Digital health technology tools; healthcare delivery; participatory care; personalized care; challenges; development; implementation; multidisciplinary; lecture series; workshop; healthcare challenges; interdisciplinary teams; patient feedback; measurement technologies; data integration; interoperability; data science; scalable designs; open standards; regulatory requirements; evaluation; improvement; innovation; regulatory compliance; ethical concerns; AI adoption; privacy; open science; financial sustainability; ethical implications; legal implications; social implications; best practices; healthcare professionals; engineers; developers
Abstract :
[en] Digital health technology tools (DHTT) have the potential to transform healthcare delivery by enabling new forms of participatory and personalized care that fit into patients' daily lives. However, realizing this potential requires careful navigation of numerous challenges. This viewpoint article presents the authors' experiences and perspectives on the development and implementation of DHTT, addressing both established practices and controversial topics. The manuscript offers a practical guide organized into ten recommendations, derived from a multidisciplinary lecture series and associated workshop discussions on "Digital Health and Digital Biomarkers" held at the University of Luxembourg in 2023/2024. Key messages include the need to understand specific healthcare challenges, form interdisciplinary teams, incorporate patient feedback, select appropriate measurement technologies, ensure data integration and interoperability, apply advanced data science techniques, use scalable designs and open standards, comply with regulatory requirements, and maintain continuous evaluation and improvement.
While the guide highlights essential practices, it also addresses contentious issues such as balancing innovation with regulatory compliance, addressing ethical concerns in AI adoption, managing privacy versus the need for comprehensive data integration and open science, and managing the financial sustainability of DHTT. The authors argue that digital health's greatest potential lies in its ability to provide participatory and personalized care, but this requires a delicate balance between technological advances and ethical, legal, and social implications.
Overall, this workshop-derived viewpoint aims to help healthcare professionals, engineers, developers, and researchers not only adopt best practices, but also address and resolve the controversial aspects inherent in the development of DHTT.
Research center :
Luxembourg Centre for Systems Biomedicine (LCSB): Biomedical Data Science (Glaab Group)
Disciplines :
Biotechnology Human health sciences: Multidisciplinary, general & others
Author, co-author :
Loo, R.T.J.
Nasta, F.
Macchi, M.
Baudot, A.
Burstein, F.
Bove, R.
Greve, M.
Fröhlich, H.
Khalid, S.
Küderle, A.
Moore, S.L.
Storms, V.
Torous, J.
GLAAB, Enrico ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Biomedical Data Science
Kraus S, Schiavone F, Pluzhnikova A, Invernizzi AC. Digital transformation in healthcare: analyzing the current state-of-research. J Bus Res. Feb 2021;123:557-567. [doi: 10.1016/j.jbusres.2020.10.030]
Liyanage H, Krause P, De Lusignan S. Using ontologies to improve semantic interoperability in health data. J Innov Health Inform. 2015;22(2):309-315. [doi: 10.14236/jhi.v22i2.159] [Medline: 26245245]
Iqbal JD, Biller-Andorno N. The regulatory gap in digital health and alternative pathways to bridge it. Health Policy Technol. Sep 2022;11(3):100663. [doi: 10.1016/j.hlpt.2022.100663]
Sharp G, Torous J, West ML. Ethical challenges in AI approaches to eating disorders. J Med Internet Res. Aug 14, 2023;25:e50696. [doi: 10.2196/50696] [Medline: 37578836]
Papoutsi C, Wherton J, Shaw S, Morrison C, Greenhalgh T. Putting the social back into sociotechnical: case studies of co-design in digital health. J Am Med Inform Assoc. Feb 15, 2021;28(2):284-293. [doi: 10.1093/jamia/ocaa197] [Medline: 33043359]
