[en] Chronic digestive disorders are of increasing incidence worldwide with expensive treatments and no available cure. Available therapeutic schemes mainly rely on symptom relief, with large degrees of variability in patients' response to such treatments, underlining the need for new therapeutic strategies. There are strong indications that the gut microbiota's contribution seems to be a key modulator of disease activity and patients' treatment responses. Hence, efforts have been devoted to understanding host-microbe interactions and the mechanisms underpinning such variability. Animal models, being the gold standard, provide valuable mechanistic insights into host-microbe interactions. However, they are not exempt from limitations prompting the development of alternative methods. Emerging microfluidic technologies and gut-on-chip models were shown to mirror the main features of gut physiology and disease state, reflect microbiota modification, and include functional readouts for studying host responses. In this commentary, we discuss the relevance of animal models in understanding host-microbe interactions and how gut-on-chip technology holds promises for addressing patient variability in responses to chronic digestive disease treatment.
Research center :
Luxembourg Centre for Systems Biomedicine (LCSB): Eco-Systems Biology (Wilmes Group)
Disciplines :
Life sciences: Multidisciplinary, general & others
Author, co-author :
Kriaa, Aicha ; Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
Mariaule, Vincent ; Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
Jablaoui, Amin; Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
Sokol, Harry ; Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France ; INSERM UMRS-938, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Sorbonne Université, Paris, France
WILMES, Paul ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Systems Ecology
Maguin, Emmanuelle ; Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
Rhimi, Moez ; Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
External co-authors :
yes
Language :
English
Title :
From animal models to gut-on-chip: the challenging journey to capture inter-individual variability in chronic digestive disorders.
H2020 - 952583 - MICAfrica - Towards a North-African Consortium of the Human Microbiome (NACHM) through strengthening the Capacities in Microbiome Analysis for Human Diseases at University of Sfax H2020 - 964590 - IHMCSA - International Human Microbiome Coordination and Support Action H2020 - 101038088 - SyMPaBiome - Development of a synbiotic product to modulate the Parkinson’s disease associated microbiome H2020 - 863664 - ExpoBiome - Deciphering the impact of exposures from the gut microbiome-derived molecular complex in human health and disease
FnR Project :
FNR18066982 - RestorPro - Towards A Personalized Approach To Restore Proteolytic Homeostasis In Digestive Inflammation, 2023 (01/01/2024-31/12/2027) - Paul Wilmes
Name of the research project :
U-AGR-7364 - INTER/ANR/23/18166982/RestorPro - WILMES Paul
Funders :
ANR - French National Research Agency European Union’s Horizon 2020 research and innovation program European Union’s Horizon 2020 Widening Fellowships European Union
Funding text :
This work was supported by the French National Research Agency (RestorPro, N\u00B0 ANR-23-CE14-0073-01), the twinning European project: 952583-MICAfrica, the European Union\u2019s Horizon 2020 research and innovation program under grant agreement N\u00B0964590, the European Union\u2019s Horizon 2020 Widening Fellowships (N\u00B0 101038088), and the European Research Council (Grant ID: 863664).
World Health Organization (WHO). Global health estimates 2019: estimated deaths by age, sex, and cause.
Jeon YH, Essue B, Jan S, Wells R, Whitworth JA., Economic hardship associated with managing chronic illness: a qualitative inquiry. BMC Health Serv Res. 2009;9(1):182–10. doi:10.1186/1472-6963-9-182.
Jairath V, Feagan BG. Global burden of inflammatory bowel disease. Lancet Gastroenterol Hepatol. 2020;5(1):2–3. doi:10.1016/S2468-1253(19)30358-9.
Oka P, Parr H, Barberio B, Black CJ, Savarino EV, Ford AC. Global prevalence of irritable bowel syndrome according to Rome III or IV criteria: a systematic review and meta-analysis. Lancet Gastroenterol Hepatol. 2020;5(10):908–917. doi:10.1016/S2468-1253(20)30217-X.
Marsal J, Barreiro-de Acosta M, Blumenstein I, Cappello M, Bazin T, Sebastian S. Management of non-response and loss of response to anti-tumor necrosis factor therapy in inflammatory bowel disease. Front Med. 2022;9:897936. doi:10.3389/fmed.2022.897936.
Rodriguez JM, Monsalves-Alvarez M, Henriquez S, Llanos MN, Troncoso R. Glucocorticoid resistance in chronic diseases. Steroids. 2016;115:182–192. doi:10.1016/j.steroids.2016.09.010.
Li H, He J, Jia W. The influence of gut microbiota on drug metabolism and toxicity. Expert Opin Drug Metab Toxicol. 2016;12:31–40. doi:10.1517/17425255.2016.1121234.
