[en] The textile industry uses a huge quantity of water in the processing and manufacturing of textile fabrics. This water ends up in wastewater constituting dye itself as a significant toxic pollutant. Depending on the class of dye, 2.0%-50.0% of the total dye weight used in the process comes in wastewater streams. The nondegradability of dyes enhances its commercial value and attracts its application in textile, food, paper printing, and cosmetics, with the textile industry as the largest consumer, but simultaneously presents environmental risks. The recalcitrant nature of dye prevents its degradation by most of the chemical, physical, or biological processes. The low cost and recalcitrant nature of synthetic dyes make them more acceptable than natural dyes. The largest class of synthetic commercial dyes is “azo dye” which is one among the least degradable ones. Azo dyes are toxic, mutagenic, and carcinogenic in nature, causing severe health hazards and environmental degradation. The untreated or insufficiently treated dye wastewater ultimately reached water bodies imparting color and odor to it. The nondegradable characteristic of dyes severely affects aquatic ecology. The treatment of dye-enriched wastewater, particularly azo dye, from various consumer industries, is a big challenge to the modern world, taking into account its increasing applications. Recently, microbial fuel cell has emerged out as a renewable, biological, and economical wastewater treatment technology that shows its potential in the treatment of azo dye, presenting a solution in the current scenario.
Disciplines :
Civil engineering
Author, co-author :
Gupta, Supriya; Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre, Ghaziabad, India ; Environment and Sustainability Department, CSIR-Institute of Minerals and Materials Technology, Bhubaneswar, India
MITTAL, Yamini ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Engineering (DoE) ; Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre, Ghaziabad, India ; Environment and Sustainability Department, CSIR-Institute of Minerals and Materials Technology, Bhubaneswar, India
Tamta, Prashansa; University School of Environment Management, Guru Gobind Singh Indraprastha University, New Delhi, India
Srivastava, Pratiksha; Australian Maritime College, College of Sciences and Engineering, University of Tasmania, Launceston, Australia
Yadav, Asheesh Kumar; Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre, Ghaziabad, India ; Environment and Sustainability Department, CSIR-Institute of Minerals and Materials Technology, Bhubaneswar, India
External co-authors :
yes
Language :
English
Title :
Textile wastewater treatment using microbial fuel cell and coupled technology: a green approach for detoxification and bioelectricity generation
Publication date :
2020
Main work title :
Integrated Microbial Fuel Cells for Wastewater Treatment
R. Abbassi., A.K. Yadav., N. Kumar., S. Huang., P.R. Jaffe Modeling and optimization of dye removal using “green” clay supported iron nano-particles Ecol. Eng. 61 2013 366-370.
H. Ali Biodegradation of synthetic dyes-a review Water Air Soil Pollut. 213 1-4 2010 251-273.
P.F.F. Amaral., D.L.A. Fernandes., A.P.M. Tavares., A.B.M.R. Xavier., M.C. Cammarota., J.A.P. Coutinho., et al. Decolorization of dyes from textile wastewater by Trametes versicolor Environ. Technol. 25 11 2004 1313-1320.
A. Asghar., A.A. Abdul Raman., W.M.A.W. Daud Advanced oxidation processes for in-situ production of hydrogen peroxide/hydroxyl radical for textile wastewater treatment: a review J. Cleaner Prod. 87 2015 826-838.
A. Bafana., S.S. Devi., T. Chakrabarti Azo dyes: past, present, and the future Environ. Rev. 19 NA 2011 350-371.
S. Bakhshian., H.R. Kariminia., R. Roshandel Bioelectricity generation enhancement in a dual-chamber microbial fuel cell under cathodic enzyme catalyzed dye decolorization Bioresour. Technol. 102 12 2011 6761-6765.
M. Behera., P.S. Jana., T.T. More., M.M. Ghangrekar Rice mill wastewater treatment in microbial fuel cells fabricated using proton exchange membrane and earthen pot at different pH Bioelectrochemistry 79 2 2010 228-233.
