[en] Numerical simulations of multiphase flows are crucial in numerous engineering applications, but are often limited by the computationally demanding solution of the Navier-Stokes (NS) equations. The development of surrogate models relies on involved algebra and several assumptions. Here, we present a data-driven workflow where a handful of detailed NS simulation data are leveraged into a reduced-order model for a prototypical vertically falling liquid film. We develop a physics-agnostic model for the film thickness, achieving a far better agreement with the NS solutions than the asymptotic Kuramoto-Sivashinsky (KS) equation. We also develop two variants of physics-infused models providing a form of calibration of a low-fidelity model (i.e. the KS) against a few high-fidelity NS data. Finally, predictive models for missing data are developed, for either the amplitude, or the full-field velocity and even the flow parameter from partial information. This is achieved with the so-called 'gappy diffusion maps', which we compare favourably to its linear counterpart, gappy POD.
Disciplines :
Engineering, computing & technology: Multidisciplinary, general & others
Author, co-author :
Martin-Linares, Cristina P.; Department of Mechanical Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, United States
Psarellis, Yorgos M.; Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, United States
Karapetsas, George ; Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece
KORONAKI, Eleni ; University of Luxembourg > Faculty of Science, Technology and Medicine > Department of Engineering > Team Stéphane BORDAS ; School of Chemical Engineering, National Technical University of Athens, Athens, Greece
Kevrekidis, Ioannis G.; Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, United States
External co-authors :
yes
Language :
English
Title :
Physics-agnostic and physics-infused machine learning for thin films flows: Modelling, and predictions from small data
This work was partially supported by the US AFOSR and by the US DOE (IGK). CML received the support of a \u2018la Caixa\u2019 Foundation Fellowship (ID 100010434), code LCF/BQ/AA19/11720048. EDK received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sk\u0142odowska-Curie grant agreement No 890676 - DataProMat.
Balasubramanian, M., & Schwartz, E.L., 2002 The isomap algorithm and topological stability. Science 295 (5552), 7-7.
Bharadwaj, A.S., Kuhnert, J., Bordas, S.P.A., & Suchde, P., 2022 A discrete droplet method for modelling thin film flows. Appl. Math. Model. 112, 486-504.
Brown, H.S., 1992 A computer-assisted, nonlinear dynamic study of instabilities and pattern formation for interfacial waves. PhD thesis, Princeton University.
Brunton, S.L., Proctor, J.L., & Kutz, J.N., 2016 Discovering governing equations from data by sparse identification of nonlinear dynamical systems. Proc. Natl Acad. Sci. 113 (15), 3932-3937.
Dietze, G.F., Rohlfs, W., Nährich, K., Kneer, R., & Scheid, B., 2014 Three-dimensional flow structures in laminar falling liquid films. J. Fluid Mech. 743, 75-123.
Dsilva, C.J., Talmon, R., Coifman, R.R., & Kevrekidis, I.G., 2018 Parsimonious representation of nonlinear dynamical systems through manifold learning: a chemotaxis case study. Appl. Comput. Harmon. Anal. 44 (3), 759-773.
Duraisamy, K., Iaccarino, G., & Xiao, H., 2019 Turbulence modeling in the age of data. Annu. Rev. Fluid Mech. 51 (1), 357-377.
Evangelou, N., Dietrich, F., Chiavazzo, E., Lehmberg, D., Meila, M., & Kevrekidis, I.G., 2022 Double diffusion maps and their latent harmonics for scientific computations in latent space. arXiv:2204.12536
Everson, R., & Sirovich, L., 1995 Karhunen-Loeve procedure for gappy data. JOSA A 12 (8), 1657-1664.
Farzamnik, E., Ianiro, A., Discetti, S., Deng, N., Oberleithner, K., Noack, B.R., & Guerrero, V., 2023 From snapshots to manifolds-a tale of shear flows. J. Fluid Mech. 955, A34.
Floryan, D., & Graham, M.D., 2022 Data-driven discovery of intrinsic dynamics. Nat. Mach. Intell. 4 (12), 1113-1120.
