Capillary microreactor; Incident light intensity; Intrinsic rate constant; Irradiation conditions; Photocyclization reaction; Photoreactions; Reaction performance; Reactor modelling; Residence time; Simple++; Catalysis; Chemistry (miscellaneous); Chemical Engineering (miscellaneous); Process Chemistry and Technology; Fluid Flow and Transfer Processes
Abstract :
[en] In this work, a simple reactor model for evaluating the intrinsic rate constant of a photocyclization reaction is presented. The photoreaction was performed in a standardized capillary microreactor that ensures isothermal and uniform irradiation conditions. The effects of residence time and incident light intensity on the reaction performance were studied, and a reaction kinetic model was established based on a plug flow assumption. The reaction order with respect to the F-tagged amide precursor was found to be 2 in the photochemical transformation, and apparent rate constants under various light intensities were obtained. Comprehensive mass transport diagnostics were performed by using dimensionless numbers based on the established effective reaction kinetics. The intrinsic rate constant of the photoreaction was extracted from the experimental data using a simplified reactor model, in which a parameter representing the photon absorption fraction of the photocatalyst was introduced. Moreover, the proposed reactor model gives a general overview for improving the space-time yield of photochemical processes in microreactors.
Disciplines :
Chemical engineering
Author, co-author :
Li, Jun ; Institute for Micro Process Engineering (IMVT), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
Šimek Tosino, Helena ; Institute of Biological and Chemical Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
LADEWIG, Bradley Paul ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Engineering (DoE)
Jung, Nicole; Institute of Biological and Chemical Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany ; Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology, Karlsruhe, Germany
Bräse, Stefan; Institute of Biological and Chemical Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany ; Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology, Karlsruhe, Germany
Dittmeyer, Roland ; Institute for Micro Process Engineering (IMVT), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
External co-authors :
yes
Language :
English
Title :
Extraction of the intrinsic rate constant for a photocyclization reaction in capillary microreactors using a simplified reactor model
The authors acknowledge financial support from the DFG (Deutsche Forschungsgemeinschaft) within the Research Unit 2383 ProMiSe, as well as the support of KNMFi (Karlsruhe Nano Micro Facility). The authors acknowledge the support of the German Research Foundation (NFDI4Chem, project number: 441958208) for the infrastructures used in this project. J. L. is grateful to Mrs. Cornelia Schorle and Mr. Conrad Grehl for the help in building up the test bench. J. L. is also grateful to Dr. Paul Kant for the help with the calibration of ferrous anion assays. H. S. T. is grateful to Dr. Patrick Hodapp for the provision and maintenance of syringe pumps used in this study, as well as for his continuous support during this project.
Kaushik N. K. Kaushik N. Attri P. Kumar N. Kim C. H. Verma A. K. Choi E. H. Molecules 2013 18 6620 6662 10.3390/molecules18066620 23743888
Singh T. P. Singh O. M. Mini-Rev. Med. Chem. 2018 18 9 25 10.2174/1389557517666170807124507 28782481
Taber D. F. Tirunahari P. K. Tetrahedron 2011 67 7195 7210 10.1016/j.tet.2011.06.040 25484459
Platon M. Amardeil R. Djakovitch L. Hierso J. C. Chem. Soc. Rev. 2012 41 3929 3968 10.1039/C2CS15350E 22447100
Sravanthi T. V. Manju S. L. Eur. J. Pharm. Sci. 2016 91 1 10 10.1016/j.ejps.2016.05.025 27237590
Marzo L. Pagire S. K. Reiser O. Konig B. Angew. Chem., Int. Ed. 2018 57 10034 10072 10.1002/anie.201709766 29457971
Festa A. A. Voskressensky L. G. Van der Eycken E. V. Chem. Soc. Rev. 2019 48 4401 4423 10.1039/C8CS00790J 31268435
Kim H. J. Fabry D. C. Mader S. Rueping M. Org. Chem. Front. 2019 6 2319 2323 10.1039/C9QO00206E
