Cell stiffness; Cell-size; Channel geometry; Experimental and numerical studies; Flowing blood; Leucocytes; Red blood cell; Red cells; Vessel walls; White cell; Computational Mechanics; Modeling and Simulation; Fluid Flow and Transfer Processes
Abstract :
[en] Margination, a fundamental process in which leukocytes migrate from the flowing blood to the vessel wall, is well-documented in physiology. However, it is still an open question on how the differences in cell size and stiffness of white and red cells contribute to this phenomenon. To investigate the specific influence of cell stiffness, we conduct experimental and numerical studies on the segregation of a binary mixture of artificially stiffened red blood cells within a suspension of healthy cells. The resulting distribution of stiffened cells within the channel is found to depend on the channel geometry, as demonstrated with slit, rectangular, and cylindrical cross sections. Notably, an unexpected central peak in the distribution of stiffened red blood cells, accompanied by fourfold peaks at the corners, emerges in agreement with simulations. Our results unveil a nonmonotonic variation in segregation/margination concerning hematocrit and flow rate, challenging the prevailing belief that higher flow rates lead to enhanced margination.
Disciplines :
Physical, chemical, mathematical & earth Sciences: Multidisciplinary, general & others
Author, co-author :
Chachanidze, Revaz D.; Experimental Physics, Saarland University, Saarbrucken, Germany ; Aix Marseille Universite, CNRS, Centrale Marseille, IRPHE, Marseille, France
Aouane, Othmane ; Helmholtz Institute Erlangen-Nürnberg for Renewable Energy, Forschungszentrum Julich, Erlangen, Germany
Harting, Jens ; Helmholtz Institute Erlangen-Nürnberg for Renewable Energy, Forschungszentrum Julich, Erlangen, Germany ; Department of Chemical and Biological Engineering, Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
WAGNER, Christian ; University of Luxembourg ; Experimental Physics, Saarland University, Saarbrucken, Germany
Leonetti, Marc; Aix Marseille Universite, CNRS, Centrale Marseille, IRPHE, Marseille, France ; Aix Marseille Universite, CNRS, Centrale Marseille, Marseille, France ; Aix Marseille Universite, CNRS, CINAM, Turing Centre for Living Systems, Marseille, France
External co-authors :
yes
Language :
English
Title :
Margination of artificially stiffened red blood cells
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
R. H. Phibbs, Distribution of leukocytes in blood flowing through arteries, Am. J. Physiol. 210, 919 (1966) 0002-9513 10.1152/ajplegacy.1966.210.5.919.
U. Bagge and R. Karlson, Maintenance of white blood cell margination at the passage through small venular junctions, Microvasc. Res. 20, 92 (1980) 0026-2862 10.1016/0026-2862(80)90023-0.
G. W. Schmid-Schönbein, S. Usami, R. Skalak, and S. Chien, The interaction of leukocytes and erythrocytes in capillary and postcapillary vessels, Microvasc. Res. 19, 45 (1980) 0026-2862 10.1016/0026-2862(80)90083-7.
E. Carboni, B. Bognet, G. Bouchillon, A. Kadilak, L. Shor, M. Ward, and A. Ma, Direct tracking of particles and quantification of margination in blood flow, Biophys. J. 111, 1487 (2016) 0006-3495 10.1016/j.bpj.2016.08.026.
M. Sugihara-Seki and N. Takinouchi, Margination of platelet-sized particles in the red blood cell suspension flow through square microchannels, Micromachines 12, 1175 (2021) 2072-666X 10.3390/mi12101175.
K. Ley and T. F. Tedder, Leukocyte interactions with vascular endothelium. New insights into selectin-mediated attachment and rolling, J. Immunol. 155, 525 (1995) 0022-1767 10.4049/jimmunol.155.2.525.
R. Alon, D. A. Hammer, and T. A. Springer, Lifetime of the P-selectin-carbohydrate bond and its response to tensile force in hydrodynamic flow, Nature (London) 374, 539 (1995) 0028-0836 10.1038/374539a0.
