Phys. Rev. Lett., 131, 2023, 160402, 10.1103/PhysRevLett.131.160402 URL https://link.aps.org/doi/10.1103/PhysRevLett.131.160402.
Zhang, P., Yu, Z., Dynamical transition of operator size growth in quantum systems embedded in an environment. Phys. Rev. Lett., 130, 2023, 250401, 10.1103/PhysRevLett.130.250401 URL https://link.aps.org/doi/10.1103/PhysRevLett.130.250401.
Bhattacharjee, B., Nandy, P., Pathak, T., Operator dynamics in Lindbladian SYK: a Krylov complexity perspective. J. High Energy Phys., 2024(1), 2024, 94, 10.1007/JHEP01(2024)094.
Liu, J., Meyer, R., Xian, Z.-Y., Operator size growth in Lindbladian SYK. 2024 arXiv:2403.07115.
Martinez-Azcona, P., Kundu, A., del Campo, A., Chenu, A., Stochastic operator variance: An observable to diagnose noise and scrambling. Phys. Rev. Lett., 131, 2023, 160202, 10.1103/PhysRevLett.131.160202 URL https://link.aps.org/doi/10.1103/PhysRevLett.131.160202.
Arora, S., Barak, B., Computational Complexity: A Modern Approach. 2009, Cambridge University Press, 10.1017/CBO9780511804090.
Susskind, L., Three lectures on complexity and black holes. SpringerBriefs in Physics, 2020, Springer International Publishing.
Poulin, D., Qarry, A., Somma, R., Verstraete, F., Quantum simulation of time-dependent Hamiltonians and the convenient illusion of Hilbert space. Phys. Rev. Lett., 106, 2011, 170501, 10.1103/PhysRevLett.106.170501 URL https://link.aps.org/doi/10.1103/PhysRevLett.106.170501.
Nielsen, M.A., A geometric approach to quantum circuit lower bounds. 2005 arXiv:quant-ph/0502070.
Nielsen, M.A., Dowling, M.R., Gu, M., Doherty, A.C., Quantum computation as geometry. Science 311:5764 (2006), 1133–1135, 10.1126/science.1121541.
Nielsen, M.A., Dowling, M.R., Gu, M., Doherty, A.C., Optimal control, geometry, and quantum computing. Phys. Rev. A, 73, 2006, 062323, 10.1103/PhysRevA.73.062323 URL https://link.aps.org/doi/10.1103/PhysRevA.73.062323.
Bhattacharyya, A., Nandy, P., Sinha, A., Renormalized circuit complexity. Phys. Rev. Lett., 124, 2020, 101602, 10.1103/PhysRevLett.124.101602 URL https://link.aps.org/doi/10.1103/PhysRevLett.124.101602.
Balasubramanian, V., DeCross, M., Kar, A., Parrikar, O., Quantum complexity of time evolution with chaotic Hamiltonians. J. High Energy Phys., 2020(1), 2020, 134, 10.1007/JHEP01(2020)134.
Auzzi, R., Baiguera, S., De Luca, G.B., Legramandi, A., Nardelli, G., Zenoni, N., Geometry of quantum complexity. Phys. Rev. D, 103, 2021, 106021, 10.1103/PhysRevD.103.106021 URL https://link.aps.org/doi/10.1103/PhysRevD.103.106021.
Brown, A.R., Susskind, L., Complexity geometry of a single qubit. Phys. Rev. D, 100, 2019, 046020, 10.1103/PhysRevD.100.046020 URL https://link.aps.org/doi/10.1103/PhysRevD.100.046020.
Maldacena, J.M., The large N limit of superconformal field theories and supergravity. Adv. Theor. Math. Phys. 2 (1998), 231–252, 10.4310/ATMP.1998.v2.n2.a1.
Witten, E., Anti-de sitter space and holography. Adv. Theor. Math. Phys. 2 (1998), 253–291, 10.4310/ATMP.1998.v2.n2.a2.
Gubser, S., Klebanov, I., Polyakov, A., Gauge theory correlators from non-critical string theory. Phys. Lett. B 428:1 (1998), 105–114, 10.1016/S0370-2693(98)00377-3 URL https://www.sciencedirect.com/science/article/pii/S0370269398003773.
Susskind, L., Computational complexity and black hole horizons. Fortsch. Phys. 64 (2016), 24–43, 10.1002/prop.201500092 Fortsch. Phys. 64 (2016), 44–48 Addendum.
Stanford, D., Susskind, L., Complexity and shock wave geometries. Phys. Rev. D, 90, 2014, 126007, 10.1103/PhysRevD.90.126007 URL https://link.aps.org/doi/10.1103/PhysRevD.90.126007.
Jefferson, R.A., Myers, R.C., Circuit complexity in quantum field theory. J. High Energy Phys., 2017(10), 2017, 107, 10.1007/JHEP10(2017)107.
Chapman, S., Heller, M.P., Marrochio, H., Pastawski, F., Toward a definition of complexity for quantum field theory states. Phys. Rev. Lett., 120, 2018, 121602, 10.1103/PhysRevLett.120.121602 URL https://link.aps.org/doi/10.1103/PhysRevLett.120.121602.
Caputa, P., Kundu, N., Miyaji, M., Takayanagi, T., Watanabe, K., Anti–de sitter space from optimization of path integrals in conformal field theories. Phys. Rev. Lett., 119, 2017, 071602, 10.1103/PhysRevLett.119.071602 URL https://link.aps.org/doi/10.1103/PhysRevLett.119.071602.
Caputa, P., Kundu, N., Miyaji, M., Takayanagi, T., Watanabe, K., Liouville action as path-integral complexity: from continuous tensor networks to AdS/CFT. J. High Energy Phys., 2017(11), 2017, 97, 10.1007/JHEP11(2017)097.
Czech, B., Einstein equations from varying complexity. Phys. Rev. Lett., 120, 2018, 031601, 10.1103/PhysRevLett.120.031601 URL https://link.aps.org/doi/10.1103/PhysRevLett.120.031601.
Molina-Vilaplana, J., del Campo, A., Complexity functionals and complexity growth limits in continuous mera circuits. J. High Energy Phys., 2018(8), 2018, 12, 10.1007/JHEP08(2018)012.
Takayanagi, T., Holographic spacetimes as quantum circuits of path-integrations. J. High Energy Phys., 2018(12), 2018, 48, 10.1007/JHEP12(2018)048.
Camargo, H.A., Caputa, P., Nandy, P., Q-curvature and path integral complexity. J. High Energy Phys., 2022(4), 2022, 81, 10.1007/JHEP04(2022)081.
Chapman, S., Policastro, G., Quantum computational complexity from quantum information to black holes and back. Eur. Phys. J. C, 82(2), 2022, 128, 10.1140/epjc/s10052-022-10037-1.
Brown, A.R., Susskind, L., Second law of quantum complexity. Phys. Rev. D, 97, 2018, 086015, 10.1103/PhysRevD.97.086015 URL https://link.aps.org/doi/10.1103/PhysRevD.97.086015.
Brandão, F.G., Chemissany, W., Hunter-Jones, N., Kueng, R., Preskill, J., Models of quantum complexity growth. PRX Quantum, 2, 2021, 030316, 10.1103/PRXQuantum.2.030316 URL https://link.aps.org/doi/10.1103/PRXQuantum.2.030316.
Gross, D., Audenaert, K., Eisert, J., Evenly distributed unitaries: On the structure of unitary designs. J. Math. Phys., 48(5), 2007.
Dankert, C., Cleve, R., Emerson, J., Livine, E., Exact and approximate unitary 2-designs and their application to fidelity estimation. Phys. Rev. A, 80, 2009, 012304, 10.1103/PhysRevA.80.012304 URL https://link.aps.org/doi/10.1103/PhysRevA.80.012304.
Gyamfi, J.A., Fundamentals of quantum mechanics in Liouville space. Eur. J. Phys., 41(6), 2020, 063002, 10.1088/1361-6404/ab9fdd.
Wigner, E.P., Normal form of antiunitary operators. J. Math. Phys. 1:5 (1960), 409–413, 10.1063/1.1703672.
Choi, M.-D., Completely positive linear maps on complex matrices. Linear Algebra Appl. 10:3 (1975), 285–290, 10.1016/0024-3795(75)90075-0 URL https://www.sciencedirect.com/science/article/pii/0024379575900750.
Jamiołkowski, A., Linear transformations which preserve trace and positive semidefiniteness of operators. Rep. Math. Phys. 3:4 (1972), 275–278, 10.1016/0034-4877(72)90011-0 URL https://www.sciencedirect.com/science/article/pii/0034487772900110.
Watrous, J., The Theory of Quantum Information. 2018, Cambridge University Press, 10.1017/9781316848142.
Bhattacharyya, A., Joshi, L.K., Sundar, B., Quantum information scrambling: from holography to quantum simulators. Eur. Phys. J. C, 82(5), 2022, 458, 10.1140/epjc/s10052-022-10377-y.
Mele, A.A., Introduction to haar measure tools in quantum information: A beginner's tutorial. Quantum, 8, 2024, 1340, 10.22331/q-2024-05-08-1340.
Turkington, D.A., Generalized Vectorization, Cross-Products, and Matrix Calculus. 2013, Cambridge University Press, 10.1017/CBO9781139424400.
Chen, C.-F.A., Lucas, A., Yin, C., Speed limits and locality in many-body quantum dynamics. Rep. Progr. Phys., 86(11), 2023, 116001, 10.1088/1361-6633/acfaae.
Gram, J., Ueber die entwickelung reeller functionen in reihen mittelst der methode der kleinsten quadrate. J. Reine Angew. Math. 94 (1883), 41–73 URL http://eudml.org/doc/148523.
