Arrhenius plot; Fe CVD reactor; Hierarchical clustering; Polynomial chaos expansion; Sensitivity analysis; Uncertainty quantification; Environmental Chemistry; Chemistry (all); Chemical Engineering (all); Industrial and Manufacturing Engineering
Abstract :
[en] This work introduces a comprehensive approach utilizing data-driven methods to elucidate the deposition process regimes in Chemical Vapor Deposition (CVD) reactors and the interplay of physical mechanism that dominate in each one of them. Through this work, we address three key objectives. Firstly, our methodology relies on process outcomes, derived by a detailed CFD model, to identify clusters of “outcomes” corresponding to distinct process regimes, wherein the relative influence of input variables undergoes notable shifts. This phenomenon is experimentally validated through Arrhenius plot analysis, affirming the efficacy of our approach. Secondly, we demonstrate the development of an efficient surrogate model, based on Polynomial Chaos Expansion (PCE), that maintains accuracy, facilitating streamlined computational analyses. Finally, as a result of PCE, sensitivity analysis is made possible by means of Sobol’ indices, that quantify the impact of process inputs across identified regimes. The insights gained from our analysis contribute to the formulation of hypotheses regarding phenomena occurring beyond the transition regime. Notably, the significance of temperature even in the diffusion-limited regime, as evidenced by the Arrhenius plot, suggests activation of gas phase reactions at elevated temperatures. Importantly, our proposed methods yield insights that align with experimental observations and theoretical principles, aiding decision-making in process design and optimization. By circumventing the need for costly and time-consuming experiments, our approach offers a pragmatic pathway toward enhanced process efficiency. Moreover, this study underscores the potential of data-driven computational methods for innovating reactor design paradigms.
Disciplines :
Chemical engineering
Author, co-author :
LOACHAMIN SUNTAXI, Geremy ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Engineering (DoE) ; NTUA - National Technical University of Athens > School of Chemical Engineering
PAPAVASILEIOU, Paris ; University of Luxembourg > Faculty of Science, Technology and Medicine > Department of Engineering > Team Stéphane BORDAS ; School of Chemical Engineering, National Technical University of Athens, Attiki, Greece
KORONAKI, Eleni ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Engineering (DoE)
Giovanis, Dimitrios G. ; Department of Civil & Systems Engineering, Johns Hopkins University, Baltimore, United States
Gakis, Georgios ; School of Chemical Engineering, National Technical University of Athens, Attiki, Greece
Aviziotis, Ioannis G. ; School of Chemical Engineering, National Technical University of Athens, Attiki, Greece
POZZETTI, Gabriele ; University of Luxembourg > Faculty of Science, Technology and Medicine > Department of Engineering ; CERATIZIT Luxembourg S.à r.l. Mamer, Luxembourg
Czettl, Christoph; CERATIZIT Austria GmbH Reutte, Austria
Bordas, Stéphane P.A. ; Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
Boudouvis, Andreas G. ; School of Chemical Engineering, National Technical University of Athens, Attiki, Greece
External co-authors :
yes
Language :
English
Title :
Discovering deposition process regimes: Leveraging unsupervised learning for process insights, surrogate modeling, and sensitivity analysis
This research was funded by the Luxembourg National Research Fund (FNR) , grant reference 16758846 .This research was funded by the Luxembourg National Research Fund (FNR) , grant reference 16758846 . For the purpose of open access, the authors have applied a Creative Commons Attribution 4.0 International (CC BY 4.0) license to any Author Accepted Manuscript version arising from this submission.
Helmersson, U., Lattemann, M., Bohlmark, J., Ehiasarian, A.P., Gudmundsson, J.T., Ionized physical vapor deposition (IPVD): A review of technology and applications. Thin Solid Films 513 (2006), 1–24, 10.1016/j.tsf.2006.03.033.
M. Melloch, M. Reed, Compound. Semiconductors, Compound Semiconductors 1997, in: Proceedings of the IEEE Twenty-Fourth International Symposium on Compound Semiconductors, San Diego, CA, USA, 1997.