H. W. Hou, A. A. S. Bhagat, A. G. Lin Chong, P. Mao, K. S. Wei Tan, J. Han, and C. T. Lim, Deformability based cell margination-A simple microfluidic design for malaria-infected erythrocyte separation, Lab Chip 10, 2605 (2010) 1473-0197 10.1039/c003873c.
V. Clavería, P. Connes, L. Lanotte, C. Renoux, P. Joly, R. Fort, A. Gauthier, C. Wagner, and M. Abkarian, In vitro red blood cell segregation in sickle cell anemia, Front. Phys. 9, 737739 (2021) 2296-424X 10.3389/fphy.2021.737739.
G. Coutinho, A. S. Moita, M. Rossi, and A. L. N. Moreira, Experimental perspective on the mechanisms for near-wall accumulation of platelet-size particles in pressure-driven red blood cell suspension flows, Phys. Rev. Fluids 8, 103101 (2023) 2469-990X 10.1103/PhysRevFluids.8.103101.
G. Segré and A. Silberberg, Radial particle displacements in Poiseuille flow of suspensions, Nature (London) 189, 209 (1961) 0028-0836 10.1038/189209a0.
E. S. Asmolov, The inertial lift on a spherical particle in a plane Poiseuille flow at large channel Reynolds number, J. Fluid Mech. 381, 63 (1999) 0022-1120 10.1017/S0022112098003474.
D. D. Carlo, D. Irimia, R. G. Tompkins, and M. Toner, Continuous inertial focusing, ordering, and separation of particles in microchannels, Proc. Natl. Acad. Sci. USA 104, 18892 (2007) 0027-8424 10.1073/pnas.0704958104.
E. S. Asmolov, A. L. Dubov, T. Nizkaya, J. Harting, and O. I. Vinogradova, Inertial focusing of finite-size particles in microchannels, J. Fluid Mech. 840, 613 (2018) 0022-1120 10.1017/jfm.2018.95.
O. Aouane, M. Sega, B. Bäuerlein, K. Avila, and J. Harting, Inertial focusing of a dilute suspension in pipe flow, Phys. Fluids 34, 113312 (2022) 1070-6631 10.1063/5.0111680.
N. Takeishi, H. Yamashita, T. Omori, N. Yokoyama, S. Wada, and M. Sugihara-Seki, Inertial migration of red blood cells under a Newtonian fluid in a circular channel, J. Fluid Mech. 952, A35 (2022) 0022-1120 10.1017/jfm.2022.936.
S. S. Kuntaegowdanahalli, A. A. S. Bhagat, G. Kumar, and I. Papautsky, Inertial microfluidics for continuous particle separation in spiral microchannels, Lab Chip 9, 2973 (2009) 1473-0197 10.1039/b908271a.
D. Di Carlo, J. F. Edd, K. J. Humphry, H. A. Stone, and M. Toner, Particle segregation and dynamics in confined flows, Phys. Rev. Lett. 102, 094503 (2009) 0031-9007 10.1103/PhysRevLett.102.094503.
H. T. Kazerooni, W. Fornari, J. Hussong, and L. Brandt, Inertial migration in dilute and semidilute suspensions of rigid particles in laminar square duct flow, Phys. Rev. Fluids 2, 084301 (2017) 2469-990X 10.1103/PhysRevFluids.2.084301.
P. Olla, The lift on a tank-treading ellipsoidal cell in a shear flow, J. Phys. II 7, 1533 (1997) 10.1051/jp2:1997201.
I. Cantat and C. Misbah, Lift force and dynamical unbinding of adhering vesicles under shear flow, Phys. Rev. Lett. 83, 880 (1999) 0031-9007 10.1103/PhysRevLett.83.880.
M. Abkarian, C. Lartigue, and A. Viallat, Tank treading and unbinding of deformable vesicles in shear flow: Determination of the lift force, Phys. Rev. Lett. 88, 068103 (2002) 0031-9007 10.1103/PhysRevLett.88.068103.