Zhao Q, Chen Y, Huang W, Zhou H, Zhang W. Drug-microbiota interactions: an emerging priority for precision medicine. Signal Transduct Target Ther. 2023;8:386. doi:10.1038/s41392-023-01619-w.
He Y, Fu L, Li Y, Wang W, Gong M, Zhang J, Dong X, Huang J, Wang Q, Mackay CR. et al. Gut microbial metabolites facilitate anticancer therapy efficacy by modulating cytotoxic CD8+ T cell immunity. Cell Metab. 2021;33(5):988–1000.e7. doi:10.1016/j.cmet.2021.03.002.
Walter J, Armet AM, Finlay BB, Shanahan F. Establishing or exaggerating causality for the gut microbiome: lessons from human microbiota-associated rodents. Cell. 2020;180(2):221–232. doi:10.1016/j.cell.2019.12.025.
Danese S. IBD: of mice and men—shedding new light on IL-13 activity in IBD. Nat Rev Gastroenterol Hepatol. 2011;8(3):128–129. doi:10.1038/nrgastro.2011.17.
Winogrodzki T, Metwaly A, Grodziecki A, Liang W, Klinger B, Flisikowska T, Fischer K, Flisikowski K, Steiger K, Haller D. et al. TNF ΔARE pigs: a translational Crohn’s disease model. J Crohns Colitis. 2023;17(7):1128–1138. doi:10.1093/ecco-jcc/jjad034.
Keubler LM, Buettner M, Häger C, Bleich A. A multihit model: colitis lessons from the interleukin-10-deficient mouse. Inflamm Bowel Dis. 2015;21(8):1967–1975. doi:10.1097/MIB.0000000000000468.
Hu Y, Chen F, Ye H, Lu B. Integrative analysis of the gut microbiome and metabolome in a rat model with stress induced irritable bowel syndrome. Sci Rep. 2021;11(1):17596–17606. doi:10.1038/s41598-021-97083-z.
Roy U, Gálvez EJC, Iljazovic A, Lesker TR, Błażejewski AJ, Pils MC, Heise U, Huber S, Flavell RA, Strowig T. Distinct microbial communities trigger colitis development upon intestinal barrier damage via innate or adaptive immune cells. Cell Rep. 2017;21(4):994–1008. doi:10.1016/j.celrep.2017.09.097.
Garrett WS, Gallini CA, Yatsunenko T, Michaud M, DuBois A, Delaney ML, Punit S, Karlsson M, Bry L, Glickman JN. et al. Enterobacteriaceae act in concert with the gut microbiota to induce spontaneous and maternally transmitted colitis. Cell Host Microbe. 2010;8(3):292–300. doi:10.1016/j.chom.2010.08.004.
Atarashi K, Tanoue T, Oshima K, Suda W, Nagano Y, Nishikawa H, Fukuda S, Saito T, Narushima S, Hase K. et al. Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature. 2013;500(7461):232–236. doi:10.1038/nature12331.
Pascual-García A, Bonhoeffer S, Bell T. Metabolically cohesive microbial consortia and ecosystem functioning. Philos Trans R Soc Lond B Biol Sci. 2020;375(1798):20190245. doi:10.1098/rstb.2019.0245.
Du Z, Hudcovic T, Mrazek J, Kozakova H, Srutkova D, Schwarzer M, Tlaskalova-Hogenova H, Kostovcik M, Kverka M. Development of gut inflammation in mice colonized with mucosa-associated bacteria from patients with ulcerative colitis. Gut Pathog. 2015;7(1):32–45. doi:10.1186/s13099-015-0080-2.
Gilbert JA, Blaser MJ, Caporaso JG, Jansson JK, Lynch SV, Knight R. Current understanding of the human microbiome. Nat Med. 2018;24(4):392–400. doi:10.1038/nm.4517.
Li J, Jia H, Cai X, Zhong H, Feng Q, Sunagawa S, Arumugam M, Kultima JR, Prifti E, Nielsen T. et al. An integrated catalog of reference genes in the human gut microbiome. Nat Biotechnol. 2014;32(8):834–841. doi:10.1038/nbt.2942.
Zeevi D, Korem T, Godneva A, Bar N, Kurilshikov A, Lotan-Pompan M, Weinberger A, Fu J, Wijmenga C, Zhernakova A. et al. Structural variation in the gut microbiome associates with host health. Nature. 2019;568(7750):43–48. doi:10.1038/s41586-019-1065-y.
