[en] In the Internet of Things (IoT) era, the demand for efficient and responsive computing systems has surged. Edge computing, which processes data closer to the source, has emerged as a promising solution to address the challenges of latency and bandwidth limitations. However, the dynamic nature of edge environments necessitates intelligent load-balancing strategies to optimize resource utilization and minimize service latency. This paper proposes a novel load-balancing approach that leverages learning automata (LA) to distribute real-time tasks between edge and cloud servers dynamically. By continuously learning from past experiences, the algorithm adapts to changing workloads and network conditions, ensuring optimal task allocation. The proposed algorithm employs a Service Time Measurement (STM) metric to evaluate servers' performance and make informed decisions about task distribution. The algorithm effectively balances the workload between edge and cloud servers by considering factors such as task complexity, server capacity, and network latency. Through extensive simulations, we demonstrate the superior performance of our proposed algorithm compared to existing techniques. Our approach significantly reduces average service time, minimizes task waiting time, optimizes network traffic, and increases the number of successful task executions on edge servers. Compared to previous approaches that partially addressed workload balancing, ALBLA offers a more comprehensive solution that optimizes resource utilization and minimizes energy consumption. Additionally, ALBLA's adaptive nature makes it well-suited for dynamic edge-cloud environments with fluctuating workloads. Our proposed approach contributes to developing more efficient, responsive, and scalable IoT systems by addressing the challenges inherent in edge computing environments.
Precision for document type :
Review article
Disciplines :
Computer science
Author, co-author :
Ghorbani, Mehdi; Department of Computer Engineering and Information Technology, Qazvin Branch, Islamic Azad University, Qazvin, Iran
KHALEDIAN, Navid ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > CritiX
Moazzami, Setareh; Department of Computer Engineering, Tehran North Branch, Islamic Azad University, Tehran, Iran
External co-authors :
yes
Language :
English
Title :
ALBLA: an adaptive load balancing approach in edge-cloud networks utilizing learning automata
Apat HK, Nayak R, Sahoo B (2023) A comprehensive review on Internet of Things application placement in Fog computing environment. Internet Things 100866
Oliveira F, Costa DG, Assis F, Silva I (2024) Internet of intelligent things: a convergence of embedded systems, edge computing and machine learning. Internet Things 101153
Choudhury A, Ghose M, Islam A (2024) Machine learning-based computation offloading in multi-access edge computing: a survey. J Syst Arch 103090
N. Khaledian M. Voelp S. Azizi M.H. Shirvani AI-based & heuristic workflow scheduling in cloud and fog computing: a systematic review Clust Comput 27 8 10265 10298 10.1007/s10586-024-04442-2
D. Shahmirzadi N. Khaledian A.M. Rahmani Analyzing the impact of various parameters on job scheduling in the Google cluster dataset Clust Comput 27 6 7673 7687 10.1007/s10586-024-04377-8
E. Huaranga-Junco S. González-Gerpe M. Castillo-Cara A. Cimmino R. García-Castro From cloud and fog computing to federated-fog computing: a comparative analysis of computational resources in real-time IoT applications based on semantic interoperability Futur Gener Comput Syst 159 134 150 10.1016/j.future.2024.05.001
J. Cao K.-Y. Lam L.-H. Lee X. Liu P. Hui S. Xiang Su Mobile augmented reality: user interfaces, frameworks, and intelligence ACM Comput Surv 55 9 1 36 10.1145/3557999
Y. Chen Y. Lin Z. Zheng P. Yu J. Shen M. Guo Preference-aware edge server placement in the internet of things IEEE Internet Things J 9 2 1289 1299 10.1109/JIOT.2021.3079328
H. Wu J. Geng X. Bai S. Jin Deep reinforcement learning-based online task offloading in mobile edge computing networks Inf Sci 654 10.1016/j.ins.2023.119849 119849