Schmidt, E., Über die Auflösung linearer Gleichungen mit Unendlich vielen unbekannten. Rend. Del Circolo Mat. Palermo 25:1 (1908), 53–77, 10.1007/bf03029116.
Parlett, B.N., Scott, D.S., The Lanczos algorithm with selective orthogonalization. Math. Comp. 33:145 (1979), 217–238 URL http://www.jstor.org/stable/2006037.
Simon, H.D., The Lanczos algorithm with partial reorthogonalization. Math. Comp. 42:165 (1984), 115–142 URL http://www.jstor.org/stable/2007563.
Rabinovici, E., Sánchez-Garrido, A., Shir, R., Sonner, J., Operator complexity: a journey to the edge of Krylov space. J. High Energy Phys., 2021(6), 2021, 62, 10.1007/JHEP06(2021)062.
Rabinovici, E., Sánchez-Garrido, A., Shir, R., Sonner, J., Krylov localization and suppression of complexity. J. High Energy Phys., 2022(3), 2022, 211, 10.1007/JHEP03(2022)211.
Rabinovici, E., Sánchez-Garrido, A., Shir, R., Sonner, J., Krylov complexity from integrability to chaos. J. High Energy Phys., 2022(7), 2022, 151, 10.1007/JHEP07(2022)151.
Bhattacharjee, B., Cao, X., Nandy, P., Pathak, T., Operator growth in open quantum systems: lessons from the dissipative SYK. J. High Energy Phys., 2023(3), 2023, 54, 10.1007/JHEP03(2023)054.
Bhattacharjee, B., Cao, X., Nandy, P., Pathak, T., Krylov complexity in saddle-dominated scrambling. J. High Energy Phys., 2022(5), 2022, 174, 10.1007/JHEP05(2022)174.
Lv, C., Zhang, R., Zhou, Q., Building Krylov complexity from circuit complexity. 2023 arXiv:2303.07343.
Craps, B., Evnin, O., Pascuzzi, G., A relation between Krylov and nielsen complexity. Phys. Rev. Lett., 132, 2024, 160402, 10.1103/PhysRevLett.132.160402 URL https://link.aps.org/doi/10.1103/PhysRevLett.132.160402.
Chattopadhyay, A., Mitra, A., van Zyl, H.J.R., Spread complexity as classical dilaton solutions. Phys. Rev. D, 108, 2023, 025013, 10.1103/PhysRevD.108.025013 URL https://link.aps.org/doi/10.1103/PhysRevD.108.025013.
Aguilar-Gutierrez, S.E., Rolph, A., Krylov complexity is not a measure of distance between states or operators. Phys. Rev. D, 109, 2024, L081701, 10.1103/PhysRevD.109.L081701 URL https://link.aps.org/doi/10.1103/PhysRevD.109.L081701.
Roberts, D.A., Stanford, D., Susskind, L., Localized shocks. J. High Energy Phys., 2015(3), 2015, 51, 10.1007/JHEP03(2015)051.
Caputa, P., Datta, S., Operator growth in 2d CFT. J. High Energy Phys., 2021(12), 2021, 188, 10.1007/JHEP12(2021)188.
Bhattacharjee, B., Nandy, P., Pathak, T., Krylov complexity in large q and double-scaled SYK model. J. High Energy Phys., 2023(8), 2023, 99, 10.1007/JHEP08(2023)099.
Barbón, J., Rabinovici, E., Shir, R., Sinha, R., On the evolution of operator complexity beyond scrambling. J. High Energ. Phys., 2019(10), 2019, 264, 10.1007/JHEP10(2019)264.
Jian, S.-K., Swingle, B., Xian, Z.-Y., Complexity growth of operators in the SYK model and in JT gravity. J. High Energy Phys., 2021(3), 2021, 14, 10.1007/JHEP03(2021)014.
Kar, A., Lamprou, L., Rozali, M., Sully, J., Random matrix theory for complexity growth and black hole interiors. J. High Energy Phys., 2022(1), 2022, 16, 10.1007/JHEP01(2022)016.
Caputa, P., Magan, J.M., Patramanis, D., Geometry of Krylov complexity. Phys. Rev. Res., 4, 2022, 013041, 10.1103/PhysRevResearch.4.013041 URL https://link.aps.org/doi/10.1103/PhysRevResearch.4.013041.
Patramanis, D., Probing the entanglement of operator growth. Prog. Theor. Exp. Phys., 2022(6), 2022, 063A01, 10.1093/ptep/ptac081.
Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K., Quantum entanglement. Rev. Modern Phys. 81 (2009), 865–942, 10.1103/RevModPhys.81.865 URL https://link.aps.org/doi/10.1103/RevModPhys.81.865.
de Boer, J., Järvelä, J., Keski-Vakkuri, E., Aspects of capacity of entanglement. Phys. Rev. D, 99, 2019, 066012, 10.1103/PhysRevD.99.066012 URL https://link.aps.org/doi/10.1103/PhysRevD.99.066012.
Nakaguchi, Y., Nishioka, T., A holographic proof of Rényi entropic inequalities. J. High Energy Phys., 2016(12), 2016, 129, 10.1007/JHEP12(2016)129.
Nandy, P., Capacity of entanglement in local operators. J. High Energy Phys., 2021(7), 2021, 19, 10.1007/JHEP07(2021)019.
Fan, Z.-Y., Universal relation for operator complexity. Phys. Rev. A, 105, 2022, 062210, 10.1103/PhysRevA.105.062210 URL https://link.aps.org/doi/10.1103/PhysRevA.105.062210.
Mück, W., Yang, Y., Krylov complexity and orthogonal polynomials. Nuclear Phys. B, 984, 2022, 115948, 10.1016/j.nuclphysb.2022.115948 URL https://www.sciencedirect.com/science/article/pii/S0550321322002991.
Mück, W., Black holes and marchenko-pastur distribution. Phys. Rev. D, 109, 2024, 126001, 10.1103/PhysRevD.109.126001 URL https://link.aps.org/doi/10.1103/PhysRevD.109.126001.
Sasaki, R., Towards verifications of Krylov complexity. 2024 arXiv:2403.06391.
Chihara, T., An introduction to orthogonal polynomials. Dover Books on Mathematics, 2011, Dover Publications URL https://books.google.lu/books?id=71CVAwAAQBAJ.
Dymarsky, A., Gorsky, A., Quantum chaos as delocalization in Krylov space. Phys. Rev. B, 102, 2020, 085137, 10.1103/PhysRevB.102.085137 URL https://link.aps.org/doi/10.1103/PhysRevB.102.085137.
Elsayed, T.A., Hess, B., Fine, B.V., Signatures of chaos in time series generated by many-spin systems at high temperatures. Phys. Rev. E, 90, 2014, 022910, 10.1103/PhysRevE.90.022910 URL https://link.aps.org/doi/10.1103/PhysRevE.90.022910.
Heveling, R., Wang, J., Gemmer, J., Numerically probing the universal operator growth hypothesis. Phys. Rev. E, 106, 2022, 014152, 10.1103/PhysRevE.106.014152 URL https://link.aps.org/doi/10.1103/PhysRevE.106.014152.
Noh, J.D., Operator growth in the transverse-field ising spin chain with integrability-breaking longitudinal field. Phys. Rev. E, 104, 2021, 034112, 10.1103/PhysRevE.104.034112 URL https://link.aps.org/doi/10.1103/PhysRevE.104.034112.
De, A., Borla, U., Cao, X., Gazit, S., Stochastic sampling of operator growth. 2024 arXiv:2401.06215.
Qi, Z., Scaffidi, T., Cao, X., Surprises in the deep Hilbert space of all-to-all systems: From superexponential scrambling to slow entanglement growth. Phys. Rev. B, 108, 2023, 054301, 10.1103/PhysRevB.108.054301 URL https://link.aps.org/doi/10.1103/PhysRevB.108.054301.
Uskov, F., Lychkovskiy, O., Quantum dynamics in one and two dimensions via the recursion method. Phys. Rev. B, 109, 2024, L140301, 10.1103/PhysRevB.109.L140301 URL https://link.aps.org/doi/10.1103/PhysRevB.109.L140301.
Pilatowsky-Cameo, S., Chávez-Carlos, J., Bastarrachea-Magnani, M.A., Stránský, P., Lerma-Hernández, S., Santos, L.F., Hirsch, J.G., Positive quantum Lyapunov exponents in experimental systems with a regular classical limit. Phys. Rev. E, 101, 2020, 010202, 10.1103/PhysRevE.101.010202 URL https://link.aps.org/doi/10.1103/PhysRevE.101.010202.
Dowling, N., Kos, P., Modi, K., Scrambling is necessary but not sufficient for chaos. Phys. Rev. Lett., 131, 2023, 180403, 10.1103/PhysRevLett.131.180403 URL https://link.aps.org/doi/10.1103/PhysRevLett.131.180403.
Feingold, M., Moiseyev, N., Peres, A., Ergodicity and mixing in quantum theory. II. Phys. Rev. A 30 (1984), 509–511, 10.1103/PhysRevA.30.509 URL https://link.aps.org/doi/10.1103/PhysRevA.30.509.
Feingold, M., Peres, A., Regular and chaotic motion of coupled rotators. Phys. D: Nonlinear Phenom. 9:3 (1983), 433–438, 10.1016/0167-2789(83)90282-8 URL https://www.sciencedirect.com/science/article/pii/0167278983902828.
Dymarsky, A., Smolkin, M., Krylov complexity in conformal field theory. Phys. Rev. D, 104, 2021, L081702, 10.1103/PhysRevD.104.L081702 URL https://link.aps.org/doi/10.1103/PhysRevD.104.L081702.