Kotenko N, Bohnhardt V. Digital health projects financing: challenges and opportunities. Health Econ Manag Rev. 2021;2(1):100-107. [doi: 10.21272/hem.2021.1-10]
Giunti G, Kool J, Rivera Romero O, Dorronzoro Zubiete E. Exploring the specific needs of persons with multiple sclerosis for mHealth solutions for physical activity: mixed-methods study. JMIR Mhealth Uhealth. Feb 9, 2018;6(2):e37. [doi: 10.2196/mhealth.8996] [Medline: 29426814]
O’Connor S, Hanlon P, O’Donnell CA, Garcia S, Glanville J, Mair FS. Understanding factors affecting patient and public engagement and recruitment to digital health interventions: a systematic review of qualitative studies. BMC Med Inform Decis Mak. Sep 15, 2016;16(1):120. [doi: 10.1186/s12911-016-0359-3] [Medline: 27630020]
Patient engagement in MedTech. Patient Focused Medicines Development. Jun 8, 2021. URL: https://patientfocusedmedicine.org/patient-engagement-in-medtech [Accessed 2025-05-31]
Qaseem A, Forland F, Macbeth F, et al. Guidelines International Network: toward international standards for clinical practice guidelines. Ann Intern Med. Apr 3, 2012;156(7):525-531. [doi: 10.7326/0003-4819-156-7-201204030-00009] [Medline: 22473437]
Global strategy on digital health 2020-2025. World Health Organization. Aug 18, 2021. URL: www.who.int/healthtopics/digital-health [Accessed 2025-05-31]
Oderanti FO, Li F, Cubric M, Shi X. Business models for sustainable commercialisation of digital healthcare (eHealth) innovations for an increasingly ageing population. Technol Forecast Soc Change. Oct 2021;171:120969. [doi: 10.1016/j. techfore.2021.120969]
Swartz AK, Friesen P. The first smart pill: digital revolution or last gasp? Kennedy Inst Ethics J. 2023;33(3):277-319. [doi: 10.1353/ken.2023.a917930] [Medline: 38588136]
Smaradottir B, Gerdes M, Martinez S, Fensli R. The EU-project United4Health: user-centred design of an information system for a Norwegian telemedicine service. J Telemed Telecare. Oct 2016;22(7):422-429. [doi: 10.1177/ 1357633X15615048] [Medline: 26541347]
Edward Freeman R, Harrison JS, Wicks AC. Managing for Stakeholders: Survival, Reputation, and Success. Yale University Press; 2008. [doi: 10.12987/9780300138498]
McKemmish S, Burstein F, Manaszewicz R, Fisher J, Evans J. Inclusive research design: unravelling the double hermeneutic spiral. Inf Commun Soc. Sep 2012;15(7):1106-1135. [doi: 10.1080/1369118X.2012.707225]
Eyles H, Jull A, Dobson R, et al. Co-design of mHealth delivered interventions: a systematic review to assess key methods and processes. Curr Nutr Rep. Sep 2016;5(3):160-167. [doi: 10.1007/s13668-016-0165-7]
Vargas C, Whelan J, Brimblecombe J, Allender S. Co-creation, co-design, co-production for public health: a perspective on definition and distinctions. Public Health Res Pract. Jun 15, 2022;32(2):3222211. [doi: 10.17061/phrp3222211] [Medline: 35702744]
Berkowitz G. Digital health for vulnerable populations: from co-design to scaling and replication. iProc. 2022;8(1):e41096. [doi: 10.2196/41096]
Pickup JC, Reznik Y, Sutton AJ. Glycemic control during continuous subcutaneous insulin infusion versus multiple daily insulin injections in type 2 diabetes: individual patient data meta-analysis and meta-regression of randomized controlled trials. Diabetes Care. May 2017;40(5):715-722. [doi: 10.2337/dc16-2201] [Medline: 28428322]
Jawad LA. Security and privacy in digital healthcare systems: challenges and mitigation strategies. Abhigyan.;42(1):23-31. [doi: 10.1177/09702385241233073]
Graf DG, Burrell DN. Utilising resistance feedback for software implementation in healthcare. Health Econ Manag Rev. Mar 31, 2024;5(1):106-116. [doi: 10.61093/hem.2024.1-08]
Asan O, Bayrak AE, Choudhury A. Artificial intelligence and human trust in healthcare: focus on clinicians. J Med Internet Res. Jun 19, 2020;22(6):e15154. [doi: 10.2196/15154] [Medline: 32558657]
Soto JT, Hershman SG, Ashley EA. Combining digital data and artificial intelligence for cardiovascular health. Cardiovasc Res. Jul 27, 2021;117(9):e116-e117. [doi: 10.1093/cvr/cvab211] [Medline: 34320165]