U. Seifert, Hydrodynamic lift on bound vesicles, Phys. Rev. Lett. 83, 876 (1999) 0031-9007 10.1103/PhysRevLett.83.876.
S. Nix, Y. Imai, D. Matsunaga, T. Yamaguchi, and T. Ishikawa, Lateral migration of a spherical capsule near a plane wall in Stokes flow, Phys. Rev. E 90, 043009 (2014) 1539-3755 10.1103/PhysRevE.90.043009.
X. Grandchamp, G. Coupier, A. Srivastav, C. Minetti, and T. Podgorski, Lift and down-gradient shear-induced diffusion in red blood cell suspensions, Phys. Rev. Lett. 110, 108101 (2013) 0031-9007 10.1103/PhysRevLett.110.108101.
M. H.-Y. Tan, D.-V. Le, and K.-H. Chiam, Hydrodynamic diffusion of a suspension of elastic capsules in bounded simple shear flow, Soft Matter 8, 2243 (2012) 1744-683X 10.1039/c2sm06496k.
R. Fåhræus and T. Lindqvist, Viscosity of the blood in narrow capillary tubes, Am. J. Physiol. 96, 562 (1931) 0002-9513 10.1152/ajplegacy.1931.96.3.562.
A. Pries, D. Neuhaus, and P. Gaehtgens, Blood viscosity in tube flow: Dependence on diameter and hematocrit, Am. J Physiol 263, H1770 (1992) 10.1152/ajpheart.1992.263.6.H1770.
D. Bento, C. Fernandes, J. Miranda, and R. Lima, In vitro blood flow visualizations and cell-free layer (CFL) measurements in a microchannel network, Exp. Therm. Fluid Sci. 109, 109847 (2019) 0894-1777 10.1016/j.expthermflusci.2019.109847.
Y. Rashidi, O. Aouane, A. Darras, T. John, J. Harting, C. Wagner, and S. M. Recktenwald, Cell-free layer development and spatial organization of healthy and rigid red blood cells in a microfluidic bifurcation, Soft Matter 19, 6255 (2023) 1744-683X 10.1039/D3SM00517H.
R. G. Henríquez Rivera, K. Sinha, and M. D. Graham, Margination regimes and drainage transition in confined multicomponent suspensions, Phys. Rev. Lett. 114, 188101 (2015) 0031-9007 10.1103/PhysRevLett.114.188101.
Q. M. Qi and E. S. G. Shaqfeh, Theory to predict particle migration and margination in the pressure-driven channel flow of blood, Phys. Rev. Fluids 2, 093102 (2017) 2469-990X 10.1103/PhysRevFluids.2.093102.
D. Katanov, G. Gompper, and D. A. Fedosov, Microvascular blood flow resistance: Role of red blood cell migration and dispersion, Microvasc. Res. 99, 57 (2015) 0026-2862 10.1016/j.mvr.2015.02.006.
P. Pranay, R. G. Henríquez-Rivera, and M. D. Graham, Depletion layer formation in suspensions of elastic capsules in Newtonian and viscoelastic fluids, Phys. Fluids 24, 061902 (2012) 1070-6631 10.1063/1.4726058.
P. Balogh and P. Bagchi, The cell-free layer in simulated microvascular networks, J. Fluid Mech. 864, 768 (2019) 0022-1120 10.1017/jfm.2019.45.
J. B. Freund, Numerical simulation of flowing blood cells, Annu. Rev. Fluid Mech. 46, 67 (2014) 0066-4189 10.1146/annurev-fluid-010313-141349.
T. Krüger, Effect of tube diameter and capillary number on platelet margination and near-wall dynamics, Rheol. Acta 55, 511 (2016) 0035-4511 10.1007/s00397-015-0891-6.