Galaris, E., Fabiani, G., Gallos, I., Kevrekidis, I., & Siettos, C., 2022 Numerical bifurcation analysis of PDEs from lattice Boltzmann model simulations: a parsimonious machine learning approach. J. Sci. Comput. 92 (2), 34.
Glasser, B.J., Kevrekidis, I.G., & Sundaresan, S., 1997 Fully developed travelling wave solutions and bubble formation in fluidized beds. J. Fluid Mech. 334, 157-188.
González-García, R., Rico-Martínez, R., & Kevrekidis, I.G., 1998 Identification of distributed parameter systems: a neural net based approach. Comput. Chem. Engng 22, S965-S968.
He, K., Zhang, X., Ren, S., & Sun, J., 2016 Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, pp. 770-778.
Kemeth, F.P., Alonso, S., Echebarria, B., Moldenhawer, T., Beta, C., & Kevrekidis, I.G., 2023 Black and gray box learning of amplitude equations: application to phase field systems. Phys. Rev. E 107 (2), 025305.
Kevrekidis, I.G., Nicolaenko, B., & Scovel, J.C., 1990 Back in the saddle again: a computer assisted study of the Kuramoto-Sivashinsky equation. SIAM J. Appl. Math. 50 (3), 760-790.
Koronaki, E.D., Evangelou, N., Psarellis, Y.M., Boudouvis, A.G., & Kevrekidis, I.G., 2023 From partial data to out-of-sample parameter and observation estimation with diffusion maps and geometric harmonics. Comput. Chem. Engng 178, 108357.
Krischer, K., Rico-Martínez, R., Kevrekidis, I.G., Rotermund, H.H., Ertl, G., & Hudson, J.L., 1993 Model identification of a spatiotemporally varying catalytic reaction. AIChE J. 39 (1), 89-98.
Lee, S., Dietrich, F., Karniadakis, G.E., & Kevrekidis, I.G., 2019 Linking gaussian process regression with data-driven manifold embeddings for nonlinear data fusion. Interface Focus 9 (3), 20180083.
Lee, S., Kooshkbaghi, M., Spiliotis, K., Siettos, C.I., & Kevrekidis, I.G., 2020 Coarse-scale PDEs from fine-scale observations via machine learning. Chaos 30 (1), 013141.
Lee, S., Psarellis, Y.M., Siettos, C.I., & Kevrekidis, I.G., 2022 Learning black-and gray-box chemotactic PDEs/closures from agent based Monte Carlo simulation data. J. Math. Biol. 87 (1), 15.
Linot, A.J., Burby, J.W., Tang, Q., Balaprakash, P., Graham, M.D., & Maulik, R., 2023 Stabilized neural ordinary differential equations for long-time forecasting of dynamical systems. J. Comput. Phys. 474, 111838.
Long, Z., Lu, Y., Ma, X., & Dong, B., 2018 PDE-net: learning PDEs from data. In Proceedings of the 35th International Conference on Machine Learning (ed. Jennifer Dy & Andreas Krause), Proceedings of Machine Learning Research, vol. 80, pp. 3208-3216. Stockholmsmässan, Stockholm, Sweden: PMLR.
Lozano-Durán, A., & Bae, H.J., 2023 Machine learning building-block-flow wall model for large-eddy simulation. J. Fluid Mech. 963, A35.
Meloni, S., Centracchio, F., de Paola, E., Camussi, R., & Iemma, U., 2023 Experimental characterisation and data-driven modelling of unsteady wall pressure fields induced by a supersonic jet over a tangential flat plate. J. Fluid Mech. 958, A27.
Miliaiev, A., & Timokha, A., 2023 Viscous damping of steady-state resonant sloshing in a clean rectangular tank. J. Fluid Mech. 965, R1.
Oron, A., & Gottlieb, O., 2002 Nonlinear dynamics of temporally excited falling liquid films. Phys. Fluids 14 (8), 2622-2636.
Pan, S., & Duraisamy, K., 2018 Data-driven discovery of closure models. SIAM J. Appl. Dyn. Syst. 17 (4), 2381-2413.