Shcherbina A, Mattsson CM, Waggott D, et al. Accuracy in wrist-worn, sensor-based measurements of heart rate and energy expenditure in a diverse cohort. J Pers Med. May 24, 2017;7(2):3. [doi: 10.3390/jpm7020003] [Medline: 28538708]
Mathews SC, McShea MJ, Hanley CL, Ravitz A, Labrique AB, Cohen AB. Digital health: a path to validation. NPJ Digit Med. 2019;2:38. [doi: 10.1038/s41746-019-0111-3] [Medline: 31304384]
Keogh A, Alcock L, Brown P, et al. Acceptability of wearable devices for measuring mobility remotely: observations from the Mobilise-D technical validation study. Digit Health. 2023;9:20552076221150745. [doi: 10.1177/ 20552076221150745] [Medline: 36756644]
Brands MR, Gouw SC, Beestrum M, Cronin RM, Fijnvandraat K, Badawy SM. Patient-centered digital health records and their effects on health outcomes: systematic review. J Med Internet Res. Dec 22, 2022;24(12):e43086. [doi: 10.2196/ 43086] [Medline: 36548034]
Taylor KI, Staunton H, Lipsmeier F, Nobbs D, Lindemann M. Outcome measures based on digital health technology sensor data: data- and patient-centric approaches. NPJ Digit Med. 2020;3:97. [doi: 10.1038/s41746-020-0305-8] [Medline: 32715091]
Vest JR, Kern LM, Campion TR, Silver MD, Kaushal R. Association between use of a health information exchange system and hospital admissions. Appl Clin Inform. 2014;5(1):219-231. [doi: 10.4338/ACI-2013-10-RA-0083] [Medline: 24734135]
Oshni Alvandi A, Burstein F, Bain C. A digital health ecosystem ontology from the perspective of Australian consumers: a mixed-method literature analysis. Inform Health Soc Care. Jan 2, 2023;48(1):13-29. [doi: 10.1080/17538157.2022. 2049273] [Medline: 35298327]
Röhrig R, Binder H, Prokosch HU, editors. German Medical Data Sciences: Shaping Change – Creative Solutions for Innovative Medicine: Proceedings of the 64th Annual Meeting of the German Association of Medical Informatics, Biometry and Epidemiology (GMDS eV) 2019 in Dortmund, Germany – GMDS 2019. IOS Press; 2019. ISBN: 978-1-64368-016-3
Ko KD, Liu C, Ra Mashariki A, Burge L. SMISB: a system for managing minimum information from omics’ studies in systems biology. In: 2012 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB). IEEE; 2012:164-168. [doi: 10.1109/CIBCB.2012.6217226]
Norgeot B, Quer G, Beaulieu-Jones BK, et al. Minimum information about clinical artificial intelligence modeling: the MI-CLAIM checklist. Nat Med. Sep 2020;26(9):1320-1324. [doi: 10.1038/s41591-020-1041-y] [Medline: 32908275]
Djaffardjy M, Marchment G, Sebe C, et al. Developing and reusing bioinformatics data analysis pipelines using scientific workflow systems. Comput Struct Biotechnol J. 2023;21:2075-2085. [doi: 10.1016/j.csbj.2023.03.003]
Choi DJ, Park JJ, Ali T, Lee S. Artificial intelligence for the diagnosis of heart failure. NPJ Digit Med. 2020;3:54. [doi: 10.1038/s41746-020-0261-3] [Medline: 32285014]
Fröhlich H, Bontridder N, Petrovska-Delacréta D, et al. Leveraging the potential of digital technology for better individualized treatment of Parkinson’s disease. Front Neurol. 2022;13:788427. [doi: 10.3389/fneur.2022.788427] [Medline: 35295840]
Bénard C, Biau G, Da Veiga S, Scornet E. SIRUS: stable and interpretable rule set for classification. Electron J Statist. 2021;15(1):427-505. [doi: 10.1214/20-EJS1792]
Diaz-Uriarte R, Gómez de Lope E, Giugno R, et al. Ten quick tips for biomarker discovery and validation analyses using machine learning. PLoS Comput Biol. Aug 2022;18(8):e1010357. [doi: 10.1371/journal.pcbi.1010357] [Medline: 35951526]
Rahman MM, Davis DN. Addressing the class imbalance problem in medical datasets. Int J Mach Learn. 2013;3(2):224-228. [doi: 10.7763/IJMLC.2013.V3.307]
Wilkinson MD, Dumontier M, Aalbersberg IJJ, et al. The FAIR Guiding Principles for scientific data management and stewardship. Sci Data. Mar 15, 2016;3:160018. [doi: 10.1038/sdata.2016.18] [Medline: 26978244]