A. Jain and L. L. Munn, Determinants of leukocyte margination in rectangular microchannels, PLoS ONE 4, 1 (2009) 1932-6203 10.1371/journal.pone.0007104.
Y. Chen, D. Li, Y. Li, W. Jiandi, J. Li, and H. Chen, Margination of stiffened red blood cells regulated by vessel geometry, Sci. Rep. 7, 15253 (2017) 2045-2322 10.1038/s41598-017-15524-0.
A. Kumar and M. D. Graham, Mechanism of margination in confined flows of blood and other multicomponent suspensions, Phys. Rev. Lett. 109, 108102 (2012) 0031-9007 10.1103/PhysRevLett.109.108102.
T. Krüger, B. Kaoui, and J. Harting, Interplay of inertia and deformability on rheological properties of a suspension of capsules, J. Fluid Mech. 751, 725 (2014) 0022-1120 10.1017/jfm.2014.315.
J. B. Freund, Leukocyte margination in a model microvessel, Phys. Fluids 19, 023301 (2007) 1070-6631 10.1063/1.2472479.
D. A. Fedosov, J. Fornleitner, and G. Gompper, Margination of white blood cells in microcapillary flow, Phys. Rev. Lett. 108, 028104 (2012) 0031-9007 10.1103/PhysRevLett.108.028104.
K. Müller, D. A. Fedosov, and G. Gompper, Margination of micro-and nano-particles in blood flow and its effect on drug delivery, Sci. Rep. 4, 4871 (2014) 2045-2322 10.1038/srep04871.
H. Zhao, E. S. G. Shaqfeh, and V. Narsimhan, Shear-induced particle migration and margination in a cellular suspension, Phys. Fluids 24, 011902 (2012) 1070-6631 10.1063/1.3677935.
K. Sinha and M. D. Graham, Shape-mediated margination and demargination in flowing multicomponent suspensions of deformable capsules, Soft Matter 12, 1683 (2016) 1744-683X 10.1039/C5SM02196K.
D. Oh, S. Ii, and S. Takagi, Numerical study of particle margination in a square channel flow with red blood cells, Fluids 7, 96 (2022) 2311-5521 10.3390/fluids7030096.
R. Toy, E. Hayden, C. Shoup, H. Baskaran, and E. Karathanasis, The effects of particle size, density and shape on margination of nanoparticles in microcirculation, Nanotechnology 22, 115101 (2011) 0957-4484 10.1088/0957-4484/22/11/115101.
M. Cooley, A. Sarode, M. Hoore, D. A. Fedosov, S. Mitragotri, and A. S. Gupta, Influence of particle size and shape on their margination and wall-adhesion: Implications in drug delivery vehicle design across nano-to-micro scale, Nanoscale 10, 15350 (2018) 2040-3364 10.1039/C8NR04042G.
M. Forouzandehmehr and A. Shamloo, Margination and adhesion of micro-and nanoparticles in the coronary circulation: A step towards optimised drug carrier design, Biomech Model Mechanobiol 17, 205 (2018) 1617-7959 10.1007/s10237-017-0955-x.
K. Namdee, A. J. Thompson, P. Charoenphol, and O. Eniola-Adefeso, Margination propensity of vascular-targeted spheres from blood flow in a microfluidic model of human microvessels, Langmuir 29, 2530 (2013) 0743-7463 10.1021/la304746p.
Z. Liu, Y. Zhu, R. R. Rao, J. R. Clausen, and C. K. Aidun, Nanoparticle transport in cellular blood flow, Comput. Fluids 172, 609 (2018) 0045-7930 10.1016/j.compfluid.2018.03.022.
A. Kumar and M. D. Graham, Margination and segregation in confined flows of blood and other multicomponent suspensions, Soft Matter 8, 10536 (2012) 1744-683X 10.1039/c2sm25943e.
B. Namgung, Y. C. Ng, H. L. Leo, J. M. Rifkind, and S. Kim, Near-wall migration dynamics of erythrocytes in vivo: Effects of cell deformability and arteriolar bifurcation, Front. Physiol. 8, 963 (2017) 1664-042X 10.3389/fphys.2017.00963.