Parish, E.J., & Duraisamy, K., 2016 A paradigm for data-driven predictive modeling using field inversion and machine learning. J. Comput. Phys. 305, 758-774.
Pettas, D., Karapetsas, G., Dimakopoulos, Y., & Tsamopoulos, J., 2019 a Viscoelastic film flows over an inclined substrate with sinusoidal topography. I. Steady state. Phys. Rev. Fluids 4 (8), 083303.
Pettas, D., Karapetsas, G., Dimakopoulos, Y., & Tsamopoulos, J., 2019 b Viscoelastic film flows over an inclined substrate with sinusoidal topography. II. Linear stability analysis. Phys. Rev. Fluids 4 (8), 083304.
Psarellis, Y.M., Lee, S., Bhattacharjee, T., Datta, S.S., Bello-Rivas, J.M., & Kevrekidis, I.G., 2022 Data-driven discovery of chemotactic migration of bacteria via machine learning. arXiv:2208.11853.
Raissi, M., & Karniadakis, G., 2017 Hidden physics models: machine learning of nonlinear partial differential equations. J. Comput. Phys. 357, 125-141.
Raissi, M., Perdikaris, P., & Karniadakis, G.E., 2019 Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 378, 686-707.
Rezaeiravesh, S., Mukha, T., & Schlatter, P., 2023 Efficient prediction of turbulent flow quantities using a Bayesian hierarchical multifidelity model. J. Fluid Mech. 964, A13.
Rico-Martínez, R., Krischer, K., Kevrekidis, I.G., Kube, M.C., & Hudson, J.L., 1992 Discrete-vs. continuous-time nonlinear signal processing of Cu electrodissolution data. Chem. Engng Commun. 118 (1), 25-48.
Rohlfs, W., Rietz, M., & Scheid, B., 2018 Wavemaker: the three-dimensional wave simulation tool for falling liquid films. SoftwareX 7, 211-216.
Shklyaev, S., & Nepomnyashchy, A., 2017 Longwave Instabilities and Patterns in Fluids. Birkhäuser.
Shlang, T., & Sivashinsky, G.I., 1982 Irregular flow of a liquid film down a vertical column. J. Phys. 43 (3), 459-466.
Sirignano, J., & MacArt, J.F., 2023 Deep learning closure models for large-eddy simulation of flows around bluff bodies. J. Fluid Mech. 966, A26.
Sonoda, T., Liu, Z., Itoh, T., & Hasegawa, Y., 2023 Reinforcement learning of control strategies for reducing skin friction drag in a fully developed turbulent channel flow. J. Fluid Mech. 960, A30.
Takens, F., 1981 Detecting Strange Attractors in Turbulence, pp. 366-381. Springer Berlin Heidelberg.
Vlachas, P.R., Arampatzis, G., Uhler, C., & Koumoutsakos, P., 2022 Multiscale simulations of complex systems by learning their effective dynamics. Nat. Mach. Intell. 4 (4), 359-366.
Vlachas, P.R., Byeon, W., Wan, Z.Y., Sapsis, T.P., & Koumoutsakos, P., 2018 Data-driven forecasting of high-dimensional chaotic systems with long short-term memory networks. Proc. R. Soc. A: Math. Phys. Engng Sci. 474 (2213), 20170844.
Whitney, H., 1936 Differentiable manifolds. Ann. Math. 37 (3), 645-680.
Xu, D., Wang, J., Yu, C., & Chen, S., 2023 Artificial-neural-network-based nonlinear algebraic models for large-eddy simulation of compressible wall-bounded turbulence. J. Fluid Mech. 960, A4.
Xuan, A., & Shen, L., 2023 Reconstruction of three-dimensional turbulent flow structures using surface measurements for free-surface flows based on a convolutional neural network. J. Fluid Mech. 959, A34.
Zhang, B.F., Fan, D.W., & Zhou, Y., 2023 Artificial intelligence control of a low-drag Ahmed body using distributed jet arrays. J. Fluid Mech. 963, A3.