Y. Cao., Y. Hu., J. Sun., B. Hou Explore various co-substrates for simultaneous electricity generation and Congo red degradation in air-cathode single-chamber microbial fuel cell Bioelectrochemistry 79 1 2010 71-76.
X. Cao., H. Wang., X.Q. Li., Z. Fang., X.N. Li Enhanced degradation of azo dye by a stacked microbial fuel cell-biofilm electrode reactor coupled system Bioresour. Technol. 227 2017 273-278.
D. Cui., Y.Q. Guo., H.Y. Cheng., B. Liang., F.Y. Kong., H.S. Lee., et al. Azo dye removal in a membrane-free up-flow biocatalyzed electrolysis reactor coupled with an aerobic bio-contact oxidation reactor J. Hazard. Mater. 239 2012 257-264.
M.Á.F. De Dios., A.G. del Campo., F.J. Fernández., M. Rodrigo., M. Pazos., M.Á. Sanromán Bacterial-fungal interactions enhance power generation in microbial fuel cells and drive dye decolourisation by an ex situ and in situ electro-Fenton process Bioresour. Technol. 148 2013 39-46.
Z. Fang., H. Song., N. Cang., X. Li Performance of microbial fuel cell coupled constructed wetland system for decolorization of azo dye and bioelectricity generation Bioresour. Technol. 144 2013 165-171.
Z. Fang., H.L. Song., N. Cang., X. Li Electricity production from azo dye wastewater using a microbial fuel cell coupled constructed wetland operating under different operating conditions Biosens. Bioelectron. 68 2015 135-141.
E. Fernando., T. Keshavarz., G. Kyazze Enhanced bio-decolourisation of acid orange 7 by Shewanella oneidensis through co-metabolism in a microbial fuel cell Int. Biodeterior. Biodegrad. 72 2012 1-9.
E. Fernando., T. Keshavarz., G. Kyazze Complete degradation of the azo dye acid orange-7 and bioelectricity generation in an integrated microbial fuel cell, aerobic two-stage bioreactor system in continuous flow mode at ambient temperature Bioresour. Technol. 156 2014 155-162.
E. Fernando., T. Keshavarz., G. Kyazze., K. Fonseka Treatment of colour industry wastewaters with concomitant bioelectricity production in a sequential stacked mono-chamber microbial fuel cells-aerobic system Environ. Technol. 37 2 2016 255-264.
J.A. Field., J. Brady Riboflavin as a redox mediator accelerating the reductionof azo dye mordant yellow 10 by anaerobic granular sludge Water Sci. Technol. 48 2003 187-193.
C.T.M.J. Frijters., R.H. Vos., G. Scheffer., R. Mulder Decolorizing and detoxifying textile wastewater, containing both soluble and insoluble dyes, in a full scale combined anaerobic/aerobic system Water Res. 40 6 2006 1249-1257.
L. Fu., S.J. You., G.Q. Zhang., F.L. Yang., X.H. Fang Degradation of azo dyes using in-situ Fenton reaction incorporated into H2O2 producing microbial fuel cell Chem. Eng. J. 160 2010 164-169.
G.C. Gil., I.S. Chang., B.H. Kim., M. Kim., J.K. Jang., H.S. Park., et al. Operational parameters affecting the performannce of a mediator-less microbial fuel cell Biosens. Bioelectron. 18 4 2003 327-334.
W. Guo., Y. Cui., H. Song., J. Sun Layer-by-layer construction of graphene-based microbial fuel cell for improved power generation and methyl orange removal Bioprocess. Biosyst. Eng. 37 9 2014 1749-1758.
B. Hou., J. Sun., Y.Y. Hu Simultaneous Congo red decolorization and electricity generation in air-cathode single-chamber microbial fuel cell with different microfiltration, ultrafiltration and proton exchange membranes Bioresour. Technol. 102 6 2011 4433-4438.
B. Hou., Y. Hu., J. Sun Performance and microbial diversity of microbial fuel cells coupled with different cathode types during simultaneous azo dye decolorization and electricity generation Bioresour. Technol. 111 2012 105-110.
C.-C. Hsueh., B.-Y. Chen., C.-Y. Yen Understanding effects of chemical structure on azo dye decolorization characteristics by Aeromonashydrophila J. Hazard. Mater. 167 1-3 2009 995.