M. Gutierrez, M. B. Fish, A. W. Golinski, and O. Eniola-Adefeso, Presence of rigid red blood cells in blood flow interferes with the vascular wall adhesion of leukocytes, Langmuir 34, 2363 (2018) 0743-7463 10.1021/acs.langmuir.7b03890.
A. Abay, G. Simionato, R. Chachanidze, A. Bogdanova, L. Hertz, P. Bianchi, E. van den Akker, M. von Lindern, M. Leonetti, G. Minetti, C. Wagner, and L. Kaestner, Glutaraldehyde-a subtle tool in the investigation of healthy and pathologic red blood cells, Front. Physiol. 10, 514 (2019) 1664-042X 10.3389/fphys.2019.00514.
R. Chachanidze, Collective phenomena in blood suspensions, Ph.D. dissertation, Saarland University, 2018.
See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevFluids.9.L091101 for AFM data on the stiffness of RBCs, rheological data on the suspending medium and details on the numerical code.
C. Bielinski, O. Aouane, J. Harting, and B. Kaoui, Squeezing multiple soft particles into a constriction: Transition to clogging, Phys. Rev. E 104, 065101 (2021) 2470-0045 10.1103/PhysRevE.104.065101.
O. Aouane, A. Scagliarini, and J. Harting, Structure and rheology of suspensions of spherical strain-hardening capsules, J. Fluid Mech. 911, A11 (2021) 0022-1120 10.1017/jfm.2020.1040.
M. Thiébaud, Z. Shen, J. Harting, and C. Misbah, Prediction of anomalous blood viscosity in confined shear flow, Phys. Rev. Lett. 112, 238304 (2014) 0031-9007 10.1103/PhysRevLett.112.238304.
F. Guglietta, F. Pelusi, M. Sega, O. Aouane, and J. Harting, Suspensions of viscoelastic capsules: Effect of membrane viscosity on transient dynamics, J. Fluid Mech. 971, A13 (2023) 0022-1120 10.1017/jfm.2023.694.
R. Benzi, S. Succi, and M. Vergassola, The lattice Boltzmann equation: Theory and applications, Phys. Rep. 222, 145 (1992) 0370-1573 10.1016/0370-1573(92)90090-M.
S. Succi, The Lattice Boltzmann Equation: For Fluid Dynamics and Beyond (Oxford University Press, Oxford, 2001).
J. Harting, J. Chin, M. Venturoli, and P. V. Coveney, Large-scale lattice Boltzmann simulations of complex fluids: Advances through the advent of computational grids, Philos. Trans. R. Soc. A 363, 1895 (2005) 1364-503X 10.1098/rsta.2005.1618.
T. Krüger, H. Kusumaatmaja, A. Kuzmin, O. Shardt, G. Silva, and E. M. Viggen, The Lattice Boltzmann Method (Springer International Publishing, Berlin, 2017), Vol. 10, p. 4.
S. Chen and G. D. Doolen, Lattice Boltzmann method for fluid flows, Annu. Rev. Fluid Mech. 30, 329 (1998) 0066-4189 10.1146/annurev.fluid.30.1.329.
P. L. Bhatnagar, E. P. Gross, and M. Krook, A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems, Phys. Rev. 94, 511 (1954) 0031-899X 10.1103/PhysRev.94.511.
C. S. Peskin, The immersed boundary method, Acta Numerica 11, 479 (2002) 0962-4929 10.1017/S0962492902000077.
T. Krüger, F. Varnik, and D. Raabe, Efficient and accurate simulations of deformable particles immersed in a fluid using a combined immersed boundary lattice Boltzmann finite element method, Comp. Math. with Appl. 61, 3485 (2011) 0898-1221 10.1016/j.camwa.2010.03.057.