Gkinis, P.A., Aviziotis, I.G., Koronaki, E.D., Gakis, G.P., Boudouvis, A.G., The effects of flow multiplicity on GaN deposition in a rotating disk CVD reactor. J. Cryst. Growth 458 (2017), 140–148, 10.1016/j.jcrysgro.2016.10.065.
Gakis, G.P., Vahlas, C., Vergnes, H., Dourdain, S., Tison, Y., Martinez, H., Bour, J., Ruch, D., Boudouvis, A.G., Caussat, B., Scheid, E., Investigation of the initial deposition steps and the interfacial layer of atomic layer deposited (ALD) Al2O3 on Si. Appl. Surf. Sci. 492 (2019), 245–254, 10.1016/j.apsusc.2019.06.215.
Vahlas, C., Caussat, B., Serp, P., Angelopoulos, G.N., Principles and applications of CVD powder technology. Mater. Sci. Eng. R Rep. 53 (2006), 1–72, 10.1016/j.mser.2006.05.001.
Suk, J.W., Kitt, A., Magnuson, C.W., Hao, Y., Ahmed, S., An, J., Swan, A.K., Goldberg, B.B., Ruoff, R.S., Transfer of CVD-grown monolayer graphene onto arbitrary substrates. ACS Nano 5 (2011), 6916–6924, 10.1021/nn201207c.
Gakis, G.P., Termine, S., Trompeta, A.F.A., Aviziotis, I.G., Charitidis, C.A., Unraveling the mechanisms of carbon nanotube growth by chemical vapor deposition. J. Chem. Eng., 445, 2022, 136807, 10.1016/j.cej.2022.136807.
Rossnagel, S.M., Thin film deposition with physical vapor deposition and related technologies. J. Vac. Sci. Technol. 21 (2003), S74–S87, 10.1116/1.1600450.
Johnson, R.W., Hultqvist, A., Bent, S.F., A brief review of atomic layer deposition: from fundamentals to applications. Mater. Today 17 (2014), 236–246, 10.1016/j.mattod.2014.04.026.
Psarellis, G.M., Aviziotis, I.G., Duguet, T., Vahlas, C., Koronaki, E.D., Boudouvis, A.G., Investigation of reaction mechanisms in the chemical vapor deposition of Al from DMEAA. Chem. Eng. Sci. 177 (2018), 464–470, 10.1016/j.ces.2017.12.006.
Koronaki, E.D., Gakis, G.P., Cheimarios, N., Boudouvis, A.G., Efficient tracing and stability analysis of multiple stationary and periodic states with exploitation of commercial CFD software. Chem. Eng. Sci. 150 (2016), 26–34, 10.1016/j.ces.2016.04.043.
Kleijn, C.R., Dorsman, R., Kuijlaars, K.J., Okkerse, M., van Santen, H., Multi-scale modeling of chemical vapor deposition processes for thin film technology. J. Cryst. Growth 303 (2007), 362–380, 10.1016/j.jcrysgro.2006.12.062.
Gakis, G.P., Vergnes, H., Scheid, E., Vahlas, C., Boudouvis, A.G., Caussat, B., Detailed investigation of the surface mechanisms and their interplay with transport phenomena in alumina atomic layer deposition from TMA and water. Chem. Eng. Sci. 195 (2019), 399–412, 10.1016/j.ces.2018.09.037.
Gkinis, P.A., Koronaki, E.D., Skouteris, A., Aviziotis, I.G., Boudouvis, A.G., Building a data-driven reduced order model of a chemical vapor deposition process from low-fidelity CFD simulations. Chem. Eng. Sci. 199 (2019), 371–380, 10.1016/j.ces.2019.01.009.
Fritzsche, R., Zahn, D.R., Mehring, M., Atmospheric pressure metal organic chemical vapor deposition of thin germanium films. J. Mater. Sci. 56 (2021), 9274–9286, 10.1007/s10853-021-05871-9.