Avdoshkin, A., Dymarsky, A., Smolkin, M., Krylov complexity in quantum field theory, and beyond. J. High Energy Phys., 2024(6), 2024, 66, 10.1007/JHEP06(2024)066.
Camargo, H.A., Jahnke, V., Kim, K.-Y., Nishida, M., Krylov complexity in free and interacting scalar field theories with bounded power spectrum. J. High Energy Phys., 2023(5), 2023, 226, 10.1007/JHEP05(2023)226.
Tang, H., Operator Krylov complexity in random matrix theory. 2023 arXiv:2312.17416.
Hashimoto, K., Murata, K., Tanahashi, N., Watanabe, R., Krylov complexity and chaos in quantum mechanics. J. High Energy Phys., 2023(11), 2023, 40, 10.1007/JHEP11(2023)040.
Camargo, H.A., Jahnke, V., Jeong, H.-S., Kim, K.-Y., Nishida, M., Spectral and Krylov complexity in billiard systems. Phys. Rev. D, 109, 2024, 046017, 10.1103/PhysRevD.109.046017 URL https://link.aps.org/doi/10.1103/PhysRevD.109.046017.
Du, B.-N., Huang, M.-X., Krylov complexity in Calabi–Yau quantum mechanics. Internat. J. Modern Phys. A, 38(22n23), 2023, 2350126, 10.1142/S0217751X23501269.
Guo, S., Operator growth in SU(2) Yang-Mills theory. 2022 arXiv:2208.13362.
Xia, W., Zou, J., Li, X., Complexity enriched dynamical phases for fermions on graphs. 2024 arXiv:2404.08055.
Avdoshkin, A., Dymarsky, A., Euclidean operator growth and quantum chaos. Phys. Rev. Res., 2, 2020, 043234, 10.1103/PhysRevResearch.2.043234 URL https://link.aps.org/doi/10.1103/PhysRevResearch.2.043234.
Zotos, X., Operator growth in a quantum compass model on a bethe lattice. Phys. Rev. B, 103, 2021, L201108, 10.1103/PhysRevB.103.L201108 URL https://link.aps.org/doi/10.1103/PhysRevB.103.L201108.
Magán, J.M., Simón, J., On operator growth and emergent poincaré symmetries. J. High Energy Phys., 2020(5), 2020, 71, 10.1007/JHEP05(2020)071.
Mohan, V., Krylov complexity of open quantum systems: from hard spheres to black holes. J. High Energy Phys., 2023(11), 2023, 222, 10.1007/JHEP11(2023)222.
Iizuka, N., Nishida, M., Krylov complexity in the IP matrix model. J. High Energy Phys., 2023(11), 2023, 65, 10.1007/JHEP11(2023)065.
Iizuka, N., Nishida, M., Krylov complexity in the IP matrix model. Part II. J. High Energy Phys., 2023(11), 2023, 96, 10.1007/JHEP11(2023)096.
Li, T., Liu, L.-H., Inflationary Krylov complexity. J. High Energy Phys., 2024(4), 2024, 123, 10.1007/JHEP04(2024)123.
Chu, Y., Li, X., Cai, J., Quantum delocalization on correlation landscape: The key to exponentially fast multipartite entanglement generation. 2024 arXiv:2404.10973.
Español, B.L., Wisniacki, D.A., Assessing the saturation of Krylov complexity as a measure of chaos. Phys. Rev. E, 107, 2023, 024217, 10.1103/PhysRevE.107.024217 URL https://link.aps.org/doi/10.1103/PhysRevE.107.024217.
Bento, P.H.S., del Campo, A., Céleri, L.C., Krylov complexity and dynamical phase transition in the quenched Lipkin-Meshkov-Glick model. Phys. Rev. B, 109, 2024, 224304, 10.1103/PhysRevB.109.224304 URL https://link.aps.org/doi/10.1103/PhysRevB.109.224304.
Anegawa, T., Iizuka, N., Nishida, M., Krylov complexity as an order parameter for deconfinement phase transitions at large N. J. High Energy Phys., 2024(4), 2024, 119, 10.1007/JHEP04(2024)119.
Suchsland, P., Moessner, R., Claeys, P.W., Krylov complexity and trotter transitions in unitary circuit dynamics. 2023 arXiv:2308.03851.
Kim, J., Murugan, J., Olle, J., Rosa, D., Operator delocalization in quantum networks. Phys. Rev. A, 105, 2022, L010201, 10.1103/PhysRevA.105.L010201 URL https://link.aps.org/doi/10.1103/PhysRevA.105.L010201.
Parker, D., Local Operators and Quantum Chaos. (Ph.D. thesis), 2020, University of California, Berkeley URL https://danielericparker.github.io/documents/parker_local_operators_quantum_chaos_thesis.pdf.
Stanley, R.P., Fomin, S., Enumerative combinatorics. Cambridge Studies in Advanced Mathematics, 1999, Cambridge University Press, 10.1017/CBO9780511609589.
Oste, R., Van der Jeugt, J., Motzkin paths, motzkin polynomials and recurrence relations. Electron. J. Comb., 22(2), 2015, 19 URL http://www.combinatorics.org/ojs/index.php/eljc/article/view/v22i2p8.
Zhang, R., Zhai, H., Universal hypothesis of autocorrelation function from Krylov complexity. Quantum Front., 3(1), 2024, 7, 10.1007/s44214-024-00054-4.
Arnoldi, W.E., The principle of minimized iterations in the solution of the matrix eigenvalue problem. Quart. Appl. Math. 9, 1951, 17–29 URL https://www.ams.org/journals/qam/1951-09-01/S0033-569X-1951-42792-9/S0033-569X-1951-42792-9.pdf.
Balasubramanian, V., Caputa, P., Magan, J.M., Wu, Q., Quantum chaos and the complexity of spread of states. Phys. Rev. D, 106, 2022, 046007, 10.1103/PhysRevD.106.046007 URL https://link.aps.org/doi/10.1103/PhysRevD.106.046007.
Lubinsky, D.S., A survey of general orthogonal polynomials for weights on finite and infinite intervals. Acta Appl. Math. 10 (1987), 237–296.
Cao, X., A statistical mechanism for operator growth. J. Phys. A, 54(14), 2021, 144001, 10.1088/1751-8121/abe77c.
Bernhart, F.R., Catalan, motzkin, and riordan numbers. Discrete Math. 204:1 (1999), 73–112, 10.1016/S0012-365X(99)00054-0 Selected papers in honor of Henry W. Gould, URL https://www.sciencedirect.com/science/article/pii/S0012365X99000540.
Sloane, N.J.A., The online encyclopedia of integer sequences: A000110. 2005 URL https://oeis.org/A000110.
Yates, D.J., Abanov, A.G., Mitra, A., Dynamics of almost strong edge modes in spin chains away from integrability. Phys. Rev. B, 102, 2020, 195419, 10.1103/PhysRevB.102.195419 URL https://link.aps.org/doi/10.1103/PhysRevB.102.195419.
Yates, D.J., Abanov, A.G., Mitra, A., Lifetime of almost strong edge-mode operators in one-dimensional, interacting, symmetry protected topological phases. Phys. Rev. Lett., 124, 2020, 206803, 10.1103/PhysRevLett.124.206803 URL https://link.aps.org/doi/10.1103/PhysRevLett.124.206803.
Rabinovici, E., Sánchez-Garrido, A., Shir, R., Sonner, J., A bulk manifestation of Krylov complexity. J. High Energy Phys., 2023(8), 2023, 213, 10.1007/JHEP08(2023)213.
Aguilar-Gutierrez, S.E., Towards complexity in de sitter space from the double-scaled Sachdev-Ye-Kitaev model. 2024 arXiv:2403.13186.
García-García, A.M., Verbaarschot, J.J.M., Analytical spectral density of the Sachdev-Ye-Kitaev model at finite N. Phys. Rev. D, 96, 2017, 066012, 10.1103/PhysRevD.96.066012 URL https://link.aps.org/doi/10.1103/PhysRevD.96.066012.
Chowdhury, D., Georges, A., Parcollet, O., Sachdev, S., Sachdev-Ye-Kitaev models and beyond: Window into non-Fermi liquids. Rev. Modern Phys., 94, 2022, 035004, 10.1103/RevModPhys.94.035004 URL https://link.aps.org/doi/10.1103/RevModPhys.94.035004.
Rosenhaus, V., An introduction to the SYK model. J. Phys. A, 52(32), 2019, 323001, 10.1088/1751-8121/ab2ce1.
Roberts, D.A., Stanford, D., Streicher, A., Operator growth in the SYK model. J. High Energy Phys., 2018(6), 2018, 122, 10.1007/JHEP06(2018)122.
Qi, X.-L., Streicher, A., Quantum epidemiology: operator growth, thermal effects, and SYK. J. High Energy Phys., 2019(8), 2019, 12, 10.1007/JHEP08(2019)012.
Tarnopolsky, G., Large q expansion in the Sachdev-Ye-Kitaev model. Phys. Rev. D, 99, 2019, 026010, 10.1103/PhysRevD.99.026010 URL https://link.aps.org/doi/10.1103/PhysRevD.99.026010.
OEIS Foundation Inc., The on-line encyclopedia of integer sequences. 2024 Published electronically at http://oeis.org. Sequence A000182.
Chen, L., Mu, B., Wang, H., Zhang, P., Dissecting quantum many-body chaos in the Krylov space. 2024 arXiv:2404.08207.
Hirota, R., The direct method in soliton theory. Nagai, A., Nimmo, J., Gilson, C., (eds.) Cambridge Tracts in Mathematics, 2004, Cambridge University Press, 10.1017/CBO9780511543043.