Zoller J. Fabry D. C. Ronge M. A. Rueping M. Angew. Chem., Int. Ed. 2014 53 13264 13268 10.1002/anie.201405478 25284332
Sender M. Ziegenbalg D. Chem. Ing. Tech. 2017 89 1159 1173 10.1002/cite.201600191
Haas C. P. Roider T. Hoffmann R. W. Tallarek U. React. Chem. Eng. 2019 4 1912 1916 10.1039/C9RE00339H
Colella M. Degennaro L. Luisi R. Molecules 2020 25 3242 10.3390/molecules25143242 32708643
Shen C. Shang M. Zhang H. Su Y. AIChE J. 2020 66 e16841 10.1002/aic.16841
Shi X. Q. Liu S. Duanmu C. Shang M. J. Qiu M. Shen C. Yang Y. Su Y. H. Chem. Eng. J. 2021 420 129976 10.1016/j.cej.2021.129976
Satuf M. L. Macagno J. Manassero A. Bernal G. Kler P. A. Berli C. L. A. Appl. Catal., B 2019 241 8 17 10.1016/j.apcatb.2018.09.015
Krivec M. Pohar A. Likozar B. Dražić G. AIChE J. 2015 61 572 581 10.1002/aic.14648
Su Y. H. Hessel V. Noel T. AIChE J. 2015 61 2215 2227 10.1002/aic.14813
Kayahan E. Urbani D. Dambruoso P. Massi A. Braeken L. Gerven T. V. Enis Leblebici M. Chem. Eng. J. 2021 408 127357 10.1016/j.cej.2020.127357
Yan Z. Tian J. Du C. Deng J. Luo G. Chin. J. Chem. Eng. 2022 41 49 72 10.1016/j.cjche.2021.08.023
Zhang P. Xiao T. Xiong S. Dong X. Zhou L. Org. Lett. 2014 16 3264 3267 10.1021/ol501276j 24895026
Shi Q. Li P. Zhu X. Wang L. Green Chem. 2016 18 4916 4923 10.1039/C6GC00516K
Wang X. Yu M. Song H. Liu Y. Wang Q. Chem. Commun. 2022 58 9492 9495 10.1039/D2CC03658D 35920300
Lerch S. Unkel L.-N. Brasholz M. Angew. Chem., Int. Ed. 2014 53 6558 6562 10.1002/anie.201402920
Sharma U. K. Gemoets H. P. L. Schroder F. Noel T. Van der Eycken E. V. ACS Catal. 2017 7 3818 3823 10.1021/acscatal.7b00840
Simek Tosino H. Jung A. Fuhr O. Muhle-Goll C. Jung N. Bräse S. Eur. J. Org. Chem. 2023 26 e202201132 10.1002/ejoc.202201132
Ligrani P. M., A study of Dean vortex development and structure in a curved rectangular channel with aspect ratio of 40 at Dean numbers up to 430, NASA, 1994
Mansour M. Thévenin D. Nigam K. D. P. Zähringer K. Chem. Eng. Sci. 2019 201 382 385 10.1016/j.ces.2019.03.003
Zhan X. Yan C. H. Zhang Y. L. Rinke G. Rabsch G. Klumpp M. Schafer A. I. Dittmeyer R. React. Chem. Eng. 2020 5 1658 1670 10.1039/D0RE00238K
Svejstrup T. D. Chatterjee A. Schekin D. Wagner T. Zach J. Johansson M. J. Bergonzini G. Konig B. ChemPhotoChem 2021 5 808 814 10.1002/cptc.202100059
Buglioni L. Raymenants F. Slattery A. Zondag S. D. A. Noël T. Chem. Rev. 2022 122 2752 2906 10.1021/acs.chemrev.1c00332 34375082
Delparish A. Uslu A. Cao Y. de Groot T. van der Schaaf J. Noël T. Fernanda Neira d'Angelo M. Chem. Eng. J. 2022 438 135393 10.1016/j.cej.2022.135393
Miyabe K. Isogai R. J. Chromatogr. A 2011 1218 6639 6645 10.1016/j.chroma.2011.07.018 21855880
Perry R. H., Green D. W. and Maloney J. O., Perry's chemical engineers' handbook, 7th edn, 1997
Cao Y. Soares C. Padoin N. Noël T. Chem. Eng. J. 2021 406 126811 10.1016/j.cej.2020.126811
Kreutzer M. T. Bakker J. J. W. Kapteijn F. Moulijn J. A. Verheijen P. J. T. Ind. Eng. Chem. Res. 2005 44 4898 4913 10.1021/ie0492350
Nagy K. D. Shen B. Jamison T. F. Jensen K. F. Org. Process Res. Dev. 2012 16 976 981 10.1021/op200349f
Wriedt B. Kowalczyk D. Ziegenbalg D. ChemPhotoChem 2018 2 913 921 10.1002/cptc.201800106
Aillet T. Loubiere K. Dechy-Cabaret O. Prat L. Int. J. Chem. React. Eng. 2014 12 257 269
Moreira R. P. M. Li Puma G. Chem. Eng. J. 2021 415 128833 10.1016/j.cej.2021.128833
Aillet T. Loubière K. Prat L. Dechy-Cabaret O. AIChE J. 2015 61 1284 1299 10.1002/aic.14718
Loubiere K. Oelgemoller M. Aillet T. Dechy-Cabaret O. Prat L. Chem. Eng. Process. 2016 104 120 132 10.1016/j.cep.2016.02.008
Rochatte V. Dahi G. Eskandari A. Dauchet J. Gros F. Roudet M. Cornet J. F. Chem. Eng. J. 2017 308 940 953 10.1016/j.cej.2016.08.112
Radjagobalou R. Freitas V. D. D. Blanco J. F. Gros F. Dauchet J. Cornet J. F. Loubiere K. J. Flow Chem. 2021 11 357 367 10.1007/s41981-021-00179-w
Hatchard C. G. Parker C. A. Proc. R. Soc. London, Ser. A 1956 235 518 536
Li J., 2D axisymmetric simulation of photocyclization reactions (probe reaction) in a capillary microreactor_support information_COMSOL Demo, https://dx.doi.org/10.5281/zenodo.11107170