N. Khaledian K. Khamforoosh R. Akraminejad L. Abualigah D. Javaheri An energy-efficient and deadline-aware workflow scheduling algorithm in the fog and cloud environment Computing 106 1 109 137 10.1007/s00607-023-01215-4
A. Sarhadi J.A. Torkestani Cost-effective scheduling and load balancing algorithms in cloud computing using learning automata Comput Inf 42 1 1 10.31577/cai-2023-1-37
H. Liang X. Zhang J. Zhang Q. Li S. Zhou L. Zhao A novel adaptive resource allocation model based on SMDP and reinforcement learning algorithm in vehicular cloud system IEEE Trans Veh Technol 68 10 10018 10029 10.1109/TVT.2019.2937842
A. Gosavi Reinforcement learning: a tutorial survey and recent advances Inf J Comput 21 2 178 192 2549123 10.1287/ijoc.1080.0305
N. Khaledian K. Khamforoosh S. Azizi V. Maihami IKH-EFT: an improved method of workflow scheduling using the krill herd algorithm in the fog-cloud environment Sustain Comput Inform Syst 37 100834
J. Lin S. Huang H. Zhang X. Yang P. Zhao A deep-reinforcement-learning-based computation offloading with mobile vehicles in vehicular edge computing IEEE Internet Things J 10 17 15501 15514 10.1109/JIOT.2023.3264281
J. Zhao Q. Li X. Ma Y. Richard YuF Computation offloading for edge intelligence in two-tier heterogeneous networks IEEE Trans Netw Sci Eng 11 2 1872 1884 4710472 10.1109/TNSE.2023.3332949
D. Wang Y. Yi S. Yan N. Wan Na J. Zhao A node trust evaluation method of vehicle-road-cloud collaborative system based on federated learning Ad Hoc Netw 138 10.1016/j.adhoc.2022.103013 103013
A. Oroojlooy D. Hajinezhad A review of cooperative multi-agent deep reinforcement learning Appl Intell 53 11 13677 13722 10.1007/s10489-022-04105-y
Y. Abofathi B. Anari M. Masdari A learning automata based approach for module placement in fog computing environment Expert Syst Appl 237 10.1016/j.eswa.2023.121607 121607
R. Vafashoar H. Morshedlou A. Rezvanian M.R. Meybodi Cellular learning automata: theory and applications Springer 10.1007/978-3-030-53141-6 307
S. Su J. Xiang Ju A cellular learning automata-based approach for self-protection and coverage problem in the Internet of Things Internet Things 22 10.1016/j.iot.2023.100718 100718
X. Wang W. Gaoyang Wu Learning automata based routing and content delivery for vehicular named data networking Eng Appl Artif Intell 136 10.1016/j.engappai.2024.109043 109043
Billard E, Lakshmivarahan S (1998) Simulation of period-doubling behaviour in distributed learning automata. In: Proceedings of the 1998 ACM symposium on applied computing, pp 690–695
W. Zhan C. Luo J. Wang C. Wang G. Min H. Duan Q. Zhu Deep-reinforcement-learning-based offloading scheduling for vehicular edge computing IEEE Internet Things J 7 6 5449 5465 10.1109/JIOT.2020.2978830
L. Dong W. Wu Q. Guo M.N. Satpute T. Znati D.Z. Du Reliability-aware offloading and allocation in multilevel edge computing system IEEE Trans Reliab 70 1 200 211 10.1109/TR.2019.2909279
J. Wang K. Liu B. Li T. Liu R. Li Z. Han Delay-sensitive multi-period computation offloading with reliability guarantees in fog networks IEEE Trans Mob Comput 19 9 2062 2075 10.1109/TMC.2019.2918773
J. Lim D. Lee A load balancing algorithm for mobile devices in edge cloud computing environments Electronics 9 4 4 10.3390/electronics9040686
F. Hoseiny S. Azizi M. Shojafar R. Tafazolli Joint QoS-aware and cost-efficient task scheduling for fog-cloud resources in a volunteer computing system ACM Trans Internet Technol 10.48550/ARXIV.2104.13974
T. Liu L. Fang Y. Zhu W. Tong Y. Yang A near-optimal approach for online task offloading and resource allocation in edge-cloud orchestrated computing IEEE Trans Mob Comput 21 8 2687 2700 10.1109/TMC.2020.3045471
J. Li et al. Maximizing user service satisfaction for delay-sensitive iot applications in edge computing IEEE Trans Parallel Distrib Syst 33 5 1199 1212 4442559 10.1109/TPDS.2021.3107137
F. Dai G. Liu Q. Mo W. Xu B. Huang Correction to: task offloading for vehicular edge computing with edge-cloud cooperation World Wide Web 26 2 633 633 10.1007/s11280-022-01064-9