Toda, M., Vibration of a chain with nonlinear interaction. J. Phys. Soc. Japan 22:2 (1967), 431–436, 10.1143/JPSJ.22.431.
Wadati, M., Selected Papers of Morikazu Toda. 1993, World Scientific, 10.1142/2091 URL https://www.worldscientific.com/doi/abs/10.1142/2091.
Flaschka, H., The toda lattice. II. Existence of integrals. Phys. Rev. B 9 (1974), 1924–1925, 10.1103/PhysRevB.9.1924 URL https://link.aps.org/doi/10.1103/PhysRevB.9.1924.
Perelomov, A., Generalized Coherent States and Their Applications. 2012, Springer Science & Business Media, 10.1007/978-3-642-61629-7 Chapter 4.
Patramanis, D., Sybesma, W., Krylov complexity in a natural basis for the Schrödinger algebra. 2023 arXiv:2306.03133.
Chaichian, M., Demichev, A., Introduction to Quantum Groups. 1996, World Scientific Publishing Company, 10.1142/3065 URL https://www.worldscientific.com/doi/abs/10.1142/3065.
Hörnedal, N., Carabba, N., Matsoukas-Roubeas, A.S., del Campo, A., Ultimate speed limits to the growth of operator complexity. Commun. Phys., 5(1), 2022.
Bhattacharya, A., Nandy, P., Nath, P.P., Sahu, H., On Krylov complexity in open systems: an approach via bi-Lanczos algorithm. J. High Energy Phys., 2023(12), 2023, 66, 10.1007/JHEP12(2023)066.
Erdmenger, J., Jian, S.-K., Xian, Z.-Y., Universal chaotic dynamics from Krylov space. J. High Energy Phys., 2023(8), 2023, 176, 10.1007/JHEP08(2023)176.
Haque, S.S., Murugan, J., Tladi, M., van Zyl, H.J.R., Krylov complexity for Jacobi coherent states. J. High Energy Phys., 2024(5), 2024, 220, 10.1007/JHEP05(2024)220.
Mandelstam, L., Tamm, I., The uncertainty relation between energy and time in non-relativistic quantum mechanics. J. Phys. USSR, 9, 1945, 249, 10.1007/978-3-642-74626-0_8.
Busch, P., The time–energy uncertainty relation. Muga, J., Mayato, R.S., Egusquiza, I., (eds.) Time in Quantum Mechanics, 2008, Springer Berlin Heidelberg, Berlin, Heidelberg, 73–105, 10.1007/978-3-540-73473-4_3.
Fan, Z.-Y., The growth of operator entropy in operator growth. J. High Energy Phys., 2022(8), 2022, 232, 10.1007/JHEP08(2022)232.
Loc, T.Q., Lanczos spectrum for random operator growth. 2024 arXiv:2402.07980.
Cao, Z., Xu, Z., del Campo, A., Probing quantum chaos in multipartite systems. Phys. Rev. Res., 4, 2022, 033093, 10.1103/PhysRevResearch.4.033093 URL https://link.aps.org/doi/10.1103/PhysRevResearch.4.033093.
Casati, G., Molinari, L., Izrailev, F., Scaling properties of band random matrices. Phys. Rev. Lett. 64 (1990), 1851–1854, 10.1103/PhysRevLett.64.1851 URL https://link.aps.org/doi/10.1103/PhysRevLett.64.1851.
Fyodorov, Y.V., Mirlin, A.D., Scaling properties of localization in random band matrices: A σ-model approach. Phys. Rev. Lett. 67 (1991), 2405–2409, 10.1103/PhysRevLett.67.2405 URL https://link.aps.org/doi/10.1103/PhysRevLett.67.2405.
Fyodorov, Y.V., Mirlin, A.D., Level-to-level fluctuations of the inverse participation ratio in finite quasi 1D disordered systems. Phys. Rev. Lett. 71 (1993), 412–415, 10.1103/PhysRevLett.71.412 URL https://link.aps.org/doi/10.1103/PhysRevLett.71.412.
Shepelyansky, D.L., Coherent propagation of two interacting particles in a random potential. Phys. Rev. Lett. 73 (1994), 2607–2610, 10.1103/PhysRevLett.73.2607 URL https://link.aps.org/doi/10.1103/PhysRevLett.73.2607.
Fyodorov, Y.V., Mirlin, A.D., Statistical properties of random banded matrices with strongly fluctuating diagonal elements. Phys. Rev. B 52 (1995), R11580–R11583, 10.1103/PhysRevB.52.R11580 URL https://link.aps.org/doi/10.1103/PhysRevB.52.R11580.
Amari, S., Nagaoka, H., Methods of information geometry. Translations of Mathematical Monographs, 2000, American Mathematical Society URL https://books.google.lu/books?id=vc2FWSo7wLUC.
Bengtsson, I., Zyczkowski, K., Geometry of Quantum States: An Introduction to Quantum Entanglement. 2006, Cambridge University Press, 10.1017/CBO9780511535048.
Deffner, S., Campbell, S., Quantum speed limits: from heisenberg's uncertainty principle to optimal quantum control. J. Phys. A, 50(45), 2017, 453001, 10.1088/1751-8121/aa86c6.
Gong, Z., Hamazaki, R., Bounds in nonequilibrium quantum dynamics. Internat. J. Modern Phys. B, 36(31), 2022, 2230007, 10.1142/S0217979222300079.
Carabba, N., Hörnedal, N., Campo, A.d., Quantum speed limits on operator flows and correlation functions. Quantum, 6, 2022, 884, 10.22331/q-2022-12-22-884.
Hörnedal, N., Carabba, N., Takahashi, K., del Campo, A., Geometric operator quantum speed limit, wegner Hamiltonian flow and operator growth. Quantum, 7, 2023, 1055, 10.22331/q-2023-07-11-1055.
Hamazaki, R., Limits to fluctuation dynamics. 2023 arXiv:2309.07301.
Hamazaki, R., Quantum velocity limits for multiple observables: Conservation laws, correlations, and macroscopic systems. Phys. Rev. Res., 6, 2024, 013018, 10.1103/PhysRevResearch.6.013018 URL https://link.aps.org/doi/10.1103/PhysRevResearch.6.013018.
Kundu, A., Malvimat, V., Sinha, R., State dependence of Krylov complexity in 2d CFTs. J. High Energy Phys., 2023(9), 2023, 11, 10.1007/JHEP09(2023)011.
He, S., Lau, P.H.C., Xian, Z.-Y., Zhao, L., Quantum chaos, scrambling and operator growth in TT̄ deformed SYK models. J. High Energy Phys., 2022(12), 2022, 70, 10.1007/JHEP12(2022)070.
Gu, Y., Kitaev, A., Zhang, P., A two-way approach to out-of-time-order correlators. J. High Energy Phys., 2022(3), 2022, 133, 10.1007/JHEP03(2022)133.
Čindrak, S., Paschke, A., Jaurigue, L., Lüdge, K., Measurable Krylov spaces and eigenenergy count in quantum state dynamics. JHEP, 10, 2024, 083, 10.1007/JHEP10(2024)083 arXiv:2404.13089.
Householder, A.S., Unitary triangularization of a nonsymmetric matrix. J. ACM 5:4 (1958), 339–342, 10.1145/320941.320947.
Golub, G., Nash, S., Van Loan, C., A hessenberg-Schur method for the problem AX + xb=c. IEEE Trans. Autom. Control 24:6 (1979), 909–913, 10.1109/TAC.1979.1102170.
Nandy, S., Mukherjee, B., Bhattacharyya, A., Banerjee, A., Quantum state complexity meets many-body scars. J. Phys.: Condens. Matter., 36(15), 2024, 155601, 10.1088/1361-648X/ad1a7b.
Caputa, P., Liu, S., Quantum complexity and topological phases of matter. Phys. Rev. B, 106, 2022, 195125, 10.1103/PhysRevB.106.195125 URL https://link.aps.org/doi/10.1103/PhysRevB.106.195125.
Caputa, P., Gupta, N., Haque, S.S., Liu, S., Murugan, J., van Zyl, H.J.R., Spread complexity and topological transitions in the kitaev chain. J. High Energy Phys., 2023(1), 2023, 120, 10.1007/JHEP01(2023)120.
Su, W.P., Schrieffer, J.R., Heeger, A.J., Solitons in polyacetylene. Phys. Rev. Lett. 42 (1979), 1698–1701, 10.1103/PhysRevLett.42.1698 URL https://link.aps.org/doi/10.1103/PhysRevLett.42.1698.
Pal, K., Pal, K., Gill, A., Sarkar, T., Time evolution of spread complexity and statistics of work done in quantum quenches. Phys. Rev. B, 108, 2023, 104311, 10.1103/PhysRevB.108.104311 URL https://link.aps.org/doi/10.1103/PhysRevB.108.104311.
Gautam, M., Pal, K., Pal, K., Gill, A., Jaiswal, N., Sarkar, T., Spread complexity evolution in quenched interacting quantum systems. Phys. Rev. B, 109, 2024, 014312, 10.1103/PhysRevB.109.014312 URL https://link.aps.org/doi/10.1103/PhysRevB.109.014312.
Gautam, M., Jaiswal, N., Gill, A., Spread complexity in free fermion models. Eur. Phys. J. B, 97(1), 2024, 3, 10.1140/epjb/s10051-023-00636-6.
Bhattacharyya, A., Haque, S.S., Jafari, G., Murugan, J., Rapotu, D., Krylov complexity and spectral form factor for noisy random matrix models. J. High Energy Phys., 2023(10), 2023, 157, 10.1007/JHEP10(2023)157.
