Article (Scientific journals)
Predictive modeling to uncover Parkinson s disease characteristics that delay diagnosis
Hähnel, T.; Raschka, T.; Klucken, J. et al.
2025In NPJ Parkinson's Disease, 11 (64)
Peer Reviewed verified by ORBi
 

Files


Full Text
s41531-025-00923-2.pdf
Publisher postprint (908.23 kB) Creative Commons License - Attribution
Download

All documents in ORBilu are protected by a user license.

Send to



Details



Keywords :
Parkinson's disease; predictive modeling; diagnostic delay; diverse symptoms; non-motor symptoms; gait impairment; disease progression; early diagnosis; neurodegeneration; model-based approach; longitudinal data; patient-reported time to diagnosis; clinical trials; disease-modifying treatments; latent time joint mixed-effects model; LTJMM; clinical symptoms; PPMI; ICEBERG; LuxPARK; demographic factors; clinical manifestations; disease timescale; motor scores; non-motor scores; cohorts
Abstract :
[en] PD patients present with diverse symptoms, complicating timely diagnosis. We analyzed 1124 PD trajectories using a novel model-based approach to estimate whether diagnosis was early or late compared to cohort averages. Higher age, specific non-motor symptoms, and fast disease progression were linked to later diagnosis, while gait impairment led to earlier diagnosis. Our findings are in line with a biological definition of PD that extends beyond classical motor symptoms.
Research center :
Luxembourg Centre for Systems Biomedicine (LCSB): Biomedical Data Science (Glaab Group)
Disciplines :
Neurology
Human health sciences: Multidisciplinary, general & others
Biotechnology
Life sciences: Multidisciplinary, general & others
Author, co-author :
Hähnel, T.
Raschka, T.
Klucken, J.
GLAAB, Enrico  ;  University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Biomedical Data Science
Corvol, J.-C.
Falkenburger, B.H.
Fröhlich, H.
External co-authors :
yes
Language :
English
Title :
Predictive modeling to uncover Parkinson s disease characteristics that delay diagnosis
Publication date :
2025
Journal title :
NPJ Parkinson's Disease
eISSN :
2373-8057
Volume :
11
Issue :
64
Peer reviewed :
Peer Reviewed verified by ORBi
Focus Area :
Systems Biomedicine
Development Goals :
3. Good health and well-being
FnR Project :
FNR14599012 - DIGIPD - Validating Digital Biomarkers For Better Personalized Treatment Of Parkinson’S Disease, 2020 (01/05/2021-30/04/2024) - Enrico Glaab
Name of the research project :
R-AGR-3931 - INTER/ERAPerMed 20/14599012/DIGIPD - GLAAB Enrico
Funders :
FNR - Fonds National de la Recherche
Funding number :
INTER/ERAPerMed 20/14599012/DIGIPD
Available on ORBilu :
since 26 April 2025

Statistics


Number of views
98 (0 by Unilu)
Number of downloads
31 (0 by Unilu)

OpenCitations
 
0

Bibliography


Similar publications



Contact ORBilu