Markets and Markets. Microfluidics market by materials (polymers, silicon, glass), pharmaceuticals (microreactors, toxicity screening, lab on chip, proteomic & genomic analysis) drug delivery devices (microneedles, micropumps), IVD (POC)–global trends & forecast to 2018. 2013.
Moossavi S, Arrieta MC, Sanati-Nezhad A, Bishehsari F. Gut-on-chip for ecological and causal human gut microbiome research. Trends Microbiol. 2022;30(8):710–721. doi:10.1016/j.tim.2022.01.014.
Leung CM, de Haan P, Ronaldson-Bouchard K, Kim GE, Ko J, Rho HS, Chen Z, Habibovic P, Jeon NL, Takayama S. et al. A guide to the organ-on-a-chip. Nat Rev Methods Primers. 2022;2(1):33–61. doi:10.1038/s43586-022-00118-6.
Low LA, Mummery C, Berridge BR, Austin CP, Tagle DA. Organs-on-chips: into the next decade. Nat Rev Drug Discov. 2021;20(5):345–361. doi:10.1038/s41573-020-0079-3.
Sin A, Chin KC, Jamil MF, Kostov Y, Rao G, Shuler ML. The design and fabrication of three-chamber microscale cell culture analog devices with integrated dissolved oxygen sensors. Biotechnol Prog. 2004;20(1):338–345. doi:10.1021/bp034077d.
Huh D, Matthews BD, Mammoto A, Montoya-Zavala M, Hsin HY, Ingber DE. Reconstituting organ-level lung functions on a chip. Science. 2010;328(5986):1662–1668. doi:10.1126/science.1188302.
Signore MA, De Pascali C, Giampetruzzi L, Siciliano PA, Francioso L. Gut-on-chip microphysiological systems: latest advances in the integration of sensing strategies and adoption of mature detection mechanisms. Sens Bio-Sens Res. 2021;33:100443. doi:10.1016/j.sbsr.2021.100443.
Ingber DE. Human organs-on-chips for disease modelling, drug development and personalized medicine. Nat Rev Genet. 2022;23(8):467–491. doi:10.1038/s41576-022-00466-9.
Kopec AK, Yokokawa R, Khan N, Horii I, Finley JE, Bono CP, Donovan C, Roy J, Harney J, Burdick AD. et al. Microphysiological systems in early stage drug development: perspectives on current applications and future impact. J Toxicol Sci. 2021;46(3):99–114. doi:10.2131/jts.46.99.
Zhang Y, Huang S, Zhong W, Chen W, Yao B, Wang X. 3D organoids derived from the small intestine: an emerging tool for drug transport research. Acta Pharm Sin B. 2021;11(7):1697–1707. doi:10.1016/j.apsb.2020.12.002.
Zhang B, Radisic M. Organ-on-a-chip devices advance to market. Lab Chip. 2017;17(14):2395–2420. doi:10.1039/c6lc01554a.
Kim HJ, Ingber DE. Gut-on-a-Chip microenvironment induces human intestinal cells to undergo villus differentiation. Integr Biol (Camb). 2013;5(9):1130–1140. doi:10.1039/c3ib40126j.
Kim J, Koo BK, Knoblich JA. Human organoids: model systems for human biology and medicine. Nat Rev Mol Cell Biol. 2020;21(10):571–584. doi:10.1038/s41580-020-0259-3.
Shah P, Fritz JV, Glaab E, Desai MS, Greenhalgh K, Frachet A, Niegowska M, Estes M, Jäger C, Seguin-Devaux C. et al. A microfluidics-based in vitro model of the gastrointestinal human–microbe interface. Nat Commun. 2016;7(1):11535. doi:10.1038/ncomms11535.
Lucchetti M, Werr G, Johansson S, Barbe L, Grandmougin L, Wilmes P, Tenje M. Integration of multiple flexible electrodes for real-time detection of barrier formation with spatial resolution in a gut-on-chip system. Microsyst Nanoeng. 2024;10(1):18. doi:10.1038/s41378-023-00640-x.
Nazari H, Shrestha J, Naei VY, Bazaz SR, Sabbagh M, Thiery JP, Warkiani ME. Advances in TEER measurements of biological barriers in microphysiological systems. Biosens Bioelectron. 2023;234:115355. doi:10.1016/j.bios.2023.115355.
Workman MJ, Gleeson JP, Troisi EJ, Estrada HQ, Kerns SJ, Hinojosa CD, Hamilton GA, Targan SR, Svendsen CN, Barrett RJ. Enhanced utilization of induced pluripotent stem cell–derived human intestinal organoids using microengineered chips. Cell Mol Gastroenterol Hepatol. 2017;5(4):669–677.e2. doi:10.1016/j.jcmgh.2017.12.008.