Balasubramanian, V., Magan, J.M., Wu, Q., Quantum chaos, integrability, and late times in the Krylov basis. 2023 arXiv:2312.03848.
Beetar, C., Gupta, N., Haque, S.S., Murugan, J., van Zyl, H.J.R., Complexity and operator growth for quantum systems in dynamic equilibrium. 2023 arXiv:2312.15790.
Alaoui, Y.A., Laburthe-Tolra, B., A method to discriminate between localized and chaotic quantum systems. 2023 arXiv:2307.10706.
Alishahiha, M., Vasli, M.J., Thermalization in Krylov basis. 2024 arXiv:2403.06655.
Menzler, H.G., Jha, R., Krylov localization as a probe for ergodicity breaking. 2024 arXiv:2403.14384.
Cohen, K., Oz, Y., Zhong, D.-l., Complexity measure diagnostics of ergodic to many-body localization transition. 2024 arXiv:2404.15940.
Caputa, P., Magan, J.M., Patramanis, D., Tonni, E., Krylov complexity of modular Hamiltonian evolution. Phys. Rev. D, 109, 2024, 086004, 10.1103/PhysRevD.109.086004 URL https://link.aps.org/doi/10.1103/PhysRevD.109.086004.
Afrasiar, M., Kumar Basak, J., Dey, B., Pal, K., Pal, K., Time evolution of spread complexity in quenched Lipkin–Meshkov–Glick model. J. Stat. Mech., 2310, 2023, 103101, 10.1088/1742-5468/ad0032.
Huh, K.-B., Jeong, H.-S., Pedraza, J.F., Spread complexity in saddle-dominated scrambling. J. High Energy Phys., 2024(5), 2024, 137, 10.1007/JHEP05(2024)137.
Zhou, B., Chen, S., Spread complexity and dynamical transition in two-mode Bose-Einstein condensations. 2024 arXiv:2403.15154.
Gill, A., Pal, K., Pal, K., Sarkar, T., Complexity in two-point measurement schemes. Phys. Rev. B, 109, 2024, 104303, 10.1103/PhysRevB.109.104303 URL https://link.aps.org/doi/10.1103/PhysRevB.109.104303.
Bhattacharya, A., Das, R.N., Dey, B., Erdmenger, J., Spread complexity for measurement-induced non-unitary dynamics and zeno effect. J. High Energy Phys., 2024(3), 2024, 179, 10.1007/JHEP03(2024)179.
Carolan, E., Kiely, A., Campbell, S., Deffner, S., Operator growth and spread complexity in open quantum systems. 2024 arXiv:2404.03529.
Caputa, P., Kutak, K., Krylov complexity and gluon cascades in the high energy limit. 2024 arXiv:2404.07657.
Jeevanesan, B., Krylov spread complexity of quantum-walks. 2023 arXiv:2401.00526.
Nahum, A., Ruhman, J., Vijay, S., Haah, J., Quantum entanglement growth under random unitary dynamics. Phys. Rev. X, 7, 2017, 031016, 10.1103/PhysRevX.7.031016 URL https://link.aps.org/doi/10.1103/PhysRevX.7.031016.
Chan, A., De Luca, A., Chalker, J.T., Solution of a minimal model for many-body quantum chaos. Phys. Rev. X, 8, 2018, 041019, 10.1103/PhysRevX.8.041019 URL https://link.aps.org/doi/10.1103/PhysRevX.8.041019.
Skinner, B., Ruhman, J., Nahum, A., Measurement-induced phase transitions in the dynamics of entanglement. Phys. Rev. X, 9, 2019, 031009, 10.1103/PhysRevX.9.031009 URL https://link.aps.org/doi/10.1103/PhysRevX.9.031009.
Maldacena, J., Eternal black holes in anti-de sitter. J. High Energy Phys., 2003(04), 2003, 021, 10.1088/1126-6708/2003/04/021.
Nishioka, T., Entanglement entropy: Holography and renormalization group. Rev. Modern Phys., 90, 2018, 035007, 10.1103/RevModPhys.90.035007 URL https://link.aps.org/doi/10.1103/RevModPhys.90.035007.
Cottrell, W., Freivogel, B., Hofman, D.M., Lokhande, S.F., How to build the thermofield double state. J. High Energy Phys., 2019(2), 2019, 58, 10.1007/JHEP02(2019)058.
Chapman, S., Eisert, J., Hackl, L., Heller, M.P., Jefferson, R., Marrochio, H., Myers, R.C., Complexity and entanglement for thermofield double states. SciPost Phys., 6, 2019, 034, 10.21468/SciPostPhys.6.3.034 URL https://scipost.org/10.21468/SciPostPhys.6.3.034.
Yang, R.-Q., Complexity for quantum field theory states and applications to thermofield double states. Phys. Rev. D, 97, 2018, 066004, 10.1103/PhysRevD.97.066004 URL https://link.aps.org/doi/10.1103/PhysRevD.97.066004.
Maldacena, J., Stanford, D., Yang, Z., Diving into traversable wormholes. Fortschr. Phys., 65(5), 2017, 1700034, 10.1002/prop.201700034.
Gao, P., Jafferis, D.L., Wall, A.C., Traversable wormholes via a double trace deformation. J. High Energy Phys., 2017(12), 2017, 151, 10.1007/JHEP12(2017)151.
Brown, A.R., Gharibyan, H., Leichenauer, S., Lin, H.W., Nezami, S., Salton, G., Susskind, L., Swingle, B., Walter, M., Quantum gravity in the lab. I. Teleportation by size and traversable wormholes. PRX Quantum, 4, 2023, 010320, 10.1103/PRXQuantum.4.010320 URL https://link.aps.org/doi/10.1103/PRXQuantum.4.010320.
Nezami, S., Lin, H.W., Brown, A.R., Gharibyan, H., Leichenauer, S., Salton, G., Susskind, L., Swingle, B., Walter, M., Quantum gravity in the lab. II. Teleportation by size and traversable wormholes. PRX Quantum, 4, 2023, 010321, 10.1103/PRXQuantum.4.010321 URL https://link.aps.org/doi/10.1103/PRXQuantum.4.010321.
Schuster, T., Kobrin, B., Gao, P., Cong, I., Khabiboulline, E.T., Linke, N.M., Lukin, M.D., Monroe, C., Yoshida, B., Yao, N.Y., Many-body quantum teleportation via operator spreading in the traversable wormhole protocol. Phys. Rev. X, 12, 2022, 031013, 10.1103/PhysRevX.12.031013 URL https://link.aps.org/doi/10.1103/PhysRevX.12.031013.
Van Raamsdonk, M., Building up spacetime with quantum entanglement. Gen. Relativity Gravitation 42:10 (2010), 2323–2329, 10.1007/s10714-010-1034-0.
Bessis, D., Itzykson, C., Zuber, J., Quantum field theory techniques in graphical enumeration. Adv. in Appl. Math. 1:2 (1980), 109–157, 10.1016/0196-8858(80)90008-1 URL https://www.sciencedirect.com/science/article/pii/0196885880900081.
Marino, M., Les houches lectures on matrix models and topological strings. 2004 arXiv:hep-th/0410165.
Altland, A., Zirnbauer, M.R., Nonstandard symmetry classes in mesoscopic normal-superconducting hybrid structures. Phys. Rev. B 55 (1997), 1142–1161, 10.1103/PhysRevB.55.1142 URL https://link.aps.org/doi/10.1103/PhysRevB.55.1142.
Liu, J., Spectral form factors and late time quantum chaos. Phys. Rev. D, 98, 2018, 086026, 10.1103/PhysRevD.98.086026 URL https://link.aps.org/doi/10.1103/PhysRevD.98.086026.
Tan, C., Wei, Z., Zhang, R., Scaling relations of spectrum form factor and Krylov complexity at finite temperature. 2024 arXiv:2401.10499.
Iliesiu, L.V., Mezei, M., Sárosi, G., The volume of the black hole interior at late times. J. High Energy Phys., 2022(7), 2022, 73, 10.1007/JHEP07(2022)073.
Zurek, W.H., Decoherence, einselection, and the quantum origins of the classical. Rev. Modern Phys. 75 (2003), 715–775, 10.1103/RevModPhys.75.715 URL https://link.aps.org/doi/10.1103/RevModPhys.75.715.
Alishahiha, M., Banerjee, S., A universal approach to Krylov state and operator complexities. SciPost Phys., 15, 2023, 080, 10.21468/SciPostPhys.15.3.080 URL https://scipost.org/10.21468/SciPostPhys.15.3.080.
Caputa, P., Jeong, H.-S., Liu, S., Pedraza, J.F., Qu, L.-C., Krylov complexity of density matrix operators. J. High Energy Phys., 2024(5), 2024, 337, 10.1007/JHEP05(2024)337.
Bartsch, C., Dymarsky, A., Lamann, M.H., Wang, J., Steinigeweg, R., Gemmer, J., Estimation of equilibration time scales from nested fraction approximations. 2023 arXiv:2308.12822.
Wang, J., Lamann, M.H., Steinigeweg, R., Gemmer, J., Diffusion constants from the recursion method. 2023 arXiv:2312.02656.
Breuer, H.-P., Petruccione, F., The Theory of Open Quantum Systems. 2007, Oxford University Press, 10.1093/acprof:oso/9780199213900.001.0001.
Rivas, A., Huelga, S.F., Open Quantum Systems, vol. 10, 2012, Springer, 10.1007/978-3-642-23354-8.
Lindblad, G., On the generators of quantum dynamical semigroups. Comm. Math. Phys. 48:2 (1976), 119–130, 10.1007/BF01608499.