Aviziotis, I.G., Duguet, T., Vahlas, C., Boudouvis, A.G., Combined macro/nanoscale investigation of the chemical vapor deposition of Fe from Fe(CO)5. Adv. Mater. Interfaces, 4, 2017, 1601185, 10.1002/admi.201601185.
Gakis, G.P., Skountzos, E.N., Aviziotis, I.G., Charitidis, C.A., Multi-parametric analysis of the CVD of CNTs: Effect of reaction temperature, pressure and acetylene flow rate. Chem. Eng. Sci., 267, 2023, 118374, 10.1016/j.ces.2022.118374.
Gakis, G.P., Koronaki, E.D., Boudouvis, A.G., Numerical investigation of multiple stationary and time-periodic flow regimes in vertical rotating disc CVD reactors. J. Cryst. Growth 432 (2015), 152–159, 10.1016/j.jcrysgro.2015.09.026.
Papavasileiou, P., Koronaki, E.D., Pozzetti, G., Kathrein, M., Czettl, C., Boudouvis, A.G., Mountziaris, T.J., Bordas, S.P.A., An efficient chemistry-enhanced CFD model for the investigation of the rate-limiting mechanisms in industrial Chemical Vapor Deposition reactors. Chem. Eng. Res. Des. 186 (2022), 314–325, 10.1016/j.cherd.2022.08.005.
Papavasileiou, P., Koronaki, E.D., Pozzetti, G., Kathrein, M., Czettl, C., Boudouvis, A.G., Bordas, S.P.A., Equation-based and data-driven modeling strategies for industrial coating processes. Comput. Ind., 149, 2023, 103938, 10.1016/j.compind.2023.103938.
Koronaki, E.D., Nikas, A.M., Boudouvis, A.G., A data-driven reduced-order model of nonlinear processes based on diffusion maps and artificial neural networks. J. Chem. Eng., 397, 2020, 125475, 10.1016/j.cej.2020.125475.
Spencer, R., Gkinis, P., Koronaki, E.D., Gerogiorgis, D.I., Bordas, S.P.A., Boudouvis, A.G., Investigation of the chemical vapor deposition of Cu from copper amidinate through data driven efficient CFD modelling. Comput. Chem. Eng., 149, 2021, 107289, 10.1016/j.compchemeng.2021.107289.
Koronaki, E.D., Evangelou, N., Psarellis, Y.M., Boudouvis, A.G., Kevrekidis, I.G., From partial data to out-of-sample parameter and observation estimation with diffusion maps and geometric harmonics. Comput. Chem. Eng., 178, 2023, 108357, 10.1016/j.compchemeng.2023.108357.
Martin-Linares, C.P., Psarellis, Y.M., Karapetsas, G., Koronaki, E.D., Kevrekidis, I.G., Physics-agnostic and physics-infused machine learning for thin films flows: modelling, and predictions from small data. J. Fluid Mech., 975, 2023, A41, 10.1017/jfm.2023.868.
Bhosekar, A., Ierapetritou, M., Advances in surrogate based modeling, feasibility analysis, and optimization: A review. Comput. Chem. Eng. 108 (2018), 250–267, 10.1016/j.compchemeng.2017.09.017.
McBride, K., Sundmacher, K., Overview of surrogate modeling in chemical process engineering. Chem. Ing. Tech. 91 (2019), 228–239, 10.1002/cite.201800091.
Xenidou, T.C., Prud'homme, N., Vahlas, C., Markatos, N.C., Boudouvis, A.G., Reaction and transport interplay in Al MOCVD investigated through experiments and computational fluid dynamic analysis. J. Electrochem. Soc., 157, 2010, D633, 10.1149/1.3493617.
I.G. Aviziotis, Chemical Vapor Deposition of Al, Fe and of the Al13Fe4 Approximant Intermetallic Phase: Experiments and Multiscale Simulations, (Ph.D. thesis), Toulouse INP, 2016.