S. Long Y. Zhang Q. Deng T. Pei J. Ouyang Z. Xia An efficient task offloading approach based on multi-objective evolutionary algorithm in cloud- edge collaborative environment IEEE Trans Netw Sci Eng 10 2 645 657 10.1109/TNSE.2022.3217085
T. Tang C. Li F. Liu Collaborative cloud-edge-end task offloading with task dependency based on deep reinforcement learning Comput Commun 209 78 90 10.1016/j.comcom.2023.06.021
Y. Laili F. Guo L. Ren X. Li Y. Li L. Zhang Parallel scheduling of large-scale tasks for industrial cloud-edge collaboration IEEE Internet Things J 10 4 3231 3242 10.1109/JIOT.2021.3139689
R. Siyadatzadeh et al. ReLIEF: a reinforcement-learning-based real-time task assignment strategy in emerging fault-tolerant fog computing IEEE Internet Things J 10 12 1075210763 10.1109/JIOT.2023.3240007
R. Ebrahim Pourian M. Fartash J. Akbari Torkestani A new approach to the resource allocation problem in fog computing based on learning automata Cybern Syst 10.1080/01969722.2022.2145653
Z. Du C. Peng T. Yoshinaga C. Wu A Q-learning-based load balancing method for real-time task processing in edge-cloud networks Electronics 10.3390/electronics12153254
L. Liu H. Zhu T. Wang M. Tang A fast and efficient task offloading approach in edge-cloud collaboration environment Electronics 13 2 2 10.3390/electronics13020313
I. Ullah H.K. Lim Y.J. Seok et al. Optimizing task offloading and resource allocation in edge-cloud networks: a DRL approach J Cloud Comp 12 112 10.1186/s13677-023-00461-3
T.A. Rahmani G. Belalem S.A. Mahmoudi et al. Machine learning-driven energy-efficient load balancing for real-time heterogeneous systems Clust Comput 27 4883 4908 10.1007/s10586-023-04215-3
O. Wehbi S. Arisdakessian O.A. Wahab et al. Fedmint: Intelligent bilateral client selection in federated learning with newcomer IoT devices IEEE Internet Things J 10 23 20884 20898 10.1109/JIOT.2023.3283855
J. Bai Y. Chen The node selection strategy for federated learning in UAV-assisted edge computing environment IEEE Internet Things J 10 15 13908 13919 10.1109/JIOT.2023.3263359
C. Sonmez A. Ozgovde C. Ersoy EdgeCloudSim: an environment for performance evaluation of edge computing systems Trans Emerg Telecommun Technol 29 11 10.1002/ett.3493 e3493
T. Goyal A. Singh A. Agrawal Cloudsim: a simulator for cloud computing infrastructure and modelling Int Conf Model Optim Comput 38 3566 3572 10.1016/j.proeng.2012.06.412
Hensen B (2023) A systematic literature review of mixed reality learning approaches. In: De Paolis LT, Arpaia P, Sacco M (eds) Extended reality. Springer Nature Switzerland, Cham, pp 15–34
S. Ahmed S. Irfan N. Kiran N. Masood N. Anjum N. Ramzan Remote health monitoring systems for elderly people: a survey Sensors 10.3390/s23167095
K.U. Jaseena B.C. Kovoor Deterministic weather forecasting models based on intelligent predictors: a survey J King Saud Univ Comput Inf Sci 34 6 3393 3412 10.1016/j.jksuci.2020.09.009
Aazam M, Huh EN (2014) Broker as a service (baas) pricing and resource estimation model. In: 2014 IEEE 6th international conference on cloud computing technology and science, pp 463–468. IEEE
T.Q. Dinh J. Tang Q.D. La T.Q.S. Quek Offloading in mobile edge computing: task allocation and computational frequency scaling IEEE Trans Commun 65 8 3571 3584
Y. Mao J. Zhang K.B. Letaief Dynamic computation offloading for mobile-edge computing with energy harvesting devices IEEE J Sel Areas Commun 34 12 3590 3605 10.1109/JSAC.2016.2611964
S. Wang Y. Zhao J. Xu J. Yuan C.H. Hsu Edge server placement in mobile edge computing J Parallel Distrib Comput 127 160 168 10.1016/j.jpdc.2018.06.008
Z. Zhou M. Shojafar M. Alazab J. Abawajy F. Li AFED-EF: an energy-efficient VM allocation algorithm for IoT applications in a cloud data center IEEE Trans Green Commun Netw 5 2 658 669 10.1109/TGCN.2021.3067309
Z. Zhou J. Abawajy M. Chowdhury Z. Hu K. Li H. Cheng F. Li Minimizing SLA violation and power consumption in Cloud data centres using adaptive energy-aware algorithms Future Gener Comput Syst 86 836 850 10.1016/j.future.2017.07.048
Z. Zhou M. Shojafar M. Alazab F. Li IECL: an intelligent energy consumption model for cloud manufacturing IEEE Trans Industr Inf 18 12 8967 8976 10.1109/TII.2022.3165085