Gorini, V., Kossakowski, A., Sudarshan, E.C.G., Completely positive dynamical semigroups of N-level systems. J. Math. Phys. 17:5 (1976), 821–825, 10.1063/1.522979 Publisher: American Institute of Physics, URL https://aip.scitation.org/doi/abs/10.1063/1.522979.
Kraus, K., States, effects, and operations: Fundamental notions of quantum theory. Lecture Notes in Physics, 1983, Springer Berlin Heidelberg.
Wilde, M.M., Quantum Information Theory. 2013, Cambridge University Press, 10.1017/CBO9781139525343.
Wiseman, H.M., Milburn, G.J., Quantum Measurement and Control. 2009, Cambridge University Press, 10.1017/CBO9780511813948.
Carmichael, H., Statistical methods in quantum optics 2: Non-classical fields. Theoretical and Mathematical Physics, 2007, Springer Berlin Heidelberg.
Jacobs, K., Steck, D.A., A straightforward introduction to continuous quantum measurement. Contemp. Phys. 47:5 (2006), 279–303, 10.1080/00107510601101934.
Jacobs, K., Quantum Measurement Theory and its Applications. 2014, Cambridge University Press, 10.1017/CBO9781139179027.
Clark, S.R., Prior, J., Hartmann, M.J., Jaksch, D., Plenio, M.B., Exact matrix product solutions in the heisenberg picture of an open quantum spin chain. New J. Phys., 12(2), 2010, 025005, 10.1088/1367-2630/12/2/025005.
Bhattacharya, A., Nandy, P., Nath, P.P., Sahu, H., Operator growth and Krylov construction in dissipative open quantum systems. J. High Energy Phys., 2022(12), 2022, 81, 10.1007/JHEP12(2022)081.
Minganti, F., Huybrechts, D., Arnoldi-Lindblad time evolution: Faster-than-the-clock algorithm for the spectrum of time-independent and Floquet open quantum systems. Quantum, 6, 2022, 649, 10.22331/q-2022-02-10-649.
Brody, D.C., Biorthogonal quantum mechanics. J. Phys. A, 47(3), 2013, 035305, 10.1088/1751-8113/47/3/035305.
Srivatsa, N.S., von Keyserlingk, C., Operator growth hypothesis in open quantum systems. Phys. Rev. B, 109, 2024, 125149, 10.1103/PhysRevB.109.125149 URL https://link.aps.org/doi/10.1103/PhysRevB.109.125149.
Grüning, M., Marini, A., Gonze, X., Implementation and testing of Lanczos-based algorithms for random-phase approximation eigenproblems. Comput. Mater. Sci. 50:7 (2011), 2148–2156, 10.1016/j.commatsci.2011.02.021 URL https://www.sciencedirect.com/science/article/pii/S092702561100111X.
Gaaf, S.W., Jarlebring, E., The infinite bi-Lanczos method for nonlinear eigenvalue problems. SIAM J. Sci. Comput. 39:5 (2017), S898–S919, 10.1137/16M1084195.
Sogabe, T., Krylov subspace methods for linear systems: Principles of algorithms. Springer Series in Computational Mathematics, 2023, Springer Nature Singapore URL https://books.google.co.jp/books?id=L7KoEAAAQBAJ.
Albert, V.V., Jiang, L., Symmetries and conserved quantities in Lindblad master equations. Phys. Rev. A, 89, 2014, 022118, 10.1103/PhysRevA.89.022118 URL https://link.aps.org/doi/10.1103/PhysRevA.89.022118.
Muir, T., Metzler, W., A treatise on the theory of determinants. Dover phoenix editions, 2003, Dover Publications URL https://books.google.co.jp/books?id=ZGLIHQ0TPTAC.
Kulkarni, A., Numasawa, T., Ryu, S., Lindbladian dynamics of the Sachdev-Ye-Kitaev model. Phys. Rev. B, 106, 2022, 075138, 10.1103/PhysRevB.106.075138 URL https://link.aps.org/doi/10.1103/PhysRevB.106.075138.
Kawabata, K., Kulkarni, A., Li, J., Numasawa, T., Ryu, S., Dynamical quantum phase transitions in Sachdev-Ye-Kitaev Lindbladians. Phys. Rev. B, 108, 2023, 075110, 10.1103/PhysRevB.108.075110 URL https://link.aps.org/doi/10.1103/PhysRevB.108.075110.
García-García, A.M., Jia, Y., Rosa, D., Verbaarschot, J.J.M., Dominance of replica off-diagonal configurations and phase transitions in a PT symmetric Sachdev-Ye-Kitaev model. Phys. Rev. Lett., 128, 2022, 081601, 10.1103/PhysRevLett.128.081601 URL https://link.aps.org/doi/10.1103/PhysRevLett.128.081601.
García-García, A.M., Jia, Y., Rosa, D., Verbaarschot, J.J.M., Replica symmetry breaking in random non-hermitian systems. Phys. Rev. D, 105, 2022, 126027, 10.1103/PhysRevD.105.126027 URL https://link.aps.org/doi/10.1103/PhysRevD.105.126027.
García-García, A.M., Sá, L., Verbaarschot, J.J.M., Yin, C., Towards a classification of PT-symmetric quantum systems: from dissipative dynamics to topology and wormholes. 2023 arXiv:2311.15677.
García-García, A.M., Sá, L., Verbaarschot, J.J.M., Universality and its limits in non-hermitian many-body quantum chaos using the Sachdev-Ye-Kitaev model. Phys. Rev. D, 107, 2023, 066007, 10.1103/PhysRevD.107.066007 URL https://link.aps.org/doi/10.1103/PhysRevD.107.066007.
García-García, A.M., Sá, L., Verbaarschot, J.J.M., Zheng, J.P., Keldysh wormholes and anomalous relaxation in the dissipative Sachdev-Ye-Kitaev model. Phys. Rev. D, 107, 2023, 106006, 10.1103/PhysRevD.107.106006 URL https://link.aps.org/doi/10.1103/PhysRevD.107.106006.
Akemann, G., Kieburg, M., Mielke, A., Prosen, T., Universal signature from integrability to chaos in dissipative open quantum systems. Phys. Rev. Lett., 123, 2019, 254101, 10.1103/PhysRevLett.123.254101 URL https://link.aps.org/doi/10.1103/PhysRevLett.123.254101.
Knuth, D., The online encyclopedia of integer sequences: A101280. 2005 URL https://oeis.org/A101280.
van der Veen, H., Vuik, K., Bi-Lanczos with partial orthogonalization. Comput. Struct. 56:4 (1995), 605–613, 10.1016/0045-7949(94)00565-K URL https://www.sciencedirect.com/science/article/pii/004579499400565K.
García-García, A.M., Verbaarschot, J.J.M., Zheng, J.-p., The Lyapunov exponent as a signature of dissipative many-body quantum chaos. 2024 arXiv:2403.12359.
Gao, P., Jafferis, D.L., Wall, A.C., Traversable wormholes via a double trace deformation. J. High Energy Phys., 2017(12), 2017, 151, 10.1007/JHEP12(2017)151.
García-García, A.M., Godet, V., Euclidean wormhole in the Sachdev-Ye-Kitaev model. Phys. Rev. D, 103, 2021, 046014, 10.1103/PhysRevD.103.046014 URL https://link.aps.org/doi/10.1103/PhysRevD.103.046014.
de Vega, I., Alonso, D., Dynamics of non-Markovian open quantum systems. Rev. Modern Phys., 89, 2017, 015001, 10.1103/RevModPhys.89.015001 URL https://link.aps.org/doi/10.1103/RevModPhys.89.015001.
Vasli, M.J., Velni, K.B., Mozaffar, M.R.M., Mollabashi, A., Alishahiha, M., Krylov complexity in lifshitz-type scalar field theories. Eur. Phys. J. C, 84(3), 2024, 235, 10.1140/epjc/s10052-024-12609-9.
Khetrapal, S., Chaos and operator growth in 2d CFT. J. High Energy Phys., 2023(3), 2023, 176, 10.1007/JHEP03(2023)176.
Banerjee, A., Bhattacharyya, A., Drashni, P., Pawar, S., From CFTs to theories with Bondi-Metzner-Sachs symmetries: Complexity and out-of-time-ordered correlators. Phys. Rev. D, 106, 2022, 126022, 10.1103/PhysRevD.106.126022 URL https://link.aps.org/doi/10.1103/PhysRevD.106.126022.
Malvimat, V., Porey, S., Roy, B., Krylov complexity in 2d CFTs with SL(2,R) deformed Hamiltonians. 2024 arXiv:2402.15835.
Iizuka, N., Nishida, M., Logarithmic singularities of Renyi entropy as a sign of chaos?. 2024 arXiv:2404.04805.
Chattopadhyay, A., Malvimat, V., Mitra, A., Krylov complexity of deformed conformal field theories. 2024 arXiv:2405.03630.
Ryu, S., Takayanagi, T., Holographic derivation of entanglement entropy from the anti–de sitter space/conformal field theory correspondence. Phys. Rev. Lett., 96, 2006, 181602, 10.1103/PhysRevLett.96.181602 URL https://link.aps.org/doi/10.1103/PhysRevLett.96.181602.
Berkooz, M., Isachenkov, M., Narovlansky, V., Torrents, G., Towards a full solution of the large n double-scaled SYK model. JHEP, 03, 2019, 079, 10.1007/JHEP03(2019)079 arXiv:1811.02584.
Erdos, L., Schröder, D., Phase transition in the density of states of quantum spin glasses. Math. Phys. Anal. Geom. 17:3 (2014), 441–464, 10.1007/s11040-014-9164-3.
Berkooz, M., Narayan, P., Simon, J., Chord diagrams, exact correlators in spin glasses and black hole bulk reconstruction. JHEP, 08, 2018, 192, 10.1007/JHEP08(2018)192 arXiv:1806.04380.