Hotelling, H., Analysis of a complex of statistical variables into principal components. J. Educ. Psychol. 24 (1933), 417–441, 10.1037/h0071325.
Maćkiewicz, A., Ratajczak, W., Principal components analysis (PCA). Comput. Geosci. 19 (1993), 303–342, 10.1016/0098-3004(93)90090-R.
McInnes, L., Healy, J., Melville, J., UMAP: Uniform manifold approximation and projection for dimension reduction. 2020, 10.48550/arXiv.1802.03426.
Ghojogh, B., Ghodsi, A., Karray, F., Crowley, M., Uniform manifold approximation and projection (UMAP) and its variants: Tutorial and survey. 2021, 10.48550/arXiv.2109.02508.
Schölkopf, B., Smola, A., Müller, K.R., Kernel principal component analysis. Gerstner, W., Germond, A., Hasler, M., Nicoud, J.D., (eds.) Artificial Neural Networks ICANN 1997 Lecture Notes in Computer Science 1327, 1997, Springer, Berlin, Heidelberg, 10.1007/BFb0020217.
Schölkopf, B., Smola, A., Müller, K.R., Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput. 10 (1998), 1299–1319, 10.1162/089976698300017467.
Isaac, B.J., Coussement, A., Gicquel, O., Smith, P.J., Parente, A., Reduced-order PCA models for chemical reacting flows. Combust. Flame 161 (2014), 2785–2800, 10.1016/j.combustflame.2014.05.011.
Huang, H.J., Kau, L.H., Wang, H.S., Hsieh, Y.L., Lee, C.C., Fuh, Y.K., Li, T.T., Large-scale data analysis of PECVD amorphous silicon interface passivation layer via the optical emission spectra for parameterized PCA. Int. J. Adv. Manuf. Technol. 101 (2019), 329–337, 10.1007/s00170-018-2938-1.
Koronaki, E.D., Gkinis, P.A., Beex, L., Bordas, S.P.A., Theodoropoulos, C., Boudouvis, A.G., Classification of states and model order reduction of large scale Chemical Vapor Deposition processes with solution multiplicity. Comput. Chem. Eng. 121 (2019), 148–157, 10.1016/j.compchemeng.2018.08.023.
Hastie, T., Tibshirani, R., Friedman, J., Hastie, T., Tibshirani, R., Friedman, J., (eds.) Unsupervised Learning, in the Elements of Statistical Learning: Data Mining, Inference, and Prediction Springer Series in Statistics, 2009, Springer, New York, NY, 485–585, 10.1007/978-0-387-84858-7_14.
James, G., Witten, D., Hastie, T., Tibshirani, R., James, G., Witten, D., Hastie, T., Tibshirani, R., (eds.) Unsupervised Learning, in an Introduction To Statistical Learning: With Applications in R Springer Texts in Statistics, 2021, Springer US, New York, NY, 497–552, 10.1007/978-1-0716-1418-1_12.
J. MacQueen, Some methods for classification and analysis of multivariate observations, in: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Oakland, CA, USA, 1967, pp. 281–297.
Ester, M., Kriegel, H.-P., Sander, J., Xu, X., A density-based algorithm for discovering clusters in large spatial databases with noise. Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, KDD’96. Portland, Oregon, 1996, AAAI Press, 226–231.
Ankerst, M., Breunig, M.M., Kriegel, H.-P., Sander, J., OPTICS: ordering points to identify the clustering structure. SIGMOD Rec. 28 (1999), 49–60, 10.1145/304181.304187.
Schubert, E., Sander, J., Ester, M., Kriegel, H.P., Xu, X., Dbscan revisited, revisited: Why and how you should (Still) use DBSCAN. ACM Trans. Database Syst. 42 (2018), 1–21, 10.1145/3068335.
Gordon, A.D., A review of hierarchical classification. J. R. Stat. Soc. 150 (1987), 119–137.