Chen RJ, Wang JJ, Williamson DFK, et al. Algorithmic fairness in artificial intelligence for medicine and healthcare. Nat Biomed Eng. Jun 2023;7(6):719-742. [doi: 10.1038/s41551-023-01056-8] [Medline: 37380750]
MacDonald S, Steven K, Trzaskowski M. Interpretable AI in healthcare: enhancing fairness, safety, and trust. In: Artificial Intelligence in Medicine. Springer; 2022:241-258. [doi: 10.1007/978-981-19-1223-8_11]
Heil BJ, Hoffman MM, Markowetz F, Lee SI, Greene CS, Hicks SC. Reproducibility standards for machine learning in the life sciences. Nat Methods. Oct 2021;18(10):1132-1135. [doi: 10.1038/s41592-021-01256-7] [Medline: 34462593]
Pahl C, Brogi A, Soldani J, Jamshidi P. Cloud container technologies: a state-of-the-art review. IEEE Trans Cloud Comput. 2019;7(3):677-692. [doi: 10.1109/TCC.2017.2702586]
Avsec Ž, Kreuzhuber R, Israeli J, et al. The Kipoi repository accelerates community exchange and reuse of predictive models for genomics. Nat Biotechnol. Jun 2019;37(6):592-600. [doi: 10.1038/s41587-019-0140-0] [Medline: 31138913]
Kasparick M, Schlichting S, Golatowski F, Timmermann D. New IEEE 11073 standards for interoperable, networked point-of-care medical devices. In: 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE; 2015:1721-1724. [doi: 10.1109/EMBC.2015.7318709]
Saripalle RK. Fast Health Interoperability Resources (FHIR): current status in the healthcare system. Int J E Health Med Commun. 2019;10(1):76-93. [doi: 10.4018/IJEHMC.2019010105]
Hume S, Aerts J, Sarnikar S, Huser V. Current applications and future directions for the CDISC operational data model standard: a methodological review. J Biomed Inform. Apr 2016;60:352-362. [doi: 10.1016/j.jbi.2016.02.016] [Medline: 26944737]
Digital health technologies for remote data acquisition in clinical investigations. US Food and Drug Administration. Jul 29, 2024. URL: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/digital-health-technologiesremote-data-acquisition-clinical-investigations [Accessed 2025-05-31]
OECD recommendation on health data governance. Organisation for Economic Co-operation and Development. Nov 7, 2023. URL: https://web-archive.oecd.org/temp/2023-11-07/424843-health-data-governance.htm [Accessed 2025-05-31]
McGraw D, Mandl KD. Privacy protections to encourage use of health-relevant digital data in a learning health system. NPJ Digit Med. Jan 4, 2021;4(1):2. [doi: 10.1038/s41746-020-00362-8] [Medline: 33398052]
Marketing submission recommendations for a predetermined change control plan for artificial intelligence–enabled device software functions. US Food and Drug Administration. Dec 2024. URL: https://www.fda.gov/regulatoryinformation/search-fda-guidance-documents/marketing-submission-recommendations-predetermined-change-controlplan-artificial-intelligence [Accessed 2025-05-31]
AI principles. Organisation for Economic Co-operation and Development. 2024. URL: https://www.oecd.org/en/topics/sub-issues/ai-principles.html [Accessed 2025-05-31]
Digital health policy navigator. US Food and Drug Administration. Dec 14, 2022. URL: https://www.fda.gov/medicaldevices/digital-health-center-excellence/digital-health-policy-navigator [Accessed 2025-05-31]
AI Act. European Commission. URL: https://digital-strategy.ec.europa.eu/en/policies/regulatory-framework-ai [Accessed 2025-05-31]
Kokko P. Improving the value of healthcare systems using the triple aim framework: a systematic literature review. Health Policy. Apr 2022;126(4):302-309. [doi: 10.1016/j.healthpol.2022.02.005] [Medline: 35221120]
Staskon FC, Kopera AA, Wilson RC. Taking the IOM quality challenge. Providers can do a lot to meet the Institute of Medicine’s call for improving the quality of healthcare. Behav Healthc. Oct 2007;27(10):24-26. [Medline: 18027629]
Rockwern B, Johnson D, Sulmasy LS, Medical Informatics Committee and Ethics, Professionalism and Human Rights Committee of the American College of Physicians. Health information privacy, protection, and use in the expanding digital health ecosystem: a position paper of the American College of Physicians. Ann Intern Med. Jul 2021;174(7):994-998. [doi: 10.7326/M20-7639] [Medline: 33900797]