X.X. Cao, P. Nandy, T. Uganjin, M. Watanabe, (unpublished)
Lin, H.W., The bulk Hilbert space of double scaled SYK. JHEP, 11, 2022, 060, 10.1007/JHEP11(2022)060 arXiv:2208.07032.
Nandy, P., Tridiagonal Hamiltonians modeling the density of states of the double-scaled SYK model. JHEP, 01, 2025, 072, 10.1007/JHEP01(2025)072 arXiv:2410.07847.
Balasubramanian, V., Magan, J.M., Nandi, P., Wu, Q., Spread complexity and the saturation of wormhole size. 2024 arXiv:2412.02038.
Bhattacharyya, A., Ghosh, D., Nandi, P., Operator growth and Krylov complexity in Bose-Hubbard model. J. High Energy Phys., 2023(12), 2023, 112, 10.1007/JHEP12(2023)112.
Yates, D.J., Mitra, A., Strong and almost strong modes of Floquet spin chains in Krylov subspaces. Phys. Rev. B, 104, 2021, 195121, 10.1103/PhysRevB.104.195121 URL https://link.aps.org/doi/10.1103/PhysRevB.104.195121.
Yates, D.J., Abanov, A.G., Mitra, A., Long-lived period-doubled edge modes of interacting and disorder-free Floquet spin chains. Commun. Phys., 5(1), 2022, 43, 10.1038/s42005-022-00818-1.
Nizami, A.A., Shrestha, A.W., Krylov construction and complexity for driven quantum systems. Phys. Rev. E, 108, 2023, 054222, 10.1103/PhysRevE.108.054222 URL https://link.aps.org/doi/10.1103/PhysRevE.108.054222.
Yeh, H.-C., Mitra, A., A universal model of Floquet operator Krylov space. 2023 arXiv:2311.15116.
Gubin, A., F. Santos, L., Quantum chaos: An introduction via chains of interacting spins 1/2. Am. J. Phys. 80:3 (2012), 246–251, 10.1119/1.3671068.
Pandey, M., Claeys, P.W., Campbell, D.K., Polkovnikov, A., Sels, D., Adiabatic eigenstate deformations as a sensitive probe for quantum chaos. Phys. Rev. X, 10, 2020, 041017, 10.1103/PhysRevX.10.041017 URL https://link.aps.org/doi/10.1103/PhysRevX.10.041017.
Santos, L.F., Mitra, A., Domain wall dynamics in integrable and chaotic spin-1/2 chains. Phys. Rev. E, 84, 2011, 016206, 10.1103/PhysRevE.84.016206 URL https://link.aps.org/doi/10.1103/PhysRevE.84.016206.
Scialchi, G.F., Roncaglia, A.J., Wisniacki, D.A., Integrability to chaos transition through Krylov approach for state evolution. 2023 arXiv:2309.13427.
Sahu, A., Varikuti, N.D., Das, B.K., Madhok, V., Quantifying operator spreading and chaos in Krylov subspaces with quantum state reconstruction. Phys. Rev. B, 108, 2023, 224306, 10.1103/PhysRevB.108.224306 URL https://link.aps.org/doi/10.1103/PhysRevB.108.224306.
Camargo, H.A., Huh, K.-B., Jahnke, V., Jeong, H.-S., Kim, K.-Y., Nishida, M., Spread and spectral complexity in quantum spin chains: from integrability to chaos. JHEP, 08, 2024, 241, 10.1007/JHEP08(2024)241 arXiv:2405.11254.
Chen, X., Ruschhaupt, A., Schmidt, S., del Campo, A., Guéry-Odelin, D., Muga, J.G., Fast optimal frictionless atom cooling in harmonic traps: Shortcut to adiabaticity. Phys. Rev. Lett., 104, 2010, 063002, 10.1103/PhysRevLett.104.063002 URL https://link.aps.org/doi/10.1103/PhysRevLett.104.063002.
Torrontegui, E., Ibáñez, S., Chen, X., Ruschhaupt, A., Guéry-Odelin, D., Muga, J.G., Fast atomic transport without vibrational heating. Phys. Rev. A, 83, 2011, 013415, 10.1103/PhysRevA.83.013415 URL https://link.aps.org/doi/10.1103/PhysRevA.83.013415.
Guéry-Odelin, D., Ruschhaupt, A., Kiely, A., Torrontegui, E., Martínez-Garaot, S., Muga, J.G., Shortcuts to adiabaticity: Concepts, methods, and applications. Rev. Modern Phys., 91, 2019, 045001, 10.1103/RevModPhys.91.045001 URL https://link.aps.org/doi/10.1103/RevModPhys.91.045001.
Demirplak, M., Rice, S.A., Adiabatic population transfer with control fields. J. Phys. Chem. A, 107(46), 2003, 9937, 10.1021/jp030708a.
Demirplak, M., Rice, S.A., Assisted adiabatic passage revisited. J. Phys. Chem. B, 109(14), 2005, 6838, 10.1021/jp040647w.
Demirplak, M., Rice, S.A., On the consistency, extremal, and global properties of counterdiabatic fields. J. Chem. Phys., 129(15), 2008, 154111, 10.1063/1.2992152.
del Campo, A., Rams, M.M., Zurek, W.H., Assisted finite-rate adiabatic passage across a quantum critical point: Exact solution for the quantum ising model. Phys. Rev. Lett., 109, 2012, 115703, 10.1103/PhysRevLett.109.115703 URL https://link.aps.org/doi/10.1103/PhysRevLett.109.115703.
Takahashi, K., Transitionless quantum driving for spin systems. Phys. Rev. E, 87, 2013, 062117, 10.1103/PhysRevE.87.062117 URL https://link.aps.org/doi/10.1103/PhysRevE.87.062117.
Saberi, H., Opatrný, T., Mølmer, K., del Campo, A., Adiabatic tracking of quantum many-body dynamics. Phys. Rev. A, 90, 2014, 060301, 10.1103/PhysRevA.90.060301 URL https://link.aps.org/doi/10.1103/PhysRevA.90.060301.
Damski, B., Counterdiabatic driving of the quantum ising model. J. Stat. Mech. Theory Exp., 2014(12), 2014, P12019, 10.1088/1742-5468/2014/12/P12019.
Opatrný, T., Mølmer, K., Partial suppression of nonadiabatic transitions. New J. Phys., 16(1), 2014, 015025, 10.1088/1367-2630/16/1/015025.
Sels, D., Polkovnikov, A., Minimizing irreversible losses in quantum systems by local counterdiabatic driving. Proc. Natl. Acad. Sci. 114:20 (2017), E3909–E3916, 10.1073/pnas.1619826114 URL https://www.pnas.org/doi/abs/10.1073/pnas.1619826114.
Mukherjee, V., Montangero, S., Fazio, R., Local shortcut to adiabaticity for quantum many-body systems. Phys. Rev. A, 93, 2016, 062108, 10.1103/PhysRevA.93.062108 URL https://link.aps.org/doi/10.1103/PhysRevA.93.062108.
Fauseweh, B., Quantum many-body simulations on digital quantum computers: State-of-the-art and future challenges. Nat. Commun., 15(1), 2024, 2123, 10.1038/s41467-024-46402-9.
Chandarana, P., Hegade, N.N., Paul, K., Albarrán-Arriagada, F., Solano, E., del Campo, A., Chen, X., Digitized-counterdiabatic quantum approximate optimization algorithm. Phys. Rev. Res., 4, 2022, 013141, 10.1103/PhysRevResearch.4.013141 URL https://link.aps.org/doi/10.1103/PhysRevResearch.4.013141.
Hegade, N.N., Paul, K., Ding, Y., Sanz, M., Albarrán-Arriagada, F., Solano, E., Chen, X., Shortcuts to adiabaticity in digitized adiabatic quantum computing. Phys. Rev. Appl., 15, 2021, 024038, 10.1103/PhysRevApplied.15.024038 URL https://link.aps.org/doi/10.1103/PhysRevApplied.15.024038.
Hegade, N.N., Paul, K., Albarrán-Arriagada, F., Chen, X., Solano, E., Digitized adiabatic quantum factorization. Phys. Rev. A, 104, 2021, L050403, 10.1103/PhysRevA.104.L050403 URL https://link.aps.org/doi/10.1103/PhysRevA.104.L050403.
Hegade, N.N., Chandarana, P., Paul, K., Chen, X., Albarrán-Arriagada, F., Solano, E., Portfolio optimization with digitized counterdiabatic quantum algorithms. Phys. Rev. Res., 4, 2022, 043204, 10.1103/PhysRevResearch.4.043204 URL https://link.aps.org/doi/10.1103/PhysRevResearch.4.043204.
Hastings, M.B., Locality in quantum and Markov dynamics on lattices and networks. Phys. Rev. Lett., 93, 2004, 140402, 10.1103/PhysRevLett.93.140402 URL https://link.aps.org/doi/10.1103/PhysRevLett.93.140402.
Hastings, M.B., Wen, X.-G., Quasiadiabatic continuation of quantum states: The stability of topological ground-state degeneracy and emergent gauge invariance. Phys. Rev. B, 72, 2005, 045141, 10.1103/PhysRevB.72.045141.
Hastings, M.B., Locality in quantum systems. Quantum Theory from Small to Large Scales: Lecture Notes of the Les Houches Summer School: Volume 95, August 2010, 2012, Oxford University Press, 10.1093/acprof:oso/9780199652495.003.0003.