Kavyasrujana, D., Rao, B.C., Hierarchical clustering for sentence extraction using cosine similarity measure. Satapathy, S., Govardhan, A., Raju, K., Mandal, J., (eds.) Emerging ICT for Bridging the Future - Proceedings of the 49th Annual Convention of the Computer Society of India, CSI Advances in Intelligent Systems and Computing, 2015, Springer, Cham, 10.1007/978-3-319-13728-5_21.
Mercioni, M.A., Holban, S., A study on hierarchical clustering and the distance metrics for identifying architectural styles. International Conference on Energy and Environment, CIEM, Timisoara, 2019, 49–53, 10.1109/CIEM46456.2019.8937662.
Vagni, M., Giordano, N., Balestra, G., Rosati, S., Comparison of different similarity measures in hierarchical clustering. IEEE International Symposium on Medical Measurements and Applications, MeMeA, 2021, 10.1109/memea52024.2021.94.
Ward, J.H. Jr., Hierarchical grouping to optimize an objective function. J. Amer. Statist. Assoc. 58 (1963), 236–244, 10.2307/2282967.
Szekely, G., Rizzo, M., Hierarchical clustering via joint between-within distances: Extending ward's minimum variance method. J. Classification 22 (2005), 151–183, 10.1007/s00357-005-0012-9.
Wiener, N., The homogeneous chaos. Am. J. Math. 60 (1938), 897–936, 10.2307/2371268.
Lucor, D., Su, C.-H., Karniadakis, G.E., Generalized polynomial chaos and random oscillators. Internat. J. Numer. Methods Engrg. 60 (2004), 0029–5981, 10.1002/nme.976.
Le Gratiet, L., Marelli, S., Sudret, B., Metamodel-based sensitivity analysis: Polynomial chaos expansions and Gaussian processes. Ghanem, R., Higdon, D., Owhadi, H., (eds.) Handbook of Uncertainty Quantification, 2017, Springer, Cham, 10.1007/978-3-319-12385-1_38.
Sudret, B., Global sensitivity analysis using polynomial chaos expansions. Reliab. Eng. Syst. Saf. 93 (2008), 964–979, 10.1016/j.ress.2007.04.002.
Berkemeier, T., Krüger, M., Feinberg, A., Müller, M., Pöschl, U., Krieger, U.K., Accelerating models for multiphase chemical kinetics through machine learning with polynomial chaos expansion and neural networks. Geosci. Model Dev. 16 (2023), 2037–2054, 10.5194/gmd-16-2037-2023.
Xiu, D., Karniadakis, G.E., The Wiener-Askey polynomial chaos for stochastic differential equations. SIAM J. Sci. Comput. 24 (2002), 619–644, 10.1137/S1064827501387826.
Villegas, M., Augustin, F., Gilg, A., Hmaidi, A., Wever, U., Application of the polynomial chaos expansion to the simulation of chemical reactors with uncertainties. Math. Comput. Simulation 82 (2012), 805–817, 10.1016/j.matcom.2011.12.001.
Kim, M., Cho, S., Jang, K., Hong, S., Na, J., Moon, I., Data-driven robust optimization for minimum nitrogen oxide emission under process uncertainty. J. Chem. Eng., 428, 2022, 130971, 10.1016/j.cej.2021.130971.
Nagel, J.B., Rieckermann, J., Sudret, B., Principal component analysis and sparse polynomial chaos expansions for global sensitivity analysis and model calibration: Application to urban drainage simulation. Reliab. Eng. Syst. Saf., 195, 2020, 106737, 10.1016/j.ress.2019.106737.
Trung Duong, P.L., Ali, W., Kwok, E., Lee, M., Uncertainty quantification and global sensitivity analysis of complex chemical process using a generalized polynomial chaos approach. Comput. Chem. Eng. 90 (2016), 23–30, 10.1016/j.compchemeng.2016.03.020.
Sudret, B., Uncertainty Propagation and Sensitivity Analysis in Mechanical Models - Contributions To Structural Reliability and Stochastic Spectral Methods. Habilitation thesis, 2007, Université Blaise Pascal, Clermont- Ferrand.