R. Ilamathi., J. Jayapriya Microbial fuel cells for dye decolorization Environ. Chem. Lett. 16 1 2018 239-250.
S. Kalathil., J. Lee., M.H. Cho Granular activated carbon based microbial fuel cell for simultaneous decolorization of real dye wastewater and electricity generation New Biotechnol. 29 1 2011 32-37.
S. Kalathil., J. Lee., M.H. Cho Efficient decolorization of real dye wastewater and bioelectricity generation using a novel single chamber biocathode-microbial fuel cell Bioresour. Technol. 119 2012 22-27.
Z. Li., X. Zhang., J. Lin., S. Han., L. Lei Azo dye treatment with simultaneous electricity production in an anaerobic-aerobic sequential reactor and microbial fuel cell coupled system Bioresour. Technol. 101 12 2010 4440-4445.
Y. Li., H.Y. Yang., J.Y. Shen., Y. Mu., H.Q. Yu Enhancement of azo dye decolourization in a MFC-MEC coupled system Bioresour. Technol. 202 2016 93-100.
H. Liu., B.E. Logan Electricity generation using an air-cathode single chambermicrobial fuel cell in the presence and absence of a proton exchange membrane Environ. Sci. Technol. 38 2004 4040-4046.
B.E. Logan Microbial Fuel Cell 2008 Wiley-Interscience Hoboken, NJ.
B.E. Logan., B. Hamelers., R. Rozendal., U. Schröder., J. Keller., S. Freguia., et al. Microbial fuel cells: methodology and technology Environ. Sci. Technol. 40 17 2006 5181-5192.
Y. Mu., K. Rabaey., R.A. Rozendal., Z. Yuan., J. Keller Decolorization of azo dyes in bioelectrochemical systems Environ. Sci. Technol. 43 13 2009 5137-5143.
C.G. Niu., Y. Wang., X.G. Zhang., G.M. Zeng., D.W. Huang., M. Ruan., et al. Decolorization of an azo dye Orange G in microbial fuel cells using Fe (II)-EDTA catalyzed persulfate Bioresour. Technol. 126 2012 101-106.
Y.S. Oon., S.A. Ong., L.N. Ho., Y.S. Wong., Y.L. Oon., H.K. Lehl., et al. Microbial fuel cell operation using monoazo and diazo dyes as terminal electron acceptor for simultaneous decolourisation and bioelectricity generation J. Hazard. Mater. 325 2017 170-177.
K. Rabaey., W. Verstraete Microbial fuel cells: novel biotechnology for energy generation Trends Biotechnol. 23 6 2005 291-298.
M. Rahimnejad., G. Bakeri., M. Ghasemi., A. Zirepour A review on the role of proton exchange membrane on the performance of microbial fuel cell Polym. Adv. Technol. 25 12 2014 1426-1432.
A. Rhoads., H. Beyenal., Z. Lewandowski Microbial fuel cellusing anaerobic respiration as an anodic reaction andbiomineralized manganese as a cathodic reactant Environ. Sci. Technol. 39 12 2005 4666e4671.
R.A. Rozendal., E. Leonne., J. Keller., K. Rabaey Efficient hydrogen peroxide generation from organic matter in a bioelectrochemical system Electrochem. Commun. 11 2009 1752-1755.
P. Srivastava., S. Dwivedi., N. Kumar., R. Abbassi., V. Garaniya., A.K. Yadav Performance assessment of aeration and radial oxygen loss assisted cathode based integrated constructed wetland-microbial fuel cell systems Bioresour. Technol. 244 2017 1178-1182.
P. Srivastava., A.K. Yadav., V. Garaniya., R. Abbassi Constructed wetland coupled microbial fuel cell technology development and potential applications S.V. Mohan., S. Varjani. A. Pandey Biomass, Biofuels and Biochemicals, Microbial Electrochemical Technology first ed. 2018 Elsevier B.V 1021-1036.