Claeys, P.W., Pandey, M., Sels, D., Polkovnikov, A., Floquet-engineering counterdiabatic protocols in quantum many-body systems. Phys. Rev. Lett., 123, 2019, 090602, 10.1103/PhysRevLett.123.090602 URL https://link.aps.org/doi/10.1103/PhysRevLett.123.090602.
Lim, C., Matirko, K., Polkovnikov, A., Flynn, M.O., Defining classical and quantum chaos through adiabatic transformations. 2024 arXiv:2401.01927.
Funo, K., Zhang, J.-N., Chatou, C., Kim, K., Ueda, M., del Campo, A., Universal work fluctuations during shortcuts to adiabaticity by counterdiabatic driving. Phys. Rev. Lett., 118, 2017, 100602, 10.1103/PhysRevLett.118.100602 URL https://link.aps.org/doi/10.1103/PhysRevLett.118.100602.
Vacanti, G., Fazio, R., Montangero, S., Palma, G.M., Paternostro, M., Vedral, V., Transitionless quantum driving in open quantum systems. New J. Phys., 16(5), 2014, 053017, 10.1088/1367-2630/16/5/053017.
Alipour, S., Chenu, A., Rezakhani, A.T., del Campo, A., Shortcuts to adiabaticity in driven open quantum systems: Balanced gain and loss and non-Markovian evolution. Quantum, 4, 2020, 336, 10.22331/q-2020-09-28-336.
Pang, S., Jordan, A.N., Optimal adaptive control for quantum metrology with time-dependent Hamiltonians. Nat. Commun., 8(1), 2017, 14695, 10.1038/ncomms14695.
Yang, J., Pang, S., Chen, Z., Jordan, A.N., del Campo, A., Variational principle for optimal quantum controls in quantum metrology. Phys. Rev. Lett., 128, 2022, 160505, 10.1103/PhysRevLett.128.160505 URL https://link.aps.org/doi/10.1103/PhysRevLett.128.160505.
Kim, H., Fishman, M.T., Sels, D., Variational adiabatic transport of tensor networks. 2023 arXiv:2311.00748.
Keever, C.M., Lubasch, M., Towards adiabatic quantum computing using compressed quantum circuits. 2023 arXiv:2311.05544.
Manenti, R., Motta, M., Quantum Information Science. 2023, Oxford University Press URL https://books.google.lu/books?id=UkbMEAAAQBAJ.
Yeter-Aydeniz, K., Pooser, R.C., Siopsis, G., Practical quantum computation of chemical and nuclear energy levels using quantum imaginary time evolution and Lanczos algorithms. Npj Quantum Inf., 6(1), 2020, 63, 10.1038/s41534-020-00290-1.
Bharti, K., Haug, T., Iterative quantum-assisted eigensolver. Phys. Rev. A, 104, 2021, L050401, 10.1103/PhysRevA.104.L050401 URL https://link.aps.org/doi/10.1103/PhysRevA.104.L050401.
Seki, K., Yunoki, S., Quantum power method by a superposition of time-evolved states. PRX Quantum, 2, 2021, 010333, 10.1103/PRXQuantum.2.010333 URL https://link.aps.org/doi/10.1103/PRXQuantum.2.010333.
Kirby, W., Motta, M., Mezzacapo, A., Exact and efficient Lanczos method on a quantum computer. Quantum, 7, 2023, 1018, 10.22331/q-2023-05-23-1018.
Müller, M., Diehl, S., Pupillo, G., Zoller, P., Engineered open systems and quantum simulations with atoms and ions. Berman, P., Arimondo, E., Lin, C., (eds.) Advances in Atomic, Molecular, and Optical Physics, vol. 61, 2012, Academic Press, 1–80, 10.1016/B978-0-12-396482-3.00001-6 URL https://www.sciencedirect.com/science/article/pii/B9780123964823000016.
Ciccarello, F., Lorenzo, S., Giovannetti, V., Palma, G.M., Quantum collision models: Open system dynamics from repeated interactions. Phys. Rep. 954 (2022), 1–70, 10.1016/j.physrep.2022.01.001 URL https://www.sciencedirect.com/science/article/pii/S0370157322000035.
Qi, H.-Y., Wu, Y., Zheng, W., Topological origin of Floquet thermalization in periodically driven many-body systems. 2024 arXiv:2404.18052.
Takahashi, K., del Campo, A., Krylov subspace methods for quantum dynamics with time-dependent generators. Phys. Rev. Lett., 134, 2025, 030401, 10.1103/PhysRevLett.134.030401 URL https://link.aps.org/doi/10.1103/PhysRevLett.134.030401.
Blanes, S., Casas, F., Oteo, J., Ros, J., The magnus expansion and some of its applications. Phys. Rep. 470:5–6 (2009), 151–238, 10.1016/j.physrep.2008.11.001.
García-Pintos, L.P., Nicholson, S.B., Green, J.R., del Campo, A., Gorshkov, A.V., Unifying quantum and classical speed limits on observables. Phys. Rev. X, 12, 2022, 011038, 10.1103/PhysRevX.12.011038 URL https://link.aps.org/doi/10.1103/PhysRevX.12.011038.
Van Kampen, N., Stochastic processes in physics and chemistry. North-Holland Personal Library, 2011, Elsevier Science.
Budini, A.A., Quantum systems subject to the action of classical stochastic fields. Phys. Rev. A, 64(5), 2001, 052110, 10.1103/PhysRevA.64.052110 URL https://link.aps.org/doi/10.1103/PhysRevA.64.052110.
Plenio, M.B., Knight, P.L., The quantum-jump approach to dissipative dynamics in quantum optics. Rev. Modern Phys. 70 (1998), 101–144, 10.1103/RevModPhys.70.101 URL https://link.aps.org/doi/10.1103/RevModPhys.70.101.
Jordan, A., Siddiqi, I., Quantum Measurement: Theory and Practice. 2024, Cambridge University Press URL https://books.google.lu/books?id=MRrxEAAAQBAJ.
Wigner, E., On the quantum correction for thermodynamic equilibrium. Phys. Rev. 40 (1932), 749–759, 10.1103/PhysRev.40.749 URL https://link.aps.org/doi/10.1103/PhysRev.40.749.
Hillery, M., O'Connell, R., Scully, M., Wigner, E., Distribution functions in physics: Fundamentals. Phys. Rep. 106:3 (1984), 121–167, 10.1016/0370-1573(84)90160-1 URL https://www.sciencedirect.com/science/article/pii/0370157384901601.
Basu, R., Ganguly, A., Nath, S., Parrikar, O., Complexity growth and the Krylov-Wigner function. J. High Energy Phys., 2024(5), 2024, 264, 10.1007/JHEP05(2024)264.
Zachos, C.K., Fairlie, D.B., Curtright, T.L., Quantum Mechanics in Phase Space. 2005, World Scientific, 10.1142/5287 URL https://www.worldscientific.com/doi/abs/10.1142/5287.
Polkovnikov, A., Phase space representation of quantum dynamics. Ann. Physics 325:8 (2010), 1790–1852, 10.1016/j.aop.2010.02.006 URL https://www.sciencedirect.com/science/article/pii/S0003491610000382.
Mandel, L., Wolf, E., Optical Coherence and Quantum Optics. 1995, Cambridge University Press, 10.1017/CBO9781139644105.
Barnett, S.M., Radmore, P.M., Methods in Theoretical Quantum Optics. 2002, Oxford University Press, 10.1093/acprof:oso/9780198563617.001.0001.
Altland, A., Zirnbauer, M.R., Nonstandard symmetry classes in mesoscopic normal-superconducting hybrid structures. Phys. Rev. B 55 (1997), 1142–1161, 10.1103/PhysRevB.55.1142 URL https://link.aps.org/doi/10.1103/PhysRevB.55.1142.
Kawabata, K., Shiozaki, K., Ueda, M., Sato, M., Symmetry and topology in non-hermitian physics. Phys. Rev. X, 9, 2019, 041015, 10.1103/PhysRevX.9.041015 URL https://link.aps.org/doi/10.1103/PhysRevX.9.041015.
García-García, A.M., Sá, L., Verbaarschot, J.J.M., Symmetry classification and universality in non-hermitian many-body quantum chaos by the Sachdev-Ye-Kitaev model. Phys. Rev. X, 12, 2022, 021040, 10.1103/PhysRevX.12.021040 URL https://link.aps.org/doi/10.1103/PhysRevX.12.021040.
Arute, F., et al. Quantum supremacy using a programmable superconducting processor. Nature 574:7779 (2019), 505–510, 10.1038/s41586-019-1666-5.
Madsen, L.S., et al. Quantum computational advantage with a programmable photonic processor. Nature 606:7912 (2022), 75–81, 10.1038/s41586-022-04725-x.
Ebadi, S., et al. Quantum optimization of maximum independent set using rydberg atom arrays. Science 376:6598 (2022), 1209–1215, 10.1126/science.abo6587 URL https://www.science.org/doi/abs/10.1126/science.abo6587.
Kim, Y., et al. Evidence for the utility of quantum computing before fault tolerance. Nature 618:7965 (2023), 500–505, 10.1038/s41586-023-06096-3.
Shaw, A.L., Chen, Z., Choi, J., Mark, D.K., Scholl, P., Finkelstein, R., Elben, A., Choi, S., Endres, M., Benchmarking highly entangled states on a 60-atom analogue quantum simulator. Nature 628:8006 (2024), 71–77, 10.1038/s41586-024-07173-x.
King, A.D., et al. Computational supremacy in quantum simulation. 2024 arXiv:2403.00910.
Caputa, P., Jeong, H.-S., Liu, S., Pedraza, J.F., Qu, L.-C., Krylov complexity of density matrix operators. J. High Energy Phys., 2024(5), 2024, 337, 10.1007/JHEP05(2024)337.