Le Maître, O.P., Knio, O.M., Spectral Methods for Uncertainty Quantification with Applications to Computational Fluid Dynamics. 2012, Springer Dordrecht, 10.1007/978-90-481-3520-2.
Soize, C., Ghanem, R., Physical systems with random uncertainties: Chaos representations with arbitrary probability measure. SIAM J. Sci. Comput. 26 (2004), 395–410, 10.1137/S1064827503424505.
Wan, X., Karniadakis, G.E., Multi-element generalized polynomial chaos for arbitrary probability measures. SIAM J. Sci. Comput. 28 (2006), 901–928, 10.1137/050627630.
Berveiller, M., Sudret, B., Lemaire, M., Stochastic finite element: a non intrusive approach by regression. Eur. J. Comput. Mech. 15 (2006), 81–92, 10.3166/remn.15.81-92.
Hadigol, M., Doostan, A., Least squares polynomial chaos expansion: A review of sampling strategies. Comput. Methods Appl. Mech. Engrg. 332 (2018), 382–407, 10.1016/j.cma.2017.12.019.
Tibshirani, R., Regression shrinkage and selection via the Lasso. J. R. Stat. Soc. Ser. B Methodol 58 (1996), 267–288, 10.1111/j.2517-6161.1996.tb02080.x.
Blatman, G., Sudret, B., Adaptive sparse polynomial chaos expansion based on least angle regression. J. Comput. Phys. 230 (2011), 2345–2367, 10.1016/j.jcp.2010.12.021.
Blatman, G., Sudret, B., An adaptive algorithm to build up sparse polynomial chaos expansions for stochastic finite element analysis. Probab. Eng. Mech. 25 (2010), 183–197, 10.1016/j.probengmech.2009.10.003.
Saporta, G., Probabilités, analyse des données et statistique. third ed., 2011, TECHNIP, Paris.
Xie, X., Schenkendorf, R., Krewer, U., Efficient sensitivity analysis and interpretation of parameter correlations in chemical engineering. Reliab. Eng. Syst. Saf. 187 (2019), 159–173, 10.1016/j.ress.2018.06.010.
Santanoceto, M., Tiberga, M., Perkó, Z., Dulla, S., Lathouwers, D., Preliminary uncertainty and sensitivity analysis of the molten salt fast reactor steady-state using a polynomial chaos expansion method. Ann. Nucl. Energy, 159, 2021, 108311, 10.1016/j.anucene.2021.108311.
Sun, X., Choi, Y.Y., Choi, J., Global sensitivity analysis for multivariate outputs using polynomial chaos-based surrogate models. Appl. Math. Model. 82 (2020), 867–887, 10.1016/j.apm.2020.02.005.
Hessling, J.P., Deterministic sampling for quantification of modeling uncertainty of signals. García Márquez, F.P., Zaman, N., (eds.) Digital Filters and Signal Processing, 2013, InTech, Rijeka, Croatia, 53–79, 10.5772/52193.
Cutrono Rakhimov, A., Visser, D.C., Komen, E.M.J., Uncertainty quantification method for CFD applied to the turbulent mixing of two water layers – II: Deterministic sampling for input uncertainty. Nucl. Eng. Des. 348 (2019), 146–158, 10.1016/j.nucengdes.2019.04.016.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E., Scikit-learn: Machine learning in python. J. Mach. Learn. Res. 12 (2011), 2825–2830 https://dl.acm.org/doi/10.5555/1953048.2078195.
Olivier, A., Giovanis, D.G., Aakash, B.S., Chauhan, M., Vandanapu, L., Shields, M.D., UQpy: A general purpose python package and development environment for uncertainty quantification. J. Comput. Sci., 47, 2020, 101204, 10.1016/j.jocs.2020.101204.
Parente, A., Sutherland, J.C., Principal component analysis of turbulent combustion data: Data pre-processing and manifold sensitivity. Combust. Flame 160 (2013), 340–350, 10.1016/j.combustflame.2012.09.016.