Ternes D, Tsenkova M, Pozdeev VI, Meyers M, Koncina E, Atatri S, Schmitz M, Karta J, Schmoetten M, Heinken A. et al. The gut microbial metabolite formate exacerbates colorectal cancer progression. Nat Metab. 2022;4(4):458–475. doi:10.1038/s42255-022-00558-0.
Beaurivage C, Kanapeckaite A, Loomans C, Erdmann KS, Stallen J, Janssen RAJ. Development of a human primary gut-on-a-chip to model inflammatory processes. Sci Rep. 2020;10(1):21475. doi:10.1038/s41598-020-78359-2.
Maurer M, Gresnigt MS, Last A, Wollny T, Berlinghof F, Pospich R, Cseresnyes Z, Medyukhina A, Graf K, Gröger M. et al. A three-dimensional immunocompetent intestine-on-chip model as in vitro platform for functional and microbial interaction studies. Biomaterials. 2019;220:119396. doi:10.1016/j.biomaterials.2019.119396.
Gabriel-Segard T, Rontard J, Miny L, Dubuisson L, Batut A, Debis D, Gleyzes M, François F, Larramendy F, Soriano A. et al. Proof-of-concept human organ-on-chip study: first step of platform to assess neuro-immunological communication involved in inflammatory bowel diseases. Int J Mol Sci. 2023;24(13):10568. doi:10.3390/ijms241310568.
Zhang J, Huang YJ, Yoon JY, Kemmitt J, Wright C, Schneider K, Sphabmixay P, Hernandez-Gordillo V, Holcomb SJ, Bhushan B. et al. Primary human colonic mucosal barrier crosstalk with super oxygen-sensitive Faecalibacterium prausnitzii in continuous culture. Med. 2021;2(1):74–98.e9. doi:10.1016/j.medj.2020.07.001.
Darfeuille-Michaud A, Boudeau J, Bulois P, Neut C, Glasser AL, Barnich N, Bringer MA, Swidsinski A, Beaugerie L, Colombel JF. High prevalence of adherent-invasive Escherichia coli associated with ileal mucosa in Crohn’s disease. Gastroenterology. 2004;127(2):412–421. doi:10.1053/j.gastro.2004.04.061.
Shin W, Kim HJ. Intestinal barrier dysfunction orchestrates the onset of inflammatory host–microbiome cross-talk in a human gut inflammation-on-a-chip. Proc Natl Acad Sci U S A. 2018;115(45):E10539–E10547. doi:10.1073/pnas.1810819115.
Kim HJ, Li H, Collins JJ, Ingber DE. Contributions of microbiome and mechanical deformation to intestinal bacterial overgrowth and inflammation in a human gut-on-a-chip. Proc Natl Acad Sci U S A. 2016Jan5;113(1):E7–15. doi:10.1073/pnas.1522193112.
Jalili-Firoozinezhad S, Gazzaniga FS, Calamari EL, Camacho DM, Fadel CW, Bein A, Swenor B, Nestor B, Cronce MJ, Tovaglieri A. et al. A complex human gut microbiome cultured in an anaerobic intestine-on-a-chip. Nat Biomed Eng. 2019;3(7):520–531. doi:10.1038/s41551-019-0397-0.
Marzorati M, Vanhoecke B, De Ryck T, Sadaghian Sadabad M, Pinheiro I, Possemiers S, Van den Abbeele P, Derycke L, Bracke M, Pieters J. et al. The HMI™ module: a new tool to study the host-microbiota interaction in the human gastrointestinal tract in vitro. BMC Microbiol. 2014;14(1):133–146. doi:10.1186/1471-2180-14-133.
Kim HJ, Huh D, Hamilton G, Ingber DE. Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and flow. Lab Chip. 2012;12(12):2165–2174. doi:10.1039/c2lc40074j.
Lagier JC, Armougom F, Million M, Hugon P, Pagnier I, Robert C, Bittar F, Fournous G, Gimenez G, Maraninchi M. et al. Microbial culturomics: paradigm shift in the human gut microbiome study. Clin Microbiol Infect. 2012;18(12):1185–1193. doi:10.1111/1469-0691.12023.
Lagier JC, Dubourg G, Million M, Cadoret F, Bilen M, Fenollar F, Levasseur A, Rolain JM, Fournier PE, Raoult D. Culturing the human microbiota and culturomics. Nat Rev Microbiol. 2018;16(9):540–550. doi:10.1038/s41579-018-0041-0.