Srivastava, P., Abbassi, R., Garaniya, V., Lewis, T., Yadav A., 2018b. Degradation of of azo dye in constructed wetland coupled with a microbial electrolysis cell. In: Paper Presented at the 16th IWA International Conference on Wetland Systems for Water Pollution Control. 30 September-04 October 2018, Valencia, Spain.
P. Srivastava., A.K. Yadav., R. Abbassi., V. Garaniya., T. Lewis Denitrification in a low carbon environment of a constructed wetland incorporating a microbial electrolysis cell J. Environ. Chem. Eng. 6 4 2019 5602-5607.
P. Srivastava., S. Gupta., V. Garaniya., R. Abbassi., A.K. Yadav Up to 399 mV bioelectricity generated by a rice paddy-planted microbial fuel cell assisted with a blue-green algal cathode Environ. Chem. Lett. 17 2 2019 1045-1051.
P. Srivastava., A.K. Yadav., V. Garaniya., T. Lewis., R. Abbassi., S.J. Khan Electrode dependent anaerobic ammonium oxidation in microbial fuel cell integrated hybrid constructed wetlands: a new process Sci. Total. Environ. 698 2020 134248.
Srivastava, P., Abbassi, A., Garaniya, V., Lewis, T., Yadav, A.K. (2020b). Performance of pilot-scale horizontal subsurface flow constructed wetland coupled with a microbial fuel cell for treating wastewater. J. Water Process Eng. 33, 2020b, 100994.
K. Solanki., S. Subramanian., S. Basu Microbial fuel cells for azo dye treatment with electricity generation: a review Bioresour. Technol. 131 2013 564-571.
S. Sreelatha., G. Velvizhi., A. Naresh Kumar., S. Venkata Mohan Functional behavior of bio-electrochemical treatment system with increasing azo dye concentrations: synergistic interactions of biocatalyst and electrode assembly Bioresour. Technol. 213 2016 11-20.
A.J.M. Stams., F.A.M. de Bok., C.M. Plugge., M.H.A. van Eekert., J. Dolfing., G. Schraa Exocellular electron transfer inanaerobic microbial communities Environ. Microbiol. 8 3 2006 371e382.
J. Sun., Y.Y. Hu., Z. Bi., Y.Q. Cao Simultaneous decolorization of azo dye and bioelectricity generation using a microfiltration membrane air-cathode single-chamber microbial fuel cell Bioresour. Technol. 100 13 2009 3185-3192.
J. Sun., Y. Hu., Z. Bi., Y. Cao Improved performance of air-cathode single-chamber microbial fuel cell for wastewater treatment using microfiltration membranes and multiple sludge inoculation J. Power Sources 187 2 2009 471-479.
J. Sun., Z. Bi., B. Hou., Y.Q. Cao., Y.Y. Hu Further treatment of decolorization liquid of azo dye coupled with increased power production using microbial fuel cell equipped with an aerobic biocathode Water Res. 45 1 2011 283-291.
J. Sun., W. Li., Y. Li., Y. Hu., Y. Zhang Redox mediator enhanced simultaneous decolorization of azo dye and bioelectricity generation in air-cathode microbial fuel cell Bioresour. Technol. 142 2013 407-414.
J. Sun., Y. Li., Y. Hu., B. Hou., Y. Zhang., S. Li Understanding the degradation of Congo red and bacterial diversity in an air-cathode microbial fuel cell being evaluated for simultaneous azo dye removal from wastewater and bioelectricity generation Appl. Microbiol. Biotechnol. 97 8 2013 3711-3719.
J. Sun., B. Cai., Y. Zhang., Y. Peng., K. Chang., X. Ning., et al. Regulation of biocathode microbial fuel cell performance with respect to azo dye degradation and electricity generation via the selection of anodic inoculum Int. J. Hydrogen Energy 41 9 2016 5141-5150.
B. Tartakovsky., S.R. Guiot A comparison of air and hydrogen peroxide oxygenated microbial fuel cell reactors Biotechnol. Progr. 22 2006 241-246.
A. TerHeijne., H.V.M. Hamelers., C.J.N. Buisman Microbialfuel cell operation with continuous biological ferrous ironoxidation of the catholyte Environ. Sci. Technol. 41 11 2007 4130e4134.