Wei K, Li J, Ding M, et al. Federated learning with differential privacy: algorithms and performance analysis. IEEE Trans Inf Forensics Secur. 2020;15:3454-3469. [doi: 10.1109/TIFS.2020.2988575]
Guillaudeux M, Rousseau O, Petot J, et al. Patient-centric synthetic data generation, no reason to risk re-identification in biomedical data analysis. NPJ Digit Med. Mar 10, 2023;6(1):37. [doi: 10.1038/s41746-023-00771-5] [Medline: 36899082]
Humphreys E. Implementing the ISO/IEC 27001 Information Security Management System Standard. Artech House; 2007. URL: https://books.google.com/books/about/Implementing_the_ISO_IEC_27001_Informati.html?hl=&id= wa8ZAQAAIAAJ [Accessed 2025-05-31] ISBN: 9781596931725
Shen L. The NIST Cybersecurity Framework: overview and potential impacts. The SciTech Lawyer. 2014;10(4):16-19. URL: https://www.americanbar.org/content/dam/aba/publications/scitech_lawyer/2014/summer/nist_cybersecurity_framework_overview_potential_impacts.pdf [Accessed 2025-05-31]
Kanpariyasoontorn J, Senivongse T. Cloud service trustworthiness assessment based on Cloud Controls Matrix. In: 2017 19th International Conference on Advanced Communication Technology (ICACT). IEEE; 2017:291-297. [doi: 10. 23919/ICACT.2017.7890100]
Richardson S, Lawrence K, Schoenthaler AM, Mann D. A framework for digital health equity. NPJ Digit Med. Aug 18, 2022;5(1):119. [doi: 10.1038/s41746-022-00663-0] [Medline: 35982146]
Kaminski ME, Malgieri G. Algorithmic impact assessments under the GDPR: producing multi-layered explanations. SSRN J. 2019. [doi: 10.2139/ssrn.3456224]
Trocin C, Mikalef P, Papamitsiou Z, Conboy K. Responsible AI for digital health: a synthesis and a research agenda. Inf Syst Front. Dec 2023;25(6):2139-2157. [doi: 10.1007/s10796-021-10146-4]
Goldberg SB, Sun S, Carlbring P, Torous J. Selecting and describing control conditions in mobile health randomized controlled trials: a proposed typology. NPJ Digit Med. Sep 30, 2023;6(1):181. [doi: 10.1038/s41746-023-00923-7] [Medline: 37775522]
Denis F, Lethrosne C, Pourel N, et al. Randomized trial comparing a web-mediated follow-up with routine surveillance in lung cancer patients. J Natl Cancer Inst. Sep 2017;109(9):djx029. [doi: 10.1093/jnci/djx029] [Medline: 28423407]
Larsen ME, Huckvale K, Nicholas J, et al. Using science to sell apps: evaluation of mental health app store quality claims. NPJ Digit Med. 2019;2:18. [doi: 10.1038/s41746-019-0093-1] [Medline: 31304366]
Faurholt-Jepsen M, Frost M, Christensen EM, Bardram JE, Vinberg M, Kessing LV. The effect of smartphone-based monitoring on illness activity in bipolar disorder: the MONARCA II randomized controlled single-blinded trial. Psychol Med. Apr 2020;50(5):838-848. [doi: 10.1017/S0033291719000710] [Medline: 30944054]
Turnbull J. Monitoring With Prometheus. 2018. URL: https://www.prometheusbook.com/MonitoringWithPrometheus_sample.pdf [Accessed 2025-05-31]
Chakraborty M, Kundan AP. Grafana. In: Monitoring Cloud-Native Applications: Lead Agile Operations Confidently Using Open Source Software. Apress; 2021:187-240. [doi: 10.1007/978-1-4842-6888-9_6]
Badnjević A, Pokvić LG, Deumić A, Bećirović LS. Post-market surveillance of medical devices: a review. Technol Health Care. 2022;30(6):1315-1329. [doi: 10.3233/THC-220284] [Medline: 35964220]
Filkins BL, Kim JY, Roberts B, et al. Privacy and security in the era of digital health: what should translational researchers know and do about it? Am J Transl Res. 2016;8(3):1560-1580. [Medline: 27186282]
Smuck M, Odonkor CA, Wilt JK, Schmidt N, Swiernik MA. The emerging clinical role of wearables: factors for successful implementation in healthcare. NPJ Digit Med. Mar 10, 2021;4(1):45. [doi: 10.1038/s41746-021-00418-3] [Medline: 33692479]
Un KC, Wong CK, Lau YM, et al. Observational study on wearable biosensors and machine learning-based remote monitoring of COVID-19 patients. Sci Rep. Feb 23, 2021;11(1):4388. [doi: 10.1038/s41598-021-82771-7] [Medline: 33623096]