R. Skalak, A. Tozeren, R. P. Zarda, and S. Chien, Strain energy function of red blood cell membranes, Biophys. J. 13, 245 (1973) 0006-3495 10.1016/S0006-3495(73)85983-1.
R. Skalak, Modelling the mechanical behavior of red blood cells, Biorheology 10, 229 (1973) 1878-5034 10.3233/BIR-1973-10215.
W. Helfrich, Elastic properties of lipid bilayers: Theory and possible experiments, Z. Naturforsch. C 28, 693 (1973) 1865-7125 10.1515/znc-1973-11-1209.
M. Meyer, M. Desbrun, P. Schröder, and A. H. Barr, Discrete Differential-Geometry Operators for Triangulated 2-Manifolds, Visualization and Mathematics III. Mathematics and Visualization, edited by H. C. Hege and K. Polthier (Springer, Berlin, Heidelberg, 2003), pp. 35-57.
T. Biben, A. Farutin, and C. Misbah, Three-dimensional vesicles under shear flow: Numerical study of dynamics and phase diagram, Phys. Rev. E 83, 031921 (2011) 1539-3755 10.1103/PhysRevE.83.031921.
S. Henon, G. Lenormand, A. Richert, and F. Gallet, A new determination of the shear modulus of the human erythrocyte membrane using optical tweezers, Biophys. J. 76, 1145 (1999) 0006-3495 10.1016/S0006-3495(99)77279-6.
G. Lenormand, S. Hénon, A. Richert, J. Siméon, and F. Gallet, Direct measurement of the area expansion and shear moduli of the human red blood cell membrane skeleton, Biophys. J. 81, 43 (2001) 0006-3495 10.1016/S0006-3495(01)75678-0.
M. Dao, C. T. Lim, and S. Suresh, Mechanics of the human red blood cell deformed by optical tweezers, J. Mech. Phys. Solids 51, 2259 (2003) 0022-5096 10.1016/j.jmps.2003.09.019.
L. Lanotte, J. Mauer, S. Mendez, D. A. Fedosov, J.-M. Fromental, V. Claveria, F. Nicoud, G. Gompper, and M. Abkarian, Red cells' dynamic morphologies govern blood shear thinning under microcirculatory flow conditions, Proc. Natl. Acad. Sci. USA 113, 13289 (2016) 0027-8424 10.1073/pnas.1608074113.
K. Müller, D. A. Fedosov, and G. Gompper, Understanding particle margination in blood flow-A step toward optimized drug delivery systems, Med. Eng. Phys. 38, 2 (2016) 1350-4533 10.1016/j.medengphy.2015.08.009.
P. A. Aarts, S. A. van den Broek, G. W. Prins, G. D. Kuiken, J. J. Sixma, and R. M. Heethaar, Blood platelets are concentrated near the wall and red blood cells, in the center in flowing blood., Arterioscler. Thromb. Vasc. Biol. 8, 819 (1988) 10.1161/01.ATV.8.6.819.
X. Yang, O. Forouzan, J. M. Burns, and S. S. Shevkoplyas, Traffic of leukocytes in microfluidic channels with rectangular and rounded cross-sections, Lab Chip 11, 3231 (2011) 1473-0197 10.1039/c1lc20293f.
A. Kumar and M. D. Graham, Segregation by membrane rigidity in flowing binary suspensions of elastic capsules, Phys. Rev. E 84, 066316 (2011) 1539-3755 10.1103/PhysRevE.84.066316.
M. J. Pearson and H. H. Lipowsky, Influence of erythrocyte aggregation on leukocyte margination in postcapillary venules of rat mesentery, Am. J. Physiol. 279, H1460 (2000) 10.1152/ajpheart.2000.279.4.H1460.
S. Fitzgibbon, A. P. Spann, Q. M. Qi, and E. S. G. Shaqfeh, In vitro measurement of particle margination in the microchannel flow: Effect of varying hematocrit, Biophys. J. 108, 2601 (2015) 0006-3495 10.1016/j.bpj.2015.04.013.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.