W.E. Thung., S.A. Ong., L.N. Ho., Y.S. Wong., F. Ridwan., Y.L. Oon., et al. A highly efficient single chambered up-flow membrane-less microbial fuel cell for treatment of azo dye Acid Orange 7-containing wastewater Bioresour. Technol. 197 2015 284-288.
F.P. Van der Zee., G. Lettinga., J.A. Field Azo dye decolourisation by anaerobic granular sludge Chemosphere 44 5 2001 1169-1176.
J.L. Varanasi., D. Das Bioremediation and power generation from organic wastes using microbial fuel cell Microbial Fuel Cell 2018 Springer Cham 285-306.
Y.Z. Wang., A.J. Wang., W.Z. Liu., D.Y. Kong., W.B. Tan., C. Liu Accelerated azo dye removal by biocathode formation in single-chamber biocatalyzed electrolysis systems Bioresour. Technol. 146 2013 740-743.
V.B. Wang., S.L. Chua., Z. Cai., K. Sivakumar., Q. Zhang., S. Kjelleberg., et al. A stable synergistic microbial consortium for simultaneous azo dye removal and bioelectricity generation Bioresour. Technol. 155 2014 71-76.
J.H. Weisburger Comments on the history and importance of aromatic and heterocyclic amines in public health Mutat. Res./Fundam. Mol. Mech. Mutagen. 506 2002 9-20.
P.K. Wong., P.Y. Yuen Decolourization and biodegradation of N, N′-dimethyl-p-phenylenediamine by Klebsiella pneumoniae RS-13 and Acetobacter liquefaciens S-1 J. Appl. Microbiol. 85 1 1998 79-87.
Q. Xu., J. Sun., Y.Y. Hu., J. Chen., W.J. Li Characterization and interactions of anodic isolates in microbial fuel cells explored for simultaneous electricity generation and Congo red decolorization Bioresour. Technol. 142 2013 101-108.
Yadav, A.K., 2010. Design and development of novel constructed wetland cum microbial fuel cell for electricity production and wastewater treatment. In: Proc. of the 12th IWA International Conference on Wetland Systems for Water Pollution Control. Venice, pp. 1085-1089.
A. Yadav., P. Dash., A. Mohanty., R. Abbassi., B.K. Mishra Performance assessment of innovative constructed wetland-microbial fuel cell for electricity production and dye removal Ecol. Eng. 47 2012 126-131.
A.K. Yadav., S. Jena., B.C. Acharya., B.K. Mishra Removal of azo dye in innovative constructed wetlands: influence of iron scrap and sulfate reducing bacterial enrichment Ecol. Eng. 49 2012 53-58.
A.K. Yadav., P. Srivastava., N. Kumar., R. Abbassi., B.K. Mishra Constructed wetland microbial fuel cell: an emerging integrated technology for potential industrial wastewater treatment and bioelectricity generation A.I. Stefanakis. Constructed Wetlands for Industrial Wastewater Treatment 2018 John Wiley & Sons Hoboken, NJ 493-510 2018.
S.J. You., Q.L. Zhao., J.N. Zhang., J.Q. Jiang., S.Q. Zhao A microbial fuel cell using permanganate as the cathodic electron acceptor J. Power Sources 162 2 2006 1409-1415.
L. Zhang., C. Liu., L. Zhuang., W. Li., S. Zhou., J. Zhang Manganese dioxide as an alternative cathodic catalyst to platinum in microbial fuel cells Biosens. Bioelectron. 24 9 2009 2825-2829.
B. Zhang., Z. Wang., X. Zhou., C. Shi., H. Guo., C. Feng Electrochemical decolorization of methyl orange powered by bioelectricity from single-chamber microbial fuel cells Bioresour. Technol. 181 2015 360-362.
L. Zhuang., S. Zhou., Y. Yuan., M. Liu., Y. Wang A novel bioelectro-Fenton system for coupling anodic COD removal with cathodic dye degradation Chem. Eng. J. 163 